八年级数学下册 1.1 等腰三角形导学案2(无答案)(新版)北师大版

合集下载

初二数学下1.1等腰三角形综合练习含答案(北师大版)

初二数学下1.1等腰三角形综合练习含答案(北师大版)

初二数学下1.1等腰三角形(北师大版)一.选择题(共15小题)1.在等腰△ABC中,∠A=70°,则∠C的度数不可能是()A.40°B.55°C.65°D.70°2.△ABC中,∠B=50°,∠A=80°,若AB=6,则AC=()A.6 B.8 C.5 D.133.等腰三角形一边的长为4cm,周长是18cm,则底边的长是()A.4cm B.10cm C.7或10cm D.4或10cm4.等腰三角形中有一个角为100°,则其底角为()A.50°B.40°C.40°或100°D.50°或100°5.如果等腰三角形一腰上的高与另一腰的夹角为45°,那么这个等腰三角形的底角为()A.22.5°B.67.5°C.67°50' D.22.5°或67.5°6.下列四个说法:①等腰三角形的腰一定大于其腰上的高;②等腰三角形的两腰上的中线长相等;③等腰三角形的高、中线、角平分线互相重合;④等腰三角形的一边为5,另一边为10,则它的周长为20或25.其中正确的个数为()A.1个B.2 C.3 D.47.下列说法错误的是()A.等腰三角形的两个底角相等B.等腰三角形的高、中线、角平分线互相重合C.三角形两边的垂直平分线的交点到三个顶点距离相等D.等腰三角形顶角的外角是其底角的2倍8.等腰三角形的一边等于3,一边等于7,则此三角形的周长为()A.10 B.13 C.17 D.13或179.如图,在△ABC中,∠A=45°,∠B=60°,点D在边AB上,且BD=BC,连结CD,则∠ACD的大小为()A.30°B.25°C.15°D.10°10.如图,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q.延长MN至G,取NG =NQ,若△MNP的周长为12,则△MGQ周长是()A.8+2B.6+4C.8+4D.6+211.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点F、G,若FG =2,ED=6,则DB+EC的值为()A.3 B.4 C.5 D.912.如图,△ABC的面积为16,AD平分∠BAC,且AD⊥BD于点D,则△ADC的面积是()A.6 B.8 C.10 D.1213.如图,在等腰三角形ABC中,∠BAC=120°,DE是AB的垂直平分线,线段DE=1cm,则BC的长度为()A.8cm B.4cm C.6cm D.10cm14.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=60°,AD=2,则BD=()A.2 B.4 C.6 D.815.如图,在△ABC中,D、E分别为AB、AC边上的点,DA=DE,DB=BE=EC.若∠ABC=130°,则∠C的度数为()A.20°B.22.5°C.25°D.30°二.填空题(共5小题)16.已知△ABC是等腰三角形,它的周长为20cm,一条边长6cm,那么腰长是cm.17.如图,在△ABC中,AB=BC,∠ABC=120°,D是AC边上的点,DA=DB=3,则AC的长为.18.如图,已知△ABC中,AB=AC,BD⊥AC于D,∠A=50°,则∠DBC的度数是.19.如图,在△ABC中,AB=AC,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E,在点D的运动过程中,△ADE的形状也在改变,当△ADE是等腰三角形时,∠BDA的度数是.20.如图,在△ABC中,∠B=∠C,D,E分别是线段BC、AC上的一点,且AD=AE.用等式表示∠1和∠2之间的数量关系是.答案选择题:CAABD ABCCB BBCCD 填空:16:6或717:9.18:25°19:110°或80°20: ∠1=2∠2。

北师大版2020-2021学年度八年级数学下册1.1等腰三角形自主学习同步练习题2(含答案)

北师大版2020-2021学年度八年级数学下册1.1等腰三角形自主学习同步练习题2(含答案)

北师大版2020-2021学年度八年级数学下册1.1等腰三角形自主学习同步练习题2(含答案)1.如图,已知在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F.(1)当点D在BC的什么位置时,DE=DF?并证明;(2)过点C作AB边上的高CG,试猜想DE,DF,CG的长之间存在怎样的等量关系?(直接写出你的结论)2.在△ABC中,AB=AC.(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由.3.如图,将一张长方形的纸条ABCD沿EF折叠,若折叠后∠AGC′=48°,AD交EC′于点G.(1)求∠CEF的度数;(2)求证:△EFG是等腰三角形.4.请在图中画出三个以AB为腰的等腰△ABC.(要求:1.锐角三角形,直角三角形,钝角三角形各画一个;2.点C在格点上.)5.如图,在长方形ABCD中,AB=12cm,BC=8cm,动点P从点A出发,沿AB以2cm/s 的速度向终点B匀速运动;动点Q从点B出发,沿BC以1cm/s的速度向终点C匀速运动;两点同时出发多少秒时,△PBQ是等腰三角形?6.如图,已知在△ABC中,∠B=20°,∠C=40°,EF是线段AB的垂直平分线交BC于点D,连接AD.求证:△ADC是等腰三角形.7.如图的直角△ABC中,∠BAC=90°,AF⊥BC于点F,BD平分∠ABC交AF于点E,交AC于点D,试判定△ADE的形状并说明理由.8.已知:如图,△ABC中,BC边上有D、E两点,∠BAD=∠CAE,∠ADE=∠AED,求证:△ABC是等腰三角形.9.如图,已知AD是△ABC的角平分线,DE∥AB交AC于点E.那么△ADE是等腰三角形吗?请说明理由.10.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C 重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.11.已知一个等腰三角形的两边长分别为2cm和4cm,那么该等腰三角形的周长为()A.8cm B.10cm C.8cm或10cm D.不能确定12.等腰三角形两边长分别为5和8,则这个等腰三角形的周长为()A.18B.21C.20D.18或2113.在所给网格中,以格点(网格线的交叉点)A、B连线为一边构造格点等腰三角形ABC,则符合的点C的个数是()A.6B.7C.8D.914.线段AB在如图所示的8×8网格中(点A、B均在格点上),在格点上找一点C,使△ABC是以∠B为顶角的等腰三角形,则所有符合条件的点C的个数是()A.4B.5C.6D.715.如图,已知每个小方格的边长为1,A,B两点都在小方格的顶点上,请在图中找一个顶点C,使△ABC为等腰三角形,则这样的顶点C有()A.8个B.7个C.6个D.5个16.如图,在△ABC中,∠B=∠C,∠ADE =∠AED,∠EDC=20°,则∠BAD为()度.A.20B.30C.35D.4017.如图,在△ABC中,AB=AD=DC,∠B=64°,则∠C的度数为()A.30°B.32°C.40°D.48°18.如图,已知OC=CD=DE,且∠BDE=72°,则∠CDE的度数是()A.63°B.65°C.75°D.84°19.已知:如图∠BAC=69°,BD=AD=AC,则∠DAC的度数为()A.32°B.40°C.52°D.36°20.如图,∠ACD=120°,AB=BC=CD,则∠A等于()A.10°B.15°C.20°D.30°21.如图,D,E分别是△ABC的边BC,AC上的点,若AB=AC,AD=AE,则()A.当β为定值时,∠CDE为定值B.当α为定值时,∠CDE为定值C.当γ为定值时,∠CDE为定值D.无法确定22.如图,在△ABC中,AB=AC,过点A作AD⊥AB,交BC于点D.设∠ADB=α,∠CAD =β,则下列结论正确的是()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°23.如图,△ABC中,AB=AC,AD⊥BC,∠BAC=80°,AD=AE.则∠CDE=()A.10°B.20°C.30°D.40°24.如图,AB=AC,∠BAD=α,且AE=AD,则∠EDC的度数等于()A.B.αC.90°﹣D.90°﹣α25.如图,直线PQ上有一点O,点A为直线外一点,连接OA,在直线PQ上找一点B,使得△AOB是等腰三角形,这样的点B最多有个.26.如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠AON=45°,当∠A=时,△AOP为等腰三角形.27.如图,已知点P是射线BM上一动点(P不与B重合),∠AOB=30°,∠ABM=60°,当∠OAP=时,以A、O、B中的任意两点和P点为顶点的三角形是等腰三角形.28.如图,AC=BC,∠C=36°,AD平分∠BAC,则图中等腰三角形(不含△ABC)的个数是.29.如图,在△ABC中,∠B=30°,∠C=∠B,AB=2cm,点P从点B开始以1cm/s 的速度向点C移动,当△ABP要以AB为腰的等腰三角形时,则运动的时间为.30.如图所示,在△ABC中,AB=18cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动.当三角形APQ是以PQ为底的等腰三角形时,运动的时间是.31.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A 运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.32.已知:如图△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ACD的度数为.参考答案1.解:(1)当点D在BC的中点上时,DE=DF,证明:∵D为BC中点,∴BD=CD,∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,∵在△BED和△CFD中,∴△BED≌△CFD(AAS),∴DE=DF.(2)CG=DE+DF证明:连接AD,∵S三角形ABC=S三角形ADB+S三角形ADC,∴AB×CG=AB×DE+AC×DF,∵AB=AC,∴CG=DE+DF.2.解:(1)∵在△ABC中,AB=AC,AD是BC上的高,∴∠BAD=∠CAD,∵∠BAD=30°,∴∠BAD=∠CAD=30°,∴∠ADE=∠AED=75°,∴∠EDC=15°.(2)∵在△ABC中,AB=AC,AD是BC上的高,∴∠BAD=∠CAD,∵∠BAD=40°,∴∠BAD=∠CAD=40°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠EDC=20°.(3)∠BAD=2∠EDC(或∠EDC=∠BAD)(4)仍成立,理由如下∵AD=AE,∴∠ADE=∠AED,∴∠BAD+∠B=∠ADC=∠ADE+∠EDC=∠AED+∠EDC=(∠EDC+∠C)+∠EDC =2∠EDC+∠C又∵AB=AC,∴∠B=∠C∴∠BAD=2∠EDC.故分别填15°,20°,∠EDC=∠BAD3.1)解:∵四边形ABCD是矩形,∴AD∥BC,∴∠BEG=∠AGC'=48°,由折叠的性质得:∠CEF=∠C'EF,∴∠CEF=(180°﹣48°)=66°;(2)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠CEF,由折叠的性质得:∠CEF=∠C'EF,∴∠GFE=∠C'EF,即△EFG是等腰三角形.4.解:如图所示:5.解:设两点同时出发x秒时,△PBQ是等腰三角形,∵长方形ABCD,∴∠B=90°,∵△BPQ是等腰三角形,∴BP=BQ,∴12﹣2x=x,解得:x=4,即两点同时出发4秒时,△PBQ是等腰三角形.6.证明:∵EF是线段AB的垂直平分线,∴AD=BD,∴∠B=∠BAD=20°,∴∠ADC=∠B+∠BAD=20°+20°=40°,∵∠C=40°,∴∠ADC=∠C,∴AD=AC,即△ADC是等腰三角形.7.解:△ADE是等腰三角形.理由如下:∵BD平分∠ABC,∴∠ABD=∠CBD,∵∠BAC=90°,AF⊥BC,∴∠ABD+∠BDA=90°,∠CBD+∠BEF=90°,∴∠BDA=∠BEF,∵∠AED=∠BEF(对顶角相等),∴∠BDA=∠AED,∴AD=AE.故△ADE是等腰三角形.8.证明:∵∠ADE=∠AED,∠BAD=∠CAE,∴∠B=∠C,∴AB=AC,∴△ABC是等腰三角形.9.答:△ADE是等腰三角形,理由如下:∵AD是△ABC的角平分线,∴∠1=∠2,∵DE∥AB,∴∠1=∠3,∴∠2=∠3,∴AE=DE,∴△ADE是等腰三角形.10.解:(1)∠BAD=180°﹣∠ABD﹣∠BDA=180°﹣40°﹣115°=25°;从图中可以得知,点D从B向C运动时,∠BDA逐渐变小;故答案为:25°;小.(2∵∠EDC+∠EDA=∠DAB+∠B,∠B=∠EDA=40°,∴∠EDC=∠DAB.,∵∠B=∠C,∴当DC=AB=2时,△ABD≌△DCE,(3)∵AB=AC,∴∠B=∠C=40°,①当AD=AE时,∠ADE=∠AED=40°,∵∠AED>∠C,∴此时不符合;②当DA=DE时,即∠DAE=∠DEA=(180°﹣40°)=70°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=100°﹣70°=30°;∴∠BDA=180°﹣30°﹣40°=110°;③当EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°﹣40°=60°,∴∠BDA=180°﹣60°﹣40°=80°;∴当∠ADB=110°或80°时,△ADE是等腰三角形.11.解:当4cm的边长为腰时,三角形的三边长为:4cm、4cm、2cm,满足三角形的三边关系,其周长为4+2+4=10(cm),当2cm的边长为腰时,三角形的三边长为:2cm、2cm、4cm,此时4=2+2,不满足三角形的三边关系,所以此时不存在三角形,故选:B.12.解:当8的边长为腰时,三角形的三边长为:8、8、5,满足三角形的三边关系,其周长为8+8+5=21,当5的边长为腰时,三角形的三边长为:5、8、5,满足三角形的三边关系,其周长为8+5+5=18,故选:D.13.解:如图:故选:C.14.解:如图所示:使△ABC是以∠B为顶角的等腰三角形,所以所有符合条件的点C的个数是6个.故选:C.15.解:当AB为底时,作AB的垂直平分线,可找出格点C的个数有5个,当AB为腰时,分别以A、B点为顶点,以AB为半径作弧,可找出格点C的个数有3个;∴这样的顶点C有8个.故选:A.16.解:∵∠AED=∠C+∠EDC=∠C+20°,∠ADE=∠AED,∴∠ADC=∠ADE+∠EDC=∠AED+∠EDC=∠C+40°.又∵∠ADC=∠B+∠BAD,∠B=∠C,∴∠C+40°=∠BAD+∠C,∴∠BAD=40°.故选:D.17.解:∵△ABD中,AB=AD,∠B=64°,∴∠B=∠ADB=64°,∴∠ADC=180°﹣∠ADB=116°,∵AD=CD,∴∠C=(180°﹣∠ADC)÷2=(180°﹣116°)÷2=32°,故选:B.18.解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,∴∠DCE=∠O+∠ODC=2∠ODC,∵∠O+∠OED=3∠ODC=∠BDE=72°,∴∠ODC=24°,∵∠CDE+∠ODC=180°﹣∠BDE=108°,∴∠CDE=108°﹣∠ODC=84°.故选:D.19.解:∵DB=DA,∴∠B=∠BAD,∵DA=CA,∴∠ADC=∠C,而∠ADC=∠B+∠BAD=2∠B,∴∠C=2∠B,∵∠BAC=69°,∴∠C+∠B=3∠B=111°,∴∠B=37°,∴∠DAC=180°﹣2∠ADC=180°﹣37°×4=32°.故选:A.20.解:∵AB=BC,∴∠A=∠ACB,∵∠DBC=∠A+∠ACB,∴∠DBC=2∠A,∵BC=CD,∴∠D=∠DBC=2∠A,∵∠ACD=120°,∴∠A+∠D=∠A+2∠A=180°﹣120°=60°,∴∠A=20°,故选:C.21.解:∵AB=AC,∴∠B=∠C,∵AD=AE,∴∠ADE=∠AED,又∵∠ADC=∠B+∠BAD=∠B+∠α,∠AED=∠C+∠CDE,∴∠ADE+∠CDE=∠B+∠BAD=∠B+∠α,即∠C+∠CDE+∠CDE=∠B+∠α,∴2∠CDE=∠α,∴∠CDE=∠α.即当∠α为定值时,∠CDE为定值,故选:B.22.解:∵AB=AC,∴∠B=∠C,∵AD⊥AB,∴∠DAB=90°,∵∠ADB=α,∴∠B=∠C=90°﹣α,∵∠CAD=β,∴α=β+90°﹣α,∴2α﹣β=90°.故选:D.23.解:∵AB=AC,AD⊥BC,∠BAC=80°,∴∠CAD=∠BAD=40°,∠ADC=90°,又∵AD=AE,∴∠ADE==70°,∴∠CDE=90°﹣70°=20°.故选:B.24.解:设∠EDC=x,∠B=∠C=y,∴∠AED=∠EDC+∠C=x+y,又∵AD=AE,∴∠ADE=∠AED=x+y,则∠ADC=∠ADE+∠EDC=2x+y,又∵∠ADC=∠B+∠BAD,∴2x+y=y+α,解得x=.∴∠EDC=.故选:A.25.解:如图所示,分别以A、O为圆心,AO长为半径画弧,与直线PQ的交点B1,B2,B3符合题意;作AO的垂直平分线,与直线PQ的交点B4符合题意,若B2,B3,B4不重合,则最多有4个.故答案为:4.26.解:若△AOP为等腰三角形则有AO=AP、AO=OP和OP=AP三种情况,①当AO=AP时,则有∠O=∠APO=45°,∴∠A=90°;②当AO=OP时,则∠A=∠APO==67.5°;③当OP=AP时,则∠A=∠AON=45°,综上可知∠A为45°或67.5°或90°,故答案为:45°或67.5°或90°.27.解:分为以下5种情况:①OA=OP,∵∠AOB=30°,OA=OP,∴∠OAP=∠OP A=(180°﹣30°)=75°;②OA=AP,∵∠AOB=30°,OA=AP,∴∠APO=∠AOB=30°,∴∠OAP=180°﹣∠AOB﹣∠APO=180°﹣30°﹣30°=120°;③AB=AP,∵∠AOM=60°,AB=AP,∴∠APO=∠ABM=60°,∴∠OAP=180°﹣∠AOB﹣∠APO=180°﹣30°﹣60°=90°;④AB=BP,∵∠ABM=60°,AB=BP,∴∠BAP=∠APO=(180°﹣60°)=60°,∴∠OAP=180°﹣∠AOB﹣∠APO=180°﹣30°﹣60°=90°;⑤AP=BP,∵∠ABM=60°,AP=BP,∴∠ABO=∠P AB=60°,∴∠APO=180°﹣60°﹣60°=60°,∴∠OAP=180°﹣∠AOB﹣∠APO=180°﹣30°﹣60°=90°;所以当∠OAP=75°或120°或90°时,以A、O、B中的任意两点和P点为顶点的三角形是等腰三角形,故答案为:75°或120°或90°.28.解:由图可知,∵AC=BC,∠C=36°,∴∠BAC=∠ABC=72°,∵AD平分∠BAC,∴∠CAD=∠BAD=∠C=36°∴△CAD为等腰三角形,∵∠BDA=∠C+∠CAD=72°=∠B,∴△BAD为等腰三角形,∴则图中等腰三角形(不含△ABC)的个数是2个.故答案为2.29.解:当AB=AP时,点P与点C重合,如图1所示,过点A作AD⊥BC于点D,∵∠B=30°,AB=2cm,∴BD=AB•cos30°=2×=3cm,∴BC=6cm,即运动的时间6s;当AB=BP时,∵AB=2cm,∴BP=2cm,∴运动的时间2s.故答案为:2s或6s.30.解:设运动的时间为x,在△ABC中,AB=18cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=18﹣3x,AQ=2x,即18﹣3x=2x,解得x=3.6.故答案为:3.6s.31.解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x即20﹣3x=2x,解得x=4.故答案为:4.32.解:如图,有三种情形:①当AC=AD时,∠ACD=70°.②当CD′=AD′时,∠ACD′=40°.③当AC=AD″时,∠ACD″=20°,故答案为70°或40°或20°。

第一章 三角形的证明 1.1等腰三角形 2课时 导学案(最新北师大版)

第一章  三角形的证明  1.1等腰三角形  2课时  导学案(最新北师大版)

1.1 等腰三角形第一课时一、课前准备:1、有 的三角形叫做等腰三角形,相等的两边叫做 ,腰与底边的夹角叫做 ; 的三角形是等边三角形。

2、公理、定理、证明公理:公认的 称为公理。

定理:经过证明的 称为定理。

证明: 的过程称为证明。

3、证明的一般步骤是:根据题意 ;根据条件、结论,结合图形 ;经过分析,找出由已知推出求证的途径, 。

对假命题的判断,只要举 来证明即可。

二、学习目标:1、了解作为证明基础的几条公理、定理的内容,掌握证明的基本步骤和书写格式。

2、掌握等腰三角形的性质。

3、结合实例体会反正法的含义。

三、自学提示: 1、你知道吗?全等三角形的判定及性质(见课本P2想一想) 2、你发现了吗? (1)把探究1中剪出的△ABC 沿折痕AD 对折,根据得到的信息,填入右表:(2)从上表中你能发现等腰三角形的角有什么样的特点吗?底边上的中线,高线,顶角平分线有什么样的特点吗? (3)你能证明你所得到的结论吗?求证:等腰三角形的两个底角相等。

已知: ΔABC 中,AB=AC.求证: ∠B= ∠C.证明:.等腰三角形的性质:性质1 等腰三角形的两个底角 (简写成“ ” );性质2 等腰三角形的顶角的 、底边上的 、底边上的 相互 。

【我是小翻译】请将等腰三角形性质(文字语言)“翻译”成图形和符号语言。

B五、夯实基础:1.等腰三角形一个底角为70°,它的顶角为______.2.等腰三角形的顶角为100°,它的底角为______.3.等腰三角形一个角为110°,它的另外两个角为___________.4.等腰三角形一个角为70°,它的另外两个角为__________________.5.在△ABC 中,AB=AC ,∠1=∠2=55°,则BD=5,CD=____。

6.在△ABC 中,AB=AC ,BM=CM ,∠BAM=35°,则∠CAM=_____°,∠AMB=_____°。

八年级数学下册 1 三角形的证明 课题 等腰三角形的判定与反证法学案 (新版)北师大版

八年级数学下册 1 三角形的证明 课题 等腰三角形的判定与反证法学案 (新版)北师大版

课题等腰三角形的判定与反证法【学习目标】1.理解等腰三角形的判定定理,并会运用其进行简单的证明.2.了解反证法的基本证明思路,并能简单应用.【学习重点】等腰三角形的判定定理,并会运用其进行简单的证明.【学习难点】反证法的证明方法.行为提示:点燃激情,引发学生思考本节课学什么.行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案,教会学生落实重点.方法指导:1.等腰三角形的判定方法有两种:①根据定义判定;②等角对等边.2.“等角对等边”可以将图形中角的等量关系转化为线段的等量关系,是证明线段相等的一种重要方法.情景导入生成问题旧知回顾:1.等腰三角形性质定理内容是什么?等腰三角形两底角相等.2.我们把性质定理的条件和结论反过来还成立吗?如果一个三角形有两个角相等,那么这两角所对的边也相等吗?答:还成立.如图,△ABC中,∠B=∠C.求证:AB=AC.证明:作AD⊥BC于D,由∠ADB=∠ADC=90°,∠B=∠C,AD=AD,∴△ABD≌△ACD,∴AB=AC.自学互研生成能力知识模块一等腰三角形的判定【自主探究】阅读教材P8的内容,回答下列问题:等腰三角形的判定定理内容是什么?答:有两个角相等的三角形是等腰三角形,简称“等角对等边”.范例:如图,在△ABC中,AB=AC,点D是AB上一点,过D作DE⊥BC于E,并与CA的延长线相交于点F.求证:AD=AF.证明:在△ABC中,∵AB=AC,∴∠B=∠C(等边对等角).∵DE⊥BC,∴∠DEB=∠DEC=90°,∴∠2+∠B=∠F+∠C=90°,∴∠2=∠F,∵∠1=∠2,∴∠1=∠F,∴AF=AD(等角对等边).仿例1:如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点,试判断OE和AB的位置关系,并给出证明.证明:∵AC=BD,∠BAC=∠ABD,AB=BA,∴△ABC≌△BAD(SAS),∴∠OAB=∠OBA,∴OA=OB(等角对等边),∵OE是中线,∴OE⊥AB.仿例2:如图,在△ABC中,BC=5 cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则△PDE 的周长是5 cm.归纳:注意等角对等边的灵活应用,仿例2中平行线和角平分线结合是得出等腰三角形的范例.学习笔记:行为提示:教师结合各组反馈的疑难问题分配展示任务,各组在展示过程中,老师引导其他组进行补充,纠错,最后进行总结评分.学习笔记:教会学生整理反思.知识模块二反证法阅读教材P8-9的内容,回答下列问题:什么是反证法?有哪些重要步骤?答:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法.【合作探究】1.用反证法证明“等腰三角形的底角都是锐角”.已知:在△ABC中,AB=AC,求证:∠B、∠C都是锐角.证明:假设∠B、∠C都是直角或钝角,∴∠B≥90°,∠C≥90°,∴∠B+∠C≥90°+90°=180°,∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾,∴假设不成立,原命题的结论正确,即∠B、∠C都是锐角.2.用反证法证明一个三角形中不能有两个直角的第一步是假设这个三角形中有两个角是直角.3.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设每一个锐角都大于45°.归纳:对直接证明有困难的命题均可用反证法证明,它有三个基本步骤:①反设;②推出矛盾;③否定反设、肯定命题成立.交流展示生成新知【交流预展】1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一等腰三角形的判定知识模块二反证法检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。

北师大版八年级下册数学 1.1等腰三角形 同步练习 (含解析)

北师大版八年级下册数学 1.1等腰三角形 同步练习 (含解析)

1.1等腰三角形同步练习一.选择题1.等腰三角形的一边等于3,一边等于7,则此三角形的周长为()A.10B.13C.17D.13或172.已知等腰三角形的一个内角为50°,则它的另外两个内角是()A.65°,65°B.80°,50°C.65°,65°或80°,50°D.不确定3.如图,已知OA=OB=OC,BC∥AO,若∠A=36°,则∠B等于()A.54°B.60°C.72°D.76°4.如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中线,AE是∠BAD 的角平分线,DF∥AB交AE的延长线于点F,则DF的长为()A.4.5B.5C.5.5D.65.如图,已知∠ACB=60°,PC=12,点M,N在边CB上,PM=PN.若MN=3,则CM 的长为()A.3B.3.5C.4D.4.56.如图,△ABC与△DCE都是等边三角形,B,C,E三点在同一条直线上,若AB=3,∠BAD=150°,则DE的长为()A.3B.4C.5D.67.若等腰三角形的一个内角是40°,则这个等腰三角形的其他内角的度数为()A.40°100°B.70°70°C.40°100°或70°70°D.以上都不对8.如图,D为△ABC边上一点,连接CD,则下列推理过程中,因果关系与所填依据不符的是()A.∵AD=BD,∠ACD=∠BCD(已知)∴AC=BC(等腰三角形三线合一)B.∵AC=BC,AD=BD(已知)∴∠ACD=∠BCD(等腰三角形三线合一)C.∵AC=BC,∠ACD=∠BCD(已知)∴AD=BD(等腰三角形三线合一)D.∵AC=BC,AD=BD(已知)∴CD⊥AB(等腰三角形三线合一)9.如图,等边△ABC中,AB=4,点P在边AB上,PD⊥BC,DE⊥AC,垂足分别为D、E,设P A=x,若用含x的式子表示AE的长,正确的是()A.2﹣x B.3﹣x C.1D.2+x10.如图,在平面直角坐标系中,点A,B分别在y轴和x轴上,∠ABO=60°,在坐标轴上找一点P,使得△P AB是等腰三角形,则符合条件的P点的个数是()A.5B.6C.7D.8二.填空题11.已知等腰三角形的一个外角等于130˚,则它的顶角等于.12.如图,BD为等边△ABC的边AC上的中线,E为BC延长线上一点,且DB=DE,若AB=6cm,则CE=cm.13.如图,B在AC上,D在CE上,AD=BD=BC,∠ACE=25°,∠ADE=度.14.如图,在△ABC中,CA=CB,∠ACB=120°,E为AB上一点,∠DCE=∠DAE=60°,AD=2.4,BE=7,则DE=.15.如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD 是等边三角形,∠A=24°,则∠1=°.三.解答题16.如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=40°.求:(1)∠ADC的大小;(2)∠BAD的大小.17.如图,在△ABC中,AB=BC=AD,BD=CD,求∠ABC的度数.18.如图所示,已知△ABC中,AB=AC=BC=10厘米,M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度是1厘米/秒的速度,点N的速度是2厘米/秒,当点N第一次到达B点时,M、N同时停止运动.(1)M、N同时运动几秒后,M、N两点重合?(2)M、N同时运动几秒后,可得等边三角形△AMN?(3)M、N在BC边上运动时,能否得到以MN为底边的等腰△AMN,如果存在,请求出此时M、N运动的时间?参考答案一.选择题1.解:①当等腰三角形的三边长是3,3,7时,3+3<7,不符合三角形的三边关系定理,此时不能组成等腰三角形;②当等腰三角形的三边长是3,7,7时,符合三角形的三边关系定理,能组成等腰三角形,此三角形的周长是3+7+7=17;综合上述:三角形的周长是17,故选:C.2.解:∵AB=AC,∴∠B=∠C,①当底角∠B=50°时,则∠C=50°,∠A=180°﹣∠B﹣∠C=80°;②当顶角∠A=50°时,∵∠B+∠C+∠A=180°,∠B=∠C,∴∠B=∠C=×(180°﹣∠A)=65°;即其余两角的度数是50°,80°或65°,65°,故选:C.3.解:∵OA=OC,∴∠ACO=∠A=36°,∵BC∥AO,∴∠BCA=∠A=36°,∴∠BCO=72°,∵OB=OC,∴∠B=72°.故选:C.4.解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°.∵DF∥AB,∴∠F=∠BAE=30°.∴∠DAF=∠F=30°,∴AD=DF.∵AB=11,∠B=30°,∴AD=5.5,∴DF=5.5故选:C.5.解:过点P作PD⊥CB于点D,∵∠ACB=60°,PD⊥CB,PC=12,∴DC=6,∵PM=PN,MN=3,PD⊥OB,∴MD=ND=1.5,∴CM=6﹣1.5=4.5.故选:D.6.解:∵△ABC与△DCE都是等边三角形,AB=3,∠BAD=150°,∴AB=AC=3,DE=DC,∠BAC=∠DCE=∠ACB=60°,∴∠ACD=60°,∠CAD=150°﹣60°=90°,∴∠ADC=30°,∴DC=2AC=6,∴DE=DC=6,故选:D.7.解:①当这个角为顶角时,底角=(180°﹣40°)÷2=70°;②当这个角是底角时,底角=40°,顶角为180°﹣2×40°=100°;综上:其它两个内角的度数为70°,70°或40°,100°.故选:C.8.解:A.∵AD=BD,∠ACD=∠BCD(已知),∴AC=BC(等腰三角形三线合一),条件没有等腰三角形,故因果关系与所填依据不符;B.∵AC=BC,AD=BD(已知),∴∠ACD=∠BCD(等腰三角形三线合一),因果关系与所填依据相符;C.∵AC=BC,∠ACD=∠BCD(已知),∴AD=BD(等腰三角形三线合一),因果关系与所填依据相符;D.∵AC=BC,AD=BD(已知),∴CD⊥AB(等腰三角形三线合一),因果关系与所填依据相符;故选:A.9.解:∵△ABC是等边三角形,∴AB=BC=AC=4,∠B=∠C=60°,∵PD⊥BC,DE⊥AC,∴BD=PB,CE=CD,∵P A=x,∴BP=4﹣x,∴BD=PB=2﹣x,∴CD=4﹣(2﹣x)=2+x,∴CE=1+x,∴AE=4﹣(1+x)=3﹣x,故选:B.10.解:①当AB=AP时,在y轴上有2点满足条件的点P,在x轴上有1点满足条件的点P.②当AB=BP时,在y轴上有1点满足条件的点P,在x轴上有2点满足条件的点P,有1点与AB=AP时的x轴正半轴的点P重合.③当AP=BP时,在x轴、y轴上各有一点满足条件的点P,有1点与AB=AP时的x轴正半轴的点P重合.综上所述:符合条件的点P共有6个.故选:B.二.填空题11.解:∵等腰三角形的一个外角等于130˚,∴与其相邻的内角为50°.当50°为顶角时,其他两角为65°、65°;当50°为底角时,其他两角为50°、80°.所以等腰三角形的顶角可以是50°,也可以是80°.故答案为:50°或80°.12.解:∵BD为等边△ABC的边AC上的中线,∴BD⊥AC,∵DB=DE,∴∠DBC=∠E=30°∵∠ACB=∠E+∠CDE=60°∴∠CDE=30°∴∠CDE=∠E,即CE=CD=AC=3cm.故填3.13.解:∵BD=BC,∠ACE=25°∴∠BDC=∠C=25°∴∠ABD=50°∵AD=BD∴∠A=∠ABD=50°∴∠ADE=∠A+∠C=75°.故填75.14.解:如图,在AB上截取BF=AD,连接CF,∵CA=CB,∠ACB=120°,∴∠CAB=∠CBA=30°,∵∠DAE=60°∴∠DAC=∠DAE﹣∠CAB=30°∴∠DAC=∠CBA,且AD=BF,AC=BC∴△ADC≌△BFC(SAS)∴∠ACD=∠BCF,CD=CF,∵∠ACB=∠ACE+∠ECF+∠BCF=∠ACE+∠ECF+∠ACD=∠DCE+∠ECF=120°∴∠ECF=60°=∠DCE,且CE=CE,DC=CF∴△DCE≌△FCE(SAS)∴DE=EF∴DE=BE﹣BF=BE﹣AD=7﹣2.4=4.6,故答案为4.6.15.解:∵a∥b,∴∠1=∠ACD,∵△BCD是等边三角形,∴∠BDC=60°,∵∠BDC=∠A+∠ACD,∴∠ACD=∠BDC﹣∠A=60°﹣24°=36°,∴∠1=36°.故答案为36.三.解答题16.解:(1)∵AB=AC,D是BC边上的中点,∴AD⊥BC,即∠ADC=90°;(2)∵∠B=40°,∴∠BAD=50°.17.解:∵BD=CD,∴∠BCD=∠CBD,设∠BCD=∠CBD=x°,∵AB=BC=AD,∴∠ABD=∠ADB=∠BCD+∠CBD=2x°,∠A=∠C=x°,∴∠ABC=3∠C=3x°,∵∠B+∠ABC+∠C=180°,∴5x=180,解得x=36,∴∠C=36°∴∠ABC=3∠C=108°.18.解:(1)设点M、N运动x秒后,M、N两点重合,x×1+10=2x,解得:x=10;(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=10﹣2t,∵三角形△AMN是等边三角形,∴t=10﹣2t,解得t=,∴点M、N运动秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知10秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN(AAS),∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣10,NB=30﹣2y,CM=NB,y﹣10=30﹣2y,解得:y=.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰△AMN,此时M、N运动的时间为秒.。

2019版八年级数学下册三角形的证明1.1等腰三角形(第2课时)一课一练基础闯关(新版)北师大版

2019版八年级数学下册三角形的证明1.1等腰三角形(第2课时)一课一练基础闯关(新版)北师大版

等腰三角形一课一练·基础闯关题组等腰三角形中相关线段的性质1.(2017·和县模拟)等腰三角形顶角是84°,则一腰上的高与底边所成的角的度数是( )A.42°B.60°C.36°D.46°【解析】选A.如图:△ABC中,AB=AC,BD是边AC上的高.∵∠A=84°,且AB=AC,∴∠ABC=∠C=(180°-84°)÷2=48°;在Rt△BDC中,∠BDC=90°,∠C=48°;∴∠DBC=90°-48°=42°.2.(2017·崇州市期末)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为( )世纪金榜导学号10164004A.40°B.45°C.50°D.55°【解析】选A.∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°-70°×2=40°.3.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为( )A.15°B.17.5°C.20°D.22.5°【解析】选A.∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=∠A=×30°=15°.4.等腰三角形一腰上的中线把这个三角形的周长分成15cm和9cm,则它的周长为________. 【解析】①若腰长和腰长的一半的和是9,则腰长为6,底边长为15-×6=12,∵6+6=12,∴此时不能组成三角形;②若腰长和腰长的一半的和是15,则腰长为10,底边长为9-×10=4,能组成三角形,∴它的周长为10+10+4=24(cm).综上所述,该等腰三角形的周长是24cm.答案:24cm【易错提醒】此类问题要分情况进行讨论,且要注意检验得到的三边能否构成三角形.【备选习题】已知等腰三角形一腰上的中线把周长分为15和27两部分,则这个等腰三角形的底边长是( )A.6B.22C.6或22D.10或18【解析】选A.设AD=x,则当2x+x=15时,x=5,即AB=AC=10,∴底边长为27-5=22(不符合三角形三边关系,舍去);当2x+x=27时,x=9,即AB=AC=18,∴底边长为15-9=6(符合三角形的三边关系),综上可知,底边BC的长为6.5.如图,已知△ABC中,AB=AC,BD,CE是高,BD与CE相交于点O. 世纪金榜导学号10164005(1)求证:OB=OC.(2)若∠ABC=50°,求∠BOC的度数.【解析】(1)∵AB=AC,∴∠ABC=∠ACB,∵BD,CE是△ABC的两条高线,∴∠BEC=∠BDC=90°,∴△BEC≌△CDB.∴∠DBC=∠ECB,BE=CD.在△BOE和△COD中,∵∠BOE=∠COD,BE=CD,∠BEC=∠BDC=90°,∴△BOE≌△COD,∴OB=OC.(2)∵∠ABC=50°,AB=AC,∴∠A=180°-2×50°=80°,∴∠DOE+∠A=180°,∴∠BOC=∠DOE=180°-80°=100°.题组等边三角形的性质及应用1.(2017·南充中考)如图,等边△OAB的边长为2,则点B的坐标为( )A.(1,1)B.(,1)C.(,3)D.(1,)【解析】选D.如图所示,过点B作BC⊥AO于点C,∵△AOB是等边三角形,∴OC=AO=1,∴在Rt△BOC中,BC==,∴B(1,).2.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为________.世纪金榜导学号10164006【解析】∵直线y=2x+4与y轴交于B点,∴x=0时,得y=4,∴B(0,4).∵以OB为边在y轴右侧作等边三角形OBC,∴C在线段OB的垂直平分线上,∴C点纵坐标为2.将y=2代入y=2x+4,得2=2x+4,解得x=-1.所以点C′的坐标为(-1,2).答案:(-1,2)3.如图,△ABD,△ACE都是等边三角形,BE和CD交于O点,则∠BOC=________度.【解析】∵△ABD,△ACE都是等边三角形,∴AD=AB,∠DAB=∠EAC=60°,AC=AE,∴∠DAC=∠EAB,∴△DAC≌△BAE(SAS),∴DC=BE,∠ADC=∠ABE,∠AEB=∠ACD,∴∠BOC=∠CDB+∠DBE=∠CDB+∠DBA+∠ABE=∠ADC+∠CDB+∠DBA=120°.答案:120【变式训练】如图,O为等边三角形ABC内一点,∠OCB=∠ABO,则∠BOC的度数是________.【解析】∵△ABC是等边三角形,∴∠ABC=60°,∵∠OCB=∠ABO,∴∠OBC+∠OCB=∠OBC+∠ABO=∠ABC=60°,∴在△OBC中,∠BOC=180°-(∠OBC+∠OCB)=180°-60°=120°.答案:120°4.(2017·宁夏中考)在边长为2的等边三角形ABC中,P是BC边上任意一点,过点P分别作PM⊥AB,PN⊥AC,M,N分别为垂足.求证:不论点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高.【证明】连接AP,过C作CD⊥AB于D,∵△ABC是等边三角形,∴AB=AC,∵S△ABC=S△ABP+S△ACP,∴AB·CD=AB·PM+AC·PN,∴PM+PN=CD,即不论点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高.5.如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.观察并猜想AP与CQ之间的大小关系,并证明你的结论.世纪金榜导学号10164007【解析】猜想:AP=CQ.证明:在△ABP与△CBQ中,∵AB=CB,BP=BQ,∠ABC=∠PBQ=60°,∴∠ABP=∠ABC-∠PBC=∠PBQ-∠PBC=∠CBQ,∴△ABP≌△CBQ,∴AP=CQ.(2017·淄博中考)在边长为4的等边三角形ABC中,点D为BC边上的任意一点,过点D分别作DE⊥AB,DF ⊥AC,垂足分别为E,F,则DE+DF=______.【解析】如图,作AG⊥BC于点G,∵△ABC是等边三角形,∴∠B=60°,∴AG=AB=2,连接AD,则S△ABD+S△ACD=S△ABC,∴AB·DE+AC·DF=BC·AG,∵AB=AC=BC=4,∴DE+DF=AG=2.答案:2【母题变式】[变式一](2017·唐河县期末)如图,在△ACB中,有一点P在AC上移动,若AB=AC=5,BC=6,则AP+BP+CP的最小值为( )A.4.8B.8C.8.8D.9.8【解析】选D.从B向AC作垂线段BP,交AC于P,点P即为所求.设AP=x,则CP=5-x,在Rt△ABP中,BP2=AB2-AP2,在Rt△BCP中,BP2=BC2-CP2,∴AB2-AP2=BC2-CP2,∴52-x2=62-(5-x)2,解得x=1.4,在Rt△ABP中,BP==4.8,∴AP+BP+CP的最小值为5+4.8=9.8.[变式二]已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为( )A. B.C. D.不能确定【解析】选B.等边三角形的边长是3,所以等边三角形的高是.设点P到三边的距离分别为h1,h2,h3,则×3(h1+h2+h3)=×3×,所以h1+h2+h3=.[变式三]已知等边三角形ABC的高为4,在这个三角形内有一点P,若点P到AB的距离是1,点P到AC的距离是2,则点P到BC的距离是__________.【解析】如图,连接PA,PB,PC,作PD⊥AB于点D,PE⊥BC于点E,PF⊥AC于点F,AH⊥BC于点H,则PD=1,PF=2,AH=4,∵△ABC为等边三角形,∴AB=BC=AC,∵S△ABC=S△APB+S△BPC+S△CPA,∴AH·BC=PD·AB+PE·BC+PF·AC,∴4=1+PE+2,∴PE=1,即点P到BC的距离为1.答案:1[变式四]等边三角形的边长为a,P是等边三角形内一点,则P到三边的距离之和是________.【解析】如图,∵等边三角形的边长为a,∴等边三角形的高为a,连接PA,PB,PC,设点P到AB,BC,AC边的距离分别为h1,h2,h3,则S△ABC=a·a=AB·h1+BC·h2+AC·h3,即a·a=a·h1+a·h2+a·h3, 整理得,h1+h2+h3=a,即P到三边的距离之和是 a.答案: a。

1.1 等腰三角形第2课时(课件)八年级数学下册(北师大版)

1.1 等腰三角形第2课时(课件)八年级数学下册(北师大版)

D
B
E
C
五、当堂达标检测
5.如图,等边三角形ABC中,BD是AC边上的中线,BD=BE,求∠EDA的度数.
解:
∵ △ABC是等边三角形,
B
∴∠CBA=60°.
∵BD是AC边上的中线,
∴∠BDA=90°, ∠DBA=30°.
C
∵ BD=BE,
∴ ∠BDE=(180 °-∠DBA) ÷2 = (180°-30°)÷2=75°.
两条腰上的中线相等;两条腰上的高线相等.
你能证明你
的猜想吗?
二、自主合作,探究新知
探究一:等腰三角形的重要线段的性质
猜想证明
1.证明:等腰三角形两底角的平分线相等.
A
已知:如图, 在△ABC中, AB=AC, BD和CE是
△ABC的角平分线.
D
E
求证:BD=CE.
B
1 2
C
二、自主合作,探究新知
D
C
二、自主合作,探究新知


(4)如果AD= AC,AE= AB,那么BD=CE吗?


A
为什么?
E
解:(4)BD=CE.


证明:∵AB=AC,AD= AC,AE= AB,


∴AD=AE.
在△ABD和△ACE中
∵AD=AE,∠A=∠A,AB=AC,
∴△ABD≌△ACE(SAS).
∴BD=CE(全等三角形的对应边相等).
6.已知:如图所示,在△ABC中,AB=AC,AD平分∠BAC交BC于点D,点M,
N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.

证明: ∵AM=2MB,∴AM= AB.

北师大版八年级数学下册1.1等腰三角形(第2课时)优秀教学案例

北师大版八年级数学下册1.1等腰三角形(第2课时)优秀教学案例
2.通过问题的提出和解决,引导学生体会数学的逻辑性和推理过程,培养学生的逻辑思维能力。
3.鼓励学生提出自己的问题,培养学生的提问能力和批判性思维。
(三)小组合作
1.将学生分成小组,每组成员共同讨论和探索等腰三角形的性质。
2.设计具有合作性的任务,如共同完成一个等腰三角形的拼图游戏,或者一起解决一个实际问题。
4.教师通过观察学生的学习行为和表现,了解学生的学习状况,及时调整教学策略,提高教学效果。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一些生活中常见的等腰三角形形状的物体,如金字塔、梯子等,引发学生对等腰三角形的关注。
2.提出与等腰三角形相关的问题,如“你们观察过这些物体的形状吗?它们有什么特点?”等,激发学生的思考和探索兴趣。
2.问题导向的教学策略:通过设计具有挑战性和启发性的问题,引导学生主动思考和探索,培养了学生的逻辑思维能力和问题解决能力。同时,教师还鼓励学生提出自己的问题,培养了学生的提问能力和批判性思维。
3.小组合作的学习方式:通过小组合作,学生能够共同探索等腰三角形的性质,培养团队合作意识和沟通能力。同时,小组合作也能够激发学生的学习积极性和主动性,提高学习效果。
4.教师在课后与学生进行交流,了解学生在作业过程中遇到的问题,给予针对性的指导和建议。
五、案例亮点
1.生活情境的创设:通过引入金字塔、梯子等实际生活中的等腰三角形形状的物体,激发了学生的学习兴趣,使学生能够更好地理解和应用所学的数学知识。这种生活情境的创设,不仅能够激发学生的学习兴趣,还能够让学生认识到数学与生活实际的联系,提高学生运用数学解决问题的能力。
本节课的教学目标是让学生掌握等腰三角形的性质,并能够运用这些性质解决实际问题。同时,通过小组合作、讨论交流等方式,培养学生的团队合作意识和沟通能力。在教学过程中,我将以学生为主体,注重启发式教学,引导学生主动探索、发现和总结等腰三角形的性质,从而提高他们的数学素养和解决问题的能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结论:等腰三角形两个底角的平分线相等;
等腰三角形腰上的高相等;
等腰三角形腰上的中线相等.
并对这些命题给予多样的证明。
如对于“等腰三角形两底角的平分线相等”,学生得到了下面的证明方法:
已知:如图,在△ABC中,AB=AC,BD、CE是△ABC的角平分线.
求证:BD=CE.
证法1:∵AB=AC,
∴∠ABC=∠ACB(等边对等角).
∵∠1=∠ABC,∠2=∠ABC,
∴∠1=∠ 2.
在△BDC和△CEB中,
∠ACB=∠ABC,BC=CB,∠1=∠2.
∴△BDC≌△CEB(ASA).
∴BD=CE(全等三角形的对应边相等)
证 法2:证明:∵AB=AC,
∴∠ABC=∠ACB.
又∵∠3=∠4.
在△ABC和△ACE中,
CE(ASA).
∴BD=CE(全等三角形的对应边相等).
第三环节:经典例题变式练习
活动内容:提请学生思考 ,除了角平分线、中线、高等特殊的线段外,还可以有哪些线段相等?并在学生思考的基础上,研究课本“议一议”:
在课本图1—4的等腰三角形ABC中,
(1)如果∠ABD=∠ABC,∠ACE=∠ACB呢?由此,你能得到一个什么结论?
(2)如果AD=AC, AE=AB,那么BD=C E吗?如果AD=AC,AE=AB 呢?由此你得到什么结论?
第四环节:拓展延伸,探索 等边三角形性质
活动内容:提请学生在上面等要三角形性质定理的基础上,思考等边三角形的特殊性质:等边三角形三个内角都相等并且每个内角都 等于60°.
已知:如图,ΔABC中,AB=BC=AC.
等腰三角形
一、问题引入:
活动 内容:在回忆上节课等腰三角形性质的基础上,提出问题:
在 等腰三角形中作 出一些线段(如角平分线、中线、高等),你能发现其中一些相等的线段吗?你能证明你的结论吗?
答:
第二环节: 自主探究
活动内容:在等腰三角形中自主作出 一些线段(如角平分线、中线、高等),观察其中有哪些相等的线段,并尝试给出证明。
活动内容:在探索得到了等边三角形的性质的基础上,让学生独立完成以下练习。
1. 如图,已知△ABC和△BDE都是等边三角形.
求证:AE=CD
求证:∠A=∠B=∠C=60°.
证明:在ΔABC中,∵AB=AC,∴∠B=∠C(等边对等角).
同理:∠C=∠A,∴∠A=∠B=∠C(等量代换).
又∵∠A+∠B+∠C=180°(三角形内角和定理),∴∠A=∠B=∠C=60°.
结论: 等边三角形三个内角都相等并且每个内角都等于60°。
第五环节:随堂练习及时巩固
相关文档
最新文档