离散数学试卷3
离散数学期末考试卷

离散数学期末考试卷一、选择题(每题2分,共20分)1. 在集合论中,下列哪个选项不是集合的基本运算?A. 并集B. 交集C. 差集D. 幂集2. 命题逻辑中,下列哪个命题不是合取命题?A. (p ∧ q)B. (p ∨ q)C. (p → q)D. (p ↔ q)3. 关系R在集合A上是自反的,这意味着:A. 对于所有a∈A,(a, a)∈RB. R是对称的C. R是传递的D. R是反对称的4. 在图论中,下列哪个不是图的基本概念?A. 顶点B. 边C. 路径D. 矩阵5. 布尔代数中,下列哪个操作不是基本操作?A. 与(AND)B. 或(OR)C. 非(NOT)D. 模(MOD)6. 函数f: A → B,下列哪个条件不是函数的一一对应的必要条件?A. 对于A中不同的元素,它们的函数值不同B. 对于B中的每个元素,A中至少有一个元素映射到它C. 对于A中的每个元素,B中只有一个元素映射到它D. A和B的元素数量相同7. 在组合数学中,下列哪个是排列的定义?A. 从n个不同元素中取出r个元素的所有可能组合B. 从n个不同元素中取出r个元素的所有可能排列C. 从n个元素中取出r个元素的所有可能组合,不考虑顺序D. 从n个元素中取出r个元素的所有可能排列,考虑顺序8. 逻辑等价是指两个命题:A. 总是同时为真或同时为假B. 在所有可能的真值分配下都具有相同的真值C. 只有在某些真值分配下具有相同的真值D. 至少在一个真值分配下具有相同的真值9. 递归函数的特点是:A. 只能通过迭代来实现B. 必须有一个或多个基本情况C. 只能通过递归调用自身来实现D. 不能包含任何循环结构10. 在证明中,归纳法的基本步骤是:A. 基础步骤和归纳步骤B. 假设步骤和证明步骤C. 假设步骤和归纳步骤D. 基础步骤和假设步骤二、填空题(每空2分,共20分)11. 集合{1, 2, 3}的幂集包含元素个数为______。
离散数学样卷参考答案

参考答案试卷一一、选择填空1.C2.A3.D4.D5.A6.A7.B8.C9.D 10.B二、填空1.主合取范式)()(q p q p ⌝∨∧∨⌝.前束范式))()((x G x F x →∀或))()((y G x F y x →∀∀ 2. n-k,93.=)(A ρ{Φ,{1},{2},{1,2}},B A ⨯={〈1,a 〉,<1,b>,<2,a>,<2,b>}4. [b]R ={1,2,3}, X/R={{1,2,3},{4},{5}}.5. ,,G y x ∈∀ )()()(y f x f y x f *= 。
6.=-)(1R r { <2,1>,< 4,2>,<1,1>,<3,3>,<2,2>},=S R {<1,4>,<2,2>}。
7.15,12.8. =τσ⎪⎪⎭⎫ ⎝⎛42134321 =(132) =-1στ⎪⎪⎭⎫ ⎝⎛41324321=(123) 9.0, 45 10.2,0三 1.× 2.√ 3. √ 4.× 5.×四.1.一棵树具有3个2度结点,2个3度结点,2个4度结点,其余为叶。
试求其共有多少个结点?多少片叶?解: 设该树其有x 片叶,则顶点数为x+7, 根据树的性质知,该树有x+6边,由握手定理有:3*2+2*3+2*4+x*1=2(x+6), 得x=8故该树共有15个结点,8 片叶 .2.已知X={a,b,c},给出X 上的所有等价关系。
解:X 的划分其有五种:S 1={{a,b,c}}, S 2={{a,b},{c}}, S 3={{a,c},{b}}, S 4={{a},{b,c}},S 5={{a},{b},{c}},因为X 上划分与等价关系一一对应,故x 上共有五个等价关系,它们是:R 1={<a,b>,<b,a>,<a,c><c,a>,<b,c>,<c,b>}X I ⋃R 2={<a,b>,<b,a>}X I ⋃, R 3={<a,c><c,a>}X I ⋃R 4={<b,c>,<c,b>}X I ⋃, R 5=X I3..画一棵权为2,3,3,4,5,6,7,8 的最优二叉树,并计算出它的树权。
离散数学试卷及答案三

、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.下列各图是平面图的是()A.IL J D-2•设G是n个顶点的无向简单图,则下列说法不.正确的是)A. 若G是树,则其边数等于n-1B. 若G是欧拉图,则G中必有割边C•若G中有欧拉路,则G是连通图,且有零个或两个奇度数顶点D.若G中任意一对顶点的度数之和大于等于n-1,则G中有汉密尔顿路3•格L是分配格的充要条件是L不含与下面哪一个选项同构的子格()A.链C.五角格B.钻石格D.五角格与钻石格4•设<G,*>是有限循环群,则下列说法不.正确的是()A. <G,*>的生成元是唯一的B. 有限循环群中的运算*适合交换律C. G中存在一元素a,使G中任一元素都由a的幕组成D. 设a是<G,*>的生成元,则对任一正整数i,存在正整数j使a-i=a j5.在实数集合R上,下列定义的运算中是可结合的只有()A.a*b=a+2b C.a*b=a-b+2abB.a*b=a+b-2ab D.a*b=a-b-2ab6.设群G=<A,*>中,A的元素个数大于1,若元素a€ A的逆元素为b € A,则a*b的运算结果是()A.aC.G中零元素B.bD.G中幺元7.非空集合A上的二元关系R若是自反和对称的,则R是()A.偏序关系C.相容关系B.等价关系D.拟序关系8. 下面的图是A= { 1,2,3} 上关系R的关系图G(R),从G(R)可判断R所具有的性质是()1。
A. 自反,对称,传递B. 反自反,非对称C. 反自反,对称,非传递D. 反自反,对称,反对称,传递9. 设A= {1, 2, 3}, B= { a,b},下列二元关系R为A到B的函数的是()A. R= {<1,a>,<2,a>,<3,a> }B. R= {<1,a>,<2,b> }C. R= {<1,a>,<1,b>,<2,a>,<3,a> }D. R= {<1,b>,<2,a>,<3,b>,<1,a> }10. 设$为空集,P(x)是集合x的幕集,下列论断不.正确的是()A. 0 € P( $ ), $ P( $ )B. { $ } € P ( $ ), { $ }U P ($)C. $ € P (P ($ )), $ §P (P ( $ ))D. { $ } € P ( P ( $ )) ,{ $ }0P (P ( $ ))11. 利用谓词的约束变元改名规则和自由变元代入规则,可将如下公式:(-x)(p(x,y) > ( z)Q(x,z)) (-y)R(x,y)改写成( )A. (-z)(p(z,y) > ( y)Q(z,y)) (-s)R(z,s)B. (—z)(p(z,y)—. ( s)Q(x,s)) (-y)R(z,y)C. (-x)(p(x, m)—;( y)Q(x,y)) (-m)R(m,m)D. (-x)(p(y,y) > ( y)Q(x,y)) (_s)R(y,s)12. 设论域为整数集,下列谓词公式中真值为假的是()A. ( F( y)(x y 0)B. ( -x)( y)(x y =1)C. ( y)(—x)(x y =x)D. (-x)(-y)( z)(x -y z)13. 在命题演算中,语句为真为假的一种性质称为()A.真值B.陈述句C. 命题D.谓词14.设P:明天天晴;q:我去爬山;那么“除非明天天晴,否则我不去爬山。
《离散数学》试题带答案(三)

《离散数学》试题带答案试卷十四试题与答案一、 填空 10% (每小题 2分)1、 设>-∧∨<,,,A 是由有限布尔格≤><,A 诱导的代数系统,S 是布尔格≤><,A ,中所有原子的集合,则>-∧∨<,,,A ~ 。
2、 集合S={α,β,γ,δ}上的二元运算*为那么,代数系统<S, *>中的幺元是 , α的逆元是 。
3、 设I 是整数集合,Z 3是由模3的同余类组成的同余类集,在Z 3上定义+3如下:]3m od )[(][][3j i j i +=+,则+3的运算表为 ;<Z +,+3>是否构成群 。
4、 设G 是n 阶完全图,则G 的边数m= 。
5、 如果有一台计算机,它有一条加法指令,可计算四数的和。
现有28个数需要计算和,它至少要执行 次这个加法指令。
二、 选择 20% (每小题 2分)1、 在有理数集Q 上定义的二元运算*,Q y x ∈∀,有xy y x y x -+=*,则Q 中满足( )。
A 、 所有元素都有逆元;B 、只有唯一逆元;C 、1,≠∈∀x Q x 时有逆元1-x ; D 、所有元素都无逆元。
2、 设S={0,1},*为普通乘法,则< S , * >是( )。
A 、 半群,但不是独异点;B 、只是独异点,但不是群;C 、群;D 、环,但不是群。
3、图 给出一个格L ,则L 是( )。
A 、分配格;B 、有补格;C 、布尔格;D 、 A,B,C 都不对。
3、 有向图D=<V , E>,则41v v 到长度为2的通路有( )条。
A 、0;B 、1;C 、2;D 、3 。
4、 在Peterson 图中,至少填加( )条边才能构成Euler图。
A 、1;B 、2;C 、4;D 、5 。
三、 判断 10% (每小题 2分)1、 在代数系统<A,*>中如果元素A a ∈的左逆元1-e a 存在,则它一定唯一且11--=e a a 。
大学期末离散数学试卷

一、选择题(每题2分,共20分)1. 下列命题中,正确的是()A. 逻辑真命题一定是逻辑假命题B. 逻辑假命题一定是逻辑真命题C. 逻辑真命题和逻辑假命题都是存在的D. 逻辑真命题和逻辑假命题都不存在2. 设A和B是两个集合,则下列命题中正确的是()A. A∩B = A∪BB. A∩B = A-BC. A∪B = A∩BD. A-B = A∩B3. 设A和B是两个集合,则下列命题中正确的是()A. A⊆B当且仅当A∩B = AB. A⊆B当且仅当A∩B = BC. A⊆B当且仅当A-B = ∅D. A⊆B当且仅当A∪B = B4. 下列命题中,不是逻辑等价命题的是()A. A→B与¬A∨BB. A∧B与A→BC. A∨B与B→AD. A→B与¬B∨A5. 设R是一个关系,下列命题中正确的是()A. R是等价关系当且仅当R是自反的、对称的和传递的B. R是等价关系当且仅当R是自反的、非对称的和传递的C. R是等价关系当且仅当R是非自反的、对称的和传递的D. R是等价关系当且仅当R是非自反的、非对称的和传递的6. 设P和Q是两个命题,则下列命题中正确的是()A. P∧Q的否定是P∨QB. P∧Q的否定是P∧QC. P∨Q的否定是P∧QD. P∨Q的否定是P∧Q7. 设R是一个偏序关系,下列命题中正确的是()A. R是自反的、反对称的和传递的B. R是自反的、对称的和传递的C. R是自反的、非对称的和传递的D. R是非自反的、对称的和传递的8. 设R是一个全序关系,下列命题中正确的是()A. R是自反的、反对称的和传递的B. R是自反的、对称的和传递的C. R是自反的、非对称的和传递的D. R是非自反的、对称的和传递的9. 设R是一个函数,下列命题中正确的是()A. R是单射当且仅当R是满射B. R是单射当且仅当R是自反的C. R是满射当且仅当R是自反的D. R是单射当且仅当R是反对称的10. 设R是一个关系,下列命题中正确的是()A. R是等价关系当且仅当R是自反的、对称的和传递的B. R是等价关系当且仅当R是自反的、非对称的和传递的C. R是等价关系当且仅当R是非自反的、对称的和传递的D. R是等价关系当且仅当R是非自反的、非对称的和传递的二、填空题(每题2分,共20分)1. 在集合A={1, 2, 3}中,A的子集个数是______。
离散数学试卷及答案(3)

一、 填空 20% (每空 2分)1、 设 f ,g 是自然数集N 上的函数x x g x x f N x 2)(,1)(,=+=∈∀,则=)(x g f 。
2、 设A={a ,b ,c},A 上二元关系R={< a, a > , < a, b >,< a, c >, < c, c>} ,则s (R )= 。
3、 A={1,2,3,4,5,6},A 上二元关系}|,{是素数y x y x T ÷><=,则用列举法 T= ; T 的关系图为; T 具有 性质。
4、 集合}}2{},2,{{Φ=A 的幂集A2= 。
5、 P ,Q 真值为0 ;R ,S 真值为1。
则))()(())((S R Q P S R P wff ∧∧∨→∨∧的真值为 。
6、 R R Q P wff →∨∧⌝))((的主合取范式为 。
7、 设 P (x ):x 是素数, E(x):x 是偶数,O(x):x 是奇数 N (x,y):x 可以整数y 。
则谓词))),()(()((x y N y O y x P x wff ∧∃→∀ 的自然语言是。
8、 谓词)),,()),(),(((u y x uQ z y P z x P z y x wff ∃→∧∃∀∀的前束范式为。
二、 选择 20% (每小题 2分)1、 下述命题公式中,是重言式的为( )。
A 、)()(q p q p ∨→∧ ;B 、))())(()(p q q p q p →∧→↔↔ ;C 、q q p ∧→⌝)( ;D 、q p p ↔⌝∧)( 。
2、 r q p wff→∧⌝)(的主析取范式中含极小项的个数为( )。
A 、2;B 、 3;C 、5;D 、0;E 、 8 。
3、 给定推理①))()((x G x F x →∀ P ②)()(y G y F → US ① ③)(x xF ∃ P ④)(y F ES ③ ⑤)(y G T ②④I ⑥)(x xG ∀UG ⑤)())()((x xG x G x F x ∀⇒→∀∴推理过程中错在( )。
离散数学考试题及答案

离散数学考试题及答案一、选择题1. 关于图论的基本概念,以下哪个说法是正确的?A. 无向图中的边无方向性,有向图中的边有方向性。
B. 有向图中的边无方向性,无向图中的边有方向性。
C. 无向图和有向图都是由顶点和边组成的。
D. 无向图和有向图都只由边组成。
答案:A2. “若顶点集合为V,边集合为E,那么图G可以表示为G(V, E)”是关于图的哪个基本概念的描述?A. 图的顶点B. 图的边C. 图的邻接D. 图的表示方法答案:D3. 以下哪个命题是正确的?A. 若集合A和B互相包含,则A和B相等。
B. 若集合A和B相交为空集,则A和B相等。
C. 若集合A和B相等,则A和B互相包含。
D. 若集合A和B相等,则A和B相交为空集。
答案:C二、填空题1. 有一个集合A = {1, 2, 3, 4},则集合A的幂集的元素个数为__________。
答案:162. 设A = {a, b, c},B = {c, d, e},则集合A和B的笛卡尔积为__________。
答案:{(a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e)}3. 若p为真命题,q、r为假命题,则合取范式(p ∨ q ∨ r)的值为__________。
答案:真三、计算题1. 计算集合A = {1, 2, 3, 4}和集合B = {3, 4, 5, 6}的交集、并集和差集。
答案:交集:{3, 4}并集:{1, 2, 3, 4, 5, 6}差集:{1, 2}2. 计算下列命题的真值:(~p ∨ q) ∧ (p ∨ ~q),其中p为真命题,q为假命题。
答案:真四、证明题证明:对于任意集合A和B,如果A和B互相包含,则A和B相等。
证明过程:假设A和B互相包含,即A包含于B且B包含于A。
设x为集合A中的任意元素,则x也必然存在于集合B中,即x属于B。
同理,对于集合B中的任意元素y,y也属于集合A。
离散数学试卷及答案

一、单项选择题(本大题共15小题,每题1分,共15分)在每题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1.一个连通的无向图G,如果它的全部结点的度数都是偶数,那么它具有一条( )A.汉密尔顿回路B.欧拉回路C.汉密尔顿通路D.初级回路2.设G是连通简单平面图,G中有11个顶点5个面,则G中的边是( )A.10B.12C.16D.143.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( )A.b∧(a∨c)B.(a∧b)∨(a’∧b)C.(a∨b)∧(a∨b∨c)∧(b∨c)D.(b∨c)∧(a∨c)4.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,以下是G的子群是( )A.<{1},·>B.〈{-1},·〉C.〈{i},·〉D.〈{-i},·〉5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交运算,以下系统中是代数系统的有( )A.〈Z,+,/〉B.〈Z,/〉C.〈Z,-,/〉D.〈P(A),∩〉6.以下各代数系统中不含有零元素的是( )A.〈Q,X〉Q是全体有理数集,X是数的乘法运算B.〈Mn(R),X〉,Mn(R)是全体n阶实矩阵集合,X是矩阵乘法运算C.〈Z, 〉,Z是整数集, 定义为x xy=xy,∀x,y∈ZD.〈Z,+〉,Z是整数集,+是数的加法运算7.设A={1,2,3},A上二元关系R的关系图如下:R具有的性质是A.自反性B.对称性C.传递性D.反自反性8.设A={a,b,c},A上二元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包S(R)是( )A.R∪I AB.RC.R∪{〈c,a〉}D.R∩I A9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的等价关系,R应取( )A.{〈c,a〉,〈a,c〉}B.{〈c,b〉,〈b,a〉}C.{〈c,a〉,〈b,a〉}D.{〈a,c〉,〈c,b〉}10.以下式子正确的选项是( )A. ∅∈∅B.∅⊆∅C.{∅}⊆∅D.{∅}∈∅11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):x<y.以下公式在R下为真的是( )A.( ∀x)( ∀y)( ∀z)(A(x,y))→A(f(x,z),f(y,z))B.( ∀x)A(f(a,x),a)C.(∀x)(∀y)〔A(f(x,y),x))D.(∀x)(∀y)(A(x,y)→A(f(x,a),a))12.设B是不含变元x的公式,谓词公式(∀x)(A(x)→B)等价于( )A.(∃x)A(x)→BB.(∀x)A(x)→BC.A(x)→BD.(∀x)A(x)→(∀x)B13.谓词公式(∀x)(P(x,y))→(∃z)Q(x,z)∧(∀y)R(x,y)中变元x( )A.是自由变元但不是约束变元B.既不是自由变元又不是约束变元C.既是自由变元又是约束变元D.是约束变元但不是自由变元14.假设P:他聪慧;Q:他用功;则“他虽聪慧,但不用功〞,可符号化为( )A.P∨QB.P∧┐QC.P→┐QD.P∨┐Q15.以下命题公式中,为永假式的是( )A.p→(p∨q∨r)B.(p→┐p)→┐pC.┐(q→q)∧pD.┐(q∨┐p)→(p∧┐p)二、填空题(每空1分,共20分)16.在一棵根树中,仅有一个结点的入度为______,称为树根,其余结点的入度均为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
得分 (10 分)
六、有向图 D 如图所示, (1)求 A, A , A , A (2) D 中长度为 3 的通路有多少条? 长度为 4 回路分别为多少条? (3) D 中长度小于等于 4 的通路为多少条? 其中有多少条回路? (8 分) 评卷人
2
3
4
班级:______姓名:______学号:______
封
则谓词公式xy (F(f(x,y),g(x,y))的真值是 3.设|A|=3, |P(B)|=64, |P(A∪B)|=256, 则|AB|=
. . .
密
4. 设关系 R={<x,y>|x,yZ+∧x+3y=12}, 则R
1
=
5.在有理数集 Q 上定义运算*: x, y Q 有 x y x y xy ,则幺元为 6.群<Z6, >的所有子群为 7.在一个 n 阶图中,若存在从顶点 a 到 b 的回路,则从顶点 a 到 b 存在长度小 于等于 的回路. 8.设 5 阶连通的平面图 G 拥有 8 条边,则其面数为 . 9.设 G V , E ,| V | n,| E | m ,则 G 连通且 m = .
三、画出 P({a, b, c}), R 的哈斯图并指出它的极大元、极 小元、最大元和最小元;设 B {,{a}} ,求 B 的所有上界、 下界、最小上界和最大下界. (10 分)
《离散数学》A 卷
第3页
《离散数学》A 卷
第4页
得分
评卷人
四、构造下面推理的证明 前提 p q, q r, rs 结论 p s
A、 {R , R R } ; B、 {R} ; C、 {Z , R Z} ; D、 {{x}| x R} 6.设 S={0,1},*为普通乘法,则代数系统 V=<S,*>是( )。 A、半群但不是独异点; B、独异点但不是群; C、群; D、不是代数系统 7.设〈L,∧,∨,’,0,1>是布尔代数,则运算∨的幺元是( ) A、0; B、1; C、0 或 1; D、无 2 + 8.设 V=〈R , · 〉 , ·是普通乘法, 1( x) | x |, 2 ( x) 2 x, 3( x) x , 4( x) 1 / x 中是自同态的是( ) A、 1, 2, 3 ; B、 1, 3 ; C、 1, 3, 4 ; D、 1, 2, 3, 4 9.在序列:①(2,2,2,2,2);②(1,1,2,2,3);③(1,1,2,2,2);④(1,3,4,4,5)中可以构成无向 图的度数序列是( ) A、①,②; B、①,③; C、②,③; D、③,④ 10.如下各图中不是哈密顿图为( )
班级:______姓名:______学号:______
2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。 3、草稿纸及每一页试卷的班级、姓名、座号均需在开考前填写好。 教师注意事项:如果整门课程由一个教师评卷的,只需在累分人栏目签名,题首的评卷 人栏目可不签名。
1, x Z R 5. 设 f R , f ( x) , 且 T { x, y | x, y R f ( x) f ( y)} 是 1, x Z
第 1 页
《离散数学》A 卷
第2页
《离散数学》试题 3
题号 得分 考生注意事项:1、本试卷共 4 页,请查看试卷中是否有缺页。 一 二 三 四 五 六 七 八 九 总分
C.x (F(x)→y(G(y)∧H(x,y))); D.yx (F(x)→(G(y)∧H(x,y))). 3.设 S1=,S2={},S3=P({}),S4=P(),则以下命题为假的是( ) A、 S2 S4 ; B、 S1 S3 ; C、 S 4 S 2 ; D、 S4 S3 4.设 S={1,2},则 S 上可定义不同的二元关系有( ) A、2 种; B、4 种; C、8 种; D、16 种
得分 得分 评卷人 五、求下列命题公式的主析取范式,主合联范式。 ( p (q r ) ( p q r ) ; (10 分)
评卷人
七、设<Z5,,>中,Z5={0,1,2,3,4}, 和 分别表示模 n 加 法 和 乘 法 . 试 证 :(1)< Z5, > 为 阿 贝 尔 群 ( 交 换 群);(2)<Z5,,>是一个环;(3)<Z5,,>是整环;(4)求出每个 元 素 的 逆 元 ( 零 元 除 外 ), 判 断 <Z5,,> 是 否 构 成 域 .
ห้องสมุดไป่ตู้
(12 分)
R 上的等价关系(R 为实数集,Z 为整数集) ,则 T 对应的划分是( )
得分
评卷人
一、填空题(每题 2 分,共 20 分) 1.设 p,q,r,s 的真值为 0,0,1,1,则 ( p r ) ( q s) 的真值是
2. 设解释 I 为 “个体域 D=Z(整数集),f(x,y)=x-y,g(x,y)=x+y,谓词 F(x,y):x<y” ,
线
得分
评卷人
10.若关系 R 具有自反性, 则 R 的关系矩阵特点是 . 二、单项选择题(每题 3 分,共 30 分) 1.下列语句是简单命题的是( ). 得分 评卷人 A.15 是素数。 B.你下午有会吗? C.2x+3>0。 D.因 4 是偶数,所以能被 2 整除。 2.令 F(x):x 是火车,G(y):y 是汽车,H(x,y):x 比 y 快, 则“每列火车都比某些汽车快”的符号化公式是( ) A.x (F(x)∧y(G(y)∧H(x,y))); B.xy (F(x)→(G(y)→H(x,y)));