课外练习1_三角形中位线定理-优质公开课-北京版8下精品
北京版数学八年级下册《15.5 三角形中位线定理》说课稿3

北京版数学八年级下册《15.5 三角形中位线定理》说课稿3一. 教材分析北京版数学八年级下册《15.5 三角形中位线定理》这一节主要介绍了三角形的中位线定理。
通过学习这一节内容,学生能够了解三角形中位线的概念,掌握中位线的性质和定理,并能运用中位线定理解决一些几何问题。
在教材中,首先介绍了三角形的中位线的定义,然后通过几何图形的展示和推导,引导学生发现中位线的一些性质。
接着,教材提出了中位线定理,并通过举例来说明如何运用定理解决实际问题。
最后,教材还提供了一些练习题,帮助学生巩固所学内容。
二. 学情分析在八年级的学生中,他们已经学习了三角形的性质、平行线的性质等基础知识。
他们对这些知识有一定的了解和掌握,但可能对一些概念的理解还不够深入。
因此,在教学过程中,需要引导学生进一步理解和掌握这些基础知识,并能够运用到实际问题中。
对于三角形中位线定理的学习,学生可能对定理的理解和运用有一定的困难。
因此,在教学过程中,需要通过举例和练习题的讲解,帮助学生理解和掌握定理的运用方法。
三. 说教学目标1.知识与技能目标:学生能够了解三角形的中位线的概念,掌握中位线的性质和定理,并能够运用中位线定理解决一些几何问题。
2.过程与方法目标:学生能够通过观察、操作、推理等过程,培养自己的几何思维能力和解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,对数学学习保持积极的态度,并能够自主学习,形成良好的学习习惯。
四. 说教学重难点1.教学重点:学生能够了解三角形的中位线的概念,掌握中位线的性质和定理,并能够运用中位线定理解决一些几何问题。
2.教学难点:学生对中位线定理的理解和运用,以及如何解决一些实际问题。
五. 说教学方法与手段在教学过程中,我会采用讲授法、引导发现法、讨论法等教学方法。
通过几何图形的展示和推导,引导学生发现中位线的一些性质,并通过举例和练习题的讲解,帮助学生理解和掌握中位线定理的运用方法。
新北师版初中数学八年级下册6.3三角形的中位线公开课优质课教学设计

16.3 三角形的中位线1.掌握中位线的定义以及中位线定理;(重点)2.综合运用平行四边形的判定及中位线定理解决问题.(难点)一、情境导入如图所示,吴伯伯家有一块等边三角形的空地ABC,已知点E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,你能求出需要篱笆的长度吗?二、合作探究探究点:三角形的中位线【类型一】利用三角形中位线定理求线段的长如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F.若DF =3,则AC的长为( )A.32B.3 C.6 D.9解析:∵D、E分别为AC、BC的中点,∴DE ∥AB,∴∠2=∠3,又∵AF平分∠CAB,∠1=∠3,∴∠1=∠2,∴AD=DF=3,∴AC=2AD=6.故选C.方法总结:本题考查了三角形中位线定理,等腰三角形的判定与性质.解题的关键是熟记性质并熟练应用.【类型二】利用三角形中位线定理求角如图,C、D分别为EA、EB的中点,∠E=30°,∠1=110°,则∠2的度数为( )A.80° B.90° C.100° D.110°解析:∵C、D分别为EA、EB的中点,∴CD 是三角形EAB的中位线,∴CD∥AB,∴∠2=∠ECD.∵∠1=110°,∠E=30°,∴∠ECD=80°,故选A.方法总结:中位线定理牵扯到平行线,所以利用中位线定理中的平行关系可以解决一些角度的计算问题.【类型三】运用三角形的中位线性质进行2证明如图,在△ABC 中,AB =5,AC =3,点N 为BC 的中点,AM 平分∠BAC ,CM ⊥AM ,垂足为点M ,延长CM 交AB 于点D ,求MN 的长.解析:为证MN 为△BCD 的中位线,应根据三线合一,得到DM =MC ,即可解决问题.解:∵AM 平分∠BAC ,CM ⊥AM ,∴AD =AC =3,DM =CM .∵BN =CN ,∴MN 为△BCD 的中位线,∴MN =12(5-3)=1.方法总结:当已知三角形的一边的中点时,要注意分析问题中是否有隐含的中点.如已知一个三角形一边上的高又是这边所对的角平分线时,根据“三线合一”可知,这实际上是又告诉了我们一个中点.【类型四】中位线定理的综合应用如图,E 为平行四边形ABCD 中DC 边的延长线上一点,且CE =DC ,连接AE ,分别交BC 、BD 于点F 、G ,连接AC 交BD 于O ,连接OF ,判断AB 与OF的位置关系和大小关系,并证明你的结论.解析:本题可先证明△ABF ≌△ECF ,从而得出BF =CF ,这样就得出了OF 是△ABC 的中位线,从而利用中位线定理即可得出线段OF 与线段AB 的关系.解:AB =2OF .证明如下:∵四边形ABCD 是平行四边形,∴AB =CD ,OA =OC .∴∠BAF =∠CEF ,∠ABF =∠ECF .∵CE =DC ,在平行四边形ABCD 中,CD =AB ,∴AB =CE .∴在△ABF 和△ECF 中,⎩⎪⎨⎪⎧∠BAF =∠CEF ,AB =CE ,∠ABF =∠BCE ,∴△ABF ≌△ECF (ASA),∴BF =CF .∵OA =OC ,∴OF 是△ABC 的中位线,∴AB =2OF ,AB ∥OF .方法总结:本题综合的知识点比较多,解答本题的关键是判断出OF 是△ABC 的中位线.三、板书设计 1.三角形的中位线连接三角形的两边中点的线段叫做三角形的中位线.2.三角形中位线定理三角形的中位线平行于第三边,且等于第三边的一半.本节课,通过实际生活中的例子引出三角形的中位线,又从理论上进行了验证.在学习的过程中,体会到了三角形中位线定理的应用时机.对整个课堂的学习过程进行反思,能够促进理解,提高认识水平,从而促进数学观点的形成和发展,更好地进行知识建构,实现良性循环.。
【最新】北师大版八年级数学下册第六章《3 三角形的中位线》公开课课件3.ppt

∴ AE、DF互相平分(平行四边形
的对角线互相平分).
例2 如图,△ABC中,D、E分别是边
BC、AB的中点,AD、CE相交于G.
周长= 12 cm .
A
E
C
图2
例1 求证三角形的一条中位线与第三边 上的中线互相平分.
例1 求证三角形的一条中位线与第三边 上的中线互相平分.
已知:如图所示,在△ABC中,AD=DB, BE=EC,AF=FC. 求证: AE、DF互相平分.
A
D
F
B
E
例1 求证三角形的一条中位线与第三边 上的中线互相平分.
•
THE END 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2021/1/112021/1/112021/1/112021/1/11
谢谢观看
。2021年1月11日星期一2021/1/112021/1/112021/1/11
• 15、会当凌绝顶,一览众山小。2021年1月2021/1/112021/1/112021/1/111/11/2021
• 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2021/1/112021/1/11January 11, 2021
M
40
20
C
N
B
问题
A 如图1:在△ABC中,DE是中位线
D
B
图1
B
D 4F 53
(1)若∠ADE=60°,
E 则∠B= 60 度,为什么?
北师大版八年级数学下册第六章《 三角形的中位线 (1)》公开课课件

• 17、儿童是中心,教育的措施便围绕他们而组织起来。2021/7/222021/7/222021/7/222021/7/22
• 2、Our destiny offers not only the cup of despair, but the chalice of opportunity. (Richard Nixon, American President )命运给予我们的不是失望之酒,而是机会之杯。二〇二一年六月十七日2021年6月17日星期四 • 3、Patience is bitter, but its fruit is sweet. (Jean Jacques Rousseau , French thinker)忍耐是痛苦的,但它的果实是甜蜜的。10:516.17.202110:516.17.202110:5110:51:196.17.202110:516.17.2021 • 4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19 • 5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021
分层训练A
1、已知:DE是Байду номын сангаас△ABC中位线,则
2022年北师大版八下《 三角形的中位线》配套练习(附答案)

6.3 三角形的中位线1.如图,为测量池塘边A,B两点间的距离,小明在池塘的一侧选取一点O,测得OA,OB的中点分别是点D,E,且DE=14米,那么A,B间的距离是() A.18米B.24米C.28米D.30米2.如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE =60°,那么∠C的度数为()A.50°B.60°C.70°D.80°3.如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,那么DE的长为()A.1 B.2 C. 3 D.1+ 34.如图,点D,E,F分别是△ABC各边的中点,连接DE,EF,DF.假设△ABC 的周长为10,那么△DEF的周长为____.5.如图,▱ABCD的对角线AC,BD相交于点O,点E是CD的中点,△ABD 的周长为16 cm,那么△DOE的周长是____cm.6.如图,在△ABC中,D,E,F分别是BC,AC,AB的中点.(1)假设DE=10 cm,那么AB=____cm;(2)中线AD与中位线EF有什么特殊关系?证明你的猜测.7.我们把依次连接任意一个四边形各边中点得到的四边形叫做中点四边形.如图,在四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点,依次连接各边中点得到中点四边形EFGH.(1)这个中点四边形EFGH的形状是___________;(2)请证明你的结论.8.如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=30°,那么∠PFE的度数是()A.15°B.20°C.25°D.30°9.如图,在四边形ABCD中,R,P分别是BC,CD上的点,E,F分别是AP,RP的中点,当点P在CD上从C向D移动而点R不动时,那么以下结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不变D.线段EF的长与点P的位置有关10.如图,EF是△ABC的中位线,BD平分∠ABC交EF于点D,假设DE=2,那么EB=____.11.如图,△ABC的周长是1,连接△ABC三边的中点构成第2个三角形,再连接第2个三角形三边中点构成第3个三角形,依此类推,第2021个三角形的周长为________.12.如图,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH 是平行四边形.13.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,AB=10,BC=15,MN=3.(1)求证:BN=DN;(2)求△ABC的周长.14.如图,在▱ABCD中,AE=BF,AF,BE相交于点G,CE,DF相交于点证:GH∥BC且GH=12BC.15.如图,在▱ABCD中,E是CD的中点,F是AE的中点,FC与BE相交于点证:GF=GC.方法技能:1.三角形有三条中位线,每条中位线都与第三边有相应的位置关系和数量关系,位置关系可证明两直线平行,数量关系可证明线段相等或倍分关系.2.三角形的三条中位线将原三角形分为四个全等的小三角形,每个小三角形的周长都等于原三角形周长的一半.3.当题目中有中点时,特别是有两个中点且都在一个三角形中,可直接利用三角形中位线定理.易错提示:对三角形中位线的意义理解不透彻而出错答案:1. C2. C3. A4. 55. 86. (1) 20(2) 解:AD与EF互相平分.证明:∵D,E,F分别为BC,AC,AB的中点,∴DE∥AB,DE=12AB,AF=12AB,∴DE=AF,∴四边形AFDE是平行四边形,∴AD与EF互相平分7. (1) 平行四边形(2) 解:连接AC,由三角形中位线性质得,EF∥AC且EF=12AC,GH∥AC且GH=12AC,∴EF綊GH,∴四边形EFGH是平行四边形8. D9. C10. 211.1 2202112. 解:连接BD,∵E,H分别是AB,AD的中点,∴EH是△ABD的中位线,∴EH=12BD,EH∥BD,同理可证FG=12BD,FG∥BD,∴EH綊FG,∴四边形EFGH是平行四边形13. 解:(1)∵AN平分∠BAD,∴∠1=∠2,∵BN⊥AN,∴∠ANB=∠AND =90°,又∵AN=AN,∴△ABN≌△ADN(ASA),∴BN=DN(2)∵△ABN≌△ADN,∴AD=AB=10,∵DN=BN,点M是BC的中点,∴MN是△BDC的中位线,∴CD=2MN=6,∴△ABC的周长=AB+BC+CD+AD=10+15+6+10=4114. 解:连接EF,证四边形ABEF,EFCD分别为平行四边形,从而得G是BE的中点,H是EC的中点,∴GH是△EBC的中位线,∴GH∥BC且GH=12BC15. 解:取BE的中点H,连接FH,CH,∵F是AE的中点,H是BE的中点,∴FH是△ABE的中位线,∴FH∥AB且FH=12▱ABCD中,AB∥DC,AB=DC,∴FH∥EC,又∵点E是DC的中点,∴EC=12DC=12AB,∴FH=EC,∴四边形EFHC是平行四边形,∴GF=GC.第1课时三角形的全等和等腰三角形的性质一.选择题〔共8小题〕1.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,那么添加的条件不能为〔〕A. BD=CE B. AD=AE C. DA=DE D. BE=CD2.等腰三角形的一个角是80°,那么它顶角的度数是〔〕A.80°B.80°或20°C.80°或50°D.20°3.实数x,y满足,那么以x,y的值为两边长的等腰三角形的周长是〔 〕A. 20或16 B. 20 C. 16 D. 以上答案均不对4.如图,在△ABC中,AB=AC,∠A=40°,BD为∠ABC的平分线,那么∠BDC的度数是〔 〕A. 60° B. 70° C. 75° D. 80°5.等腰三角形的两边长分别是3和5,那么该三角形的周长是〔 〕A. 8 B. 9 C. 10或12 D. 11或136.如图,给出以下四组条件:①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,. 其中,能使ABC DEF △≌△的条件共有〔 〕A .1组B .2组C .3组D .4组7.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个局部, 那么这个等腰三角形的底边长为〔 〕A. 7 B. 11 C. 7或11 D. 7或108.等腰三角形一腰上的高与另一腰的夹角为30°,那么顶角的度数为〔 〕A. 60° B. 120° C. 60°或150° D. 60°或120°二.填空题〔共10小题〕9.等腰三角形的一个内角为80°,那么另两个角的度数是 _________ .10.如图,AB∥CD,AB=AC,∠ABC=68°,那么∠ACD= _________ .第10题 第11题 第12题 第13题11.如图,在△ABC中,AB=AC,△ABC的外角∠DAC=130°,那么∠B= _________ °.12.如图,AB∥CD,AE=AF,CE交AB于点F,∠C=110°,那么∠A=________°.13.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,那么BD=_________ .14.如图,在△ABC中,AB=AD=DC,∠BAD=32°,那么∠BAC=_________ °.第14题 第15题 第16题 第17题 第18题15.如图,AB与CD交于点O,OA=OC,OD=OB ,∠A=50°,∠B=30°,那么∠D的度数为_____.16.如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,那么∠BDC的度数为_________.17.如图,在△ABC中,AB=AC,点D为BC边的中点,∠BAD=20°,那么∠C=_________ .18.如图,在△ABC中,AB=AC,∠A=80°,E,F,P分别是AB,AC,BC边上一点,且BE=BP ,CP=CF,那么∠EPF=_________ 度.三.解答题〔共5小题〕19.:如图,在等腰△ABC中,AB=AC,O是底边BC上的中点,OD⊥AB于D,OE⊥AC于E.求证:AD=AE.20.如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:〔1〕△ABD≌△ACD;〔2〕BE=CE.21.如下图,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB 的位置关系,并给出证明.22.如图,在△ABC中,D、E分别是AC和AB上的点,BD与CE相交于点O,给出以下四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.〔1〕上述四个条件中,由哪两个条件可以判定AB=AC?〔用序号写出所有的情形〕〔2〕选择〔1〕小题中的一种情形,说明AB=AC.23.〔1〕如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、A C于点D、E.判断DE=DB+EC是否成立?为什么?〔2〕如图,假设点F是∠ABC的平分线和外角∠ACG的平分线的交点,其他条件不变,请猜测线段DE、DB、EC之间有何数量关系?证明你的猜测.参考答案一、CBBCDCCD二、9、50°,50°或80°,20°;10、44;11、65;12、40;13、3;14、69;15、30°;16、72;17、70;18、50三、19、证明:∵AB=AC,∴∠B=∠C.∵OD⊥AB,OE⊥AC,∴∠ODB=∠OEC=90°.∵O是底边BC上的中点,∴OB=OC,在△OBD与△OCE中,∴△OBD≌△OCE〔AAS〕.∴BD=CE.∵AB=AC,∴AB﹣BD=AC﹣CE.即AD=AE.20、证明:〔1〕∵D是BC的中点,∴BD=CD,在△A BD和△ACD中,,∴△ABD≌△ACD〔SSS〕;…〔4分〕〔2〕由〔1〕知△ABD≌△ACD,∴∠BAD=∠CAD,即∠BAE=∠CAE,在△ABE和△ACE中,∴△ABE≌△ACE 〔SAS〕,∴BE=CE〔全等三角形的对应边相等〕.〔其他正确证法同样给分〕…〔4分〕21、解:OE⊥AB.证明:在△B A C和△ABD中,,∴△BAC≌△ABD〔SAS〕.∴∠OBA=∠OAB,∴OA=OB.又∵AE=BE,∴OE⊥AB.答:OE⊥AB.22、〔1〕答:有①③、①④、②③、②④共4种情形.〔2〕解:选择①④,证明如下:∵OB=OC,∴∠OBC=∠OCB,又∵∠EBO=∠DCO,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AC=AB.②④理由是:在△BEO和△CDO中∵,∴△BEO≌△CDO,∴∠EBO=∠DCO,∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC,23、解:〔1〕成立;∵△ABC中BF、CF平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠4.∵DE∥BC,∴∠2=∠3,∠4=∠6.∴∠1=∠3,∠6=∠5.根据在同一个三角形中,等角对等边的性质,可知:BD=DF,EF=CE.∴DE=DF+EF=BD+CE.故成立.〔2〕∵BF分∠ABC,∴∠DBF=∠FBC.∵DF∥BC,∴∠DFB=∠FBC.∴∠ABF=∠DFB,∴BD=DF.∵CF平分∠AC G,∴∠ACF=∠FCG.∵DF∥BC,∴∠DFC=∠FCG.∴∠ACF=∠DFC,∴CE=EF.∵EF+DE=DF,即DE+EC=BD.。
八年级数学三角形中位线培优专题训练

八年级数学三角形中位线培优专题训练一、内容提要1. 三角形中位线平行于第三边,并且等于第三边的一半。
梯形中位线平行于两底,并且等于两底和的一半。
2. 中位线性质定理的结论,兼有位置和大小关系,可以用它判定平行,计算线段的长度,确定线段的和、差、倍关系。
3. 运用中位线性质的关键是从出现的线段中点,找到三角形或梯形,包括作出辅助线。
4. 中位线性质定理,常与它的逆定理结合起来用。
它的逆定理就是平行线截比例线段定理及推论,①一组平行线在一直线上截得相等线段,在其他直线上截得的线段也相等 ②经过三角形一边中点而平行于另一边的直线,必平分第三边 ③经过梯形一腰中点而平行于两底的直线,必平分另一腰 5. 有关线段中点的其他定理还有: ①直角三角形斜边中线等于斜边的一半②等腰三角形底边中线和底上的高,顶角平分线互相重合 ③对角线互相平分的四边形是平行四边形 ④线段中垂线上的点到线段两端的距离相等 因此如何发挥中点作用必须全面考虑。
二、例题例1. 已知:△ABC 中,分别以AB 、AC 为斜边作等腰直角三角形ABM 和CAN ,P 是BC 的中点。
求证:PM =PN证明:作ME ⊥AB ,NF ⊥AC ,垂足E ,F ∵△ABM 、△CAN 是等腰直角三角形∴AE =EB=ME ,AF =FC =NF ,根据三角形中位线性质 PE =21AC =NF ,PF =21AB =MEPE ∥AC ,PF ∥AB∴∠PEB =∠BAC =∠PFC 即∠PEM =∠PFN∴△PEM ≌△PFN ∴PM =PN例2.已知△ABC 中,AB =10,AC =7,AD 是角平分线,CM ⊥AD 于M ,且N 是BC 的中点。
求MN 的长。
分析:N 是BC 的中点,若M 是另一边中点, 则可运用中位线的性质求MN 的长, 根据轴称性质作出△AMC 的全等三角形即可。
辅助线是:延长CM 交AB 于E (证明略 例3.如图已知:△ABC 中,AD 是角平分线,BE =CF ,M 、N 分别是BC 和EF 的中点 求证:MN ∥AD 证明一:连结EC ,取EC 的中点P ,连结PM 、PNP NMP ∥AB ,MP =21AB ,NP ∥AC ,NP =21AC ∵BE =CF ,∴MP =NP∴∠3=∠4=2MPN-180∠∠MPN +∠BAC =180(两边分平行的两个角相等或互补)∴∠1=∠2=2MPN-180∠ , ∠2=∠3∴NP ∥AC ∴MN ∥AD证明二:连结并延长EM 到G ,使MG =ME 连结CG ,FG则MN ∥FG ,△MCG ≌△MBE ∴CG =BE =CF ∠B =∠BCG∴AB ∥CG ,∠BAC +∠FCG =180∠CAD =21(180-∠FCG ) ∠CFG =21(180-∠FCG )=∠CAD ∴ MN ∥AD 例4. 已知:△ABC 中,AB =AC ,AD 是高,CE 是角平分线,EF ⊥BC 于F ,GE ⊥CE交CB 的延长线于G 求证:FD =41CG 证明要点是:延长GE 交AC 于H , 可证E 是GH 的中点过点E 作EM ∥GC 交HC 于M ,则M 是HC 的中点,EM ∥GC ,EM =21GC由矩形EFDO 可得FD =EO =21EM =41GC三、练习1. 如图11,M 、P 分别为△ABC 的AB 、AC 上 的点,且AM=BM ,AP=2CP ,BP 与CM 相交于N ,已知PN=1,则PB 的长为 ( ) A. 2 B. 3 C .4 D. 52. 如图12,△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 的中点,AB=10,则MD 的长为 ( )A. 10B. 8 C .6 D. 53. 如图13,△ABC 是等边三角形,D 、E 、F 分别是AB 、BC 、AC 的中点,P 为不同于B 、E 、C 的BC 上的任意一点,△DPH 为等边三角形.连接FH ,则EP 与FH 的大小关系是 ( ) A. E P>FH B. EP=FH C. EP<FH D.不确定4. 如图14,在△ABC 中,AD 平分∠BAC ,BD ⊥AD ,DE ∥AC ,交AB 于E ,若AB=5,则DE 的长为 .C5. 如图15,△ABC中,AB=4,AC=7,M为BC的中点,AD平分∠BAC,过M作MF∥AD,交AC于F,则FC的长等于.6. 如图25,P为△ABC内一点,∠P AC=∠PBC,PM⊥AC于M,PN⊥BC于N.D是AB的中点.求证:DM=DN7. 如图16,在△ABC中,D、E是AB、AC上的点,且BD=CE,M、N分别是BE、CD的中点,直线MN分别交AB、AC于P、Q.求证:AP=AQ8. 如图17,BE、CF是△ABC的角平分线,AN⊥BE于N,AM⊥CF于M.求证:MN∥BC.9. 如图18,在△ABC中,AD平分∠BAC,AD=AB,CM⊥AD于M.求证:AB+AC=2AM10.如图19,四边形ABCD中,G、H分别是AD、BC的中点,AB=CD.BA、CD的延长线交HG的延长线于E、F.求证:∠BEH=∠CFH.1. 如图20,在△ABC中,∠ABC=2∠C,AD平分∠BAC,过BC的中点M作ME⊥AD,交BA的延长线于E,交AD的延长线于F.求证:12BE BD.2. 如图21,在△ABC中,AB<AC,P为AC上的点,CP=AB,K为AP的中点,M为BC的中点,MK的延长线交BA的长线于N.求证:AN=AK.3. 如图22,分别以△ABC的边AC、BC为腰,A、B为直角顶点,作等腰直角△ACE和等腰直角△BCD,M为ED的中点.求证:AM⊥BM.4. 如图23,点O是四边形ABCD内一点,∠AOB=∠COD=1200,AO=BO,CO=DO,E、F、G分别为AB、CD、BC的中点.求证:△EFG为等边三角形.5. 如图24,△ABC中,M是AB的中点,P是AC的中点,D是MB的中点,N是CD的中点,Q是MN的中点,直线PQ交MB于K.求证:K是DB的中点.6. 如图25,P为△ABC内一点,∠P AC=∠PBC,PM⊥AC于M,PN⊥BC于N.D是AB的中点.求证:DM=DN图21 图22 图23 图24 图257. 如图26,AP是△ABC的角平分线,D、E分别是AB、AC上的点,且BD=CE.又G、H分别为BC、DE的中点.求证:HG∥AP.8. 如图27,已知△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=900,如图(a),连接DE,设M为DE的中点.(1)求证:MB=MC;(2)设∠BAD=∠CAE,固定△ABD,让Rt△ACE绕顶点A在平面内旋转到图(b)的位置,试问MB=MC是否成立?并证明其结论.9. 已知△ABC面积为S,作直线l∥BC,交AB于D,交AC于E,若△BED的积为K.求证:S≥4K.10.如图28,在△ABC中,AB=AC,D是BC边上的一点,E是线段AD上的一点.且∠BED=2∠CED=∠BAC.求证:BD=2CD.图26 图27。
北师大版八年级数学下册第六章《3 三角形的中位线》优质课课件4

2、在四边形ABCD中,AB=AD,
BC=CD,则顺次连结它的各边中点得
到的四边形是(B ) A
A 等腰梯形 B 矩形
E B
H
O
D
C 菱形
D 正方形
F
G
C
❖
求证:顺次连结四边形四条边的中点,所得的四边形
是平行四边形.
已知:在四边形ABCD中,E.F.G.H 分别是AB、BC、CD、DA的中
求证点:.四边形EFGH是平行四边形 E
A
H D
证明:连结AC,
∵AH=HD C∴GH=GG∥DAC
HG
1
B
AC
F
G C
2
同(理三角EF形∥的A中C位E线F 平行 于1填空题: ①顺次连结平行四边形四边中点所得的四 边形是—平——行—四—边——形—. ②顺次连结等腰梯形四边中点所得的四 边形是——菱——形——. ③顺次连结矩形四边中点所得的四边形 是——菱——形——. ④顺次连结菱形四边中点所得的四边形 是——矩——形——. ⑤顺次连结正方形四边中点所得的四边形 是———正—方—形 .
D
E
∴ D、E分别为AB、AC的中
③一点个.三角形共有三条中位线. B F C
3、研究三角形的中位线的性质:
三角形的中位线定理:三角形的中位线
平行于第三边,且等于它的一半.
已求结知证论::在DE△∥ABBCC中,,DDEE是△1ABBCC的一条中位线A 证明:过D作DE’∥BC,交2 AC于E’点, D
E'
E
∵D为AB边上的中点
∴边E的’是中AC点的与中另点一(边经平过行三的角直形线一必平B分第三F边)C
所以DE’与DE重合,因此DE∥BC
北京版数学八年级下册《15.5 三角形中位线定理》教学设计

北京版数学八年级下册《15.5 三角形中位线定理》教学设计一. 教材分析《15.5 三角形中位线定理》是北京版数学八年级下册的一个重要内容。
本节课主要让学生掌握三角形的中位线定理,并能运用定理解决一些几何问题。
教材通过详细的论述和丰富的例题,帮助学生理解和掌握定理。
本节课的内容为后续学习三角形内心的性质和三角形的分类等知识奠定了基础。
二. 学情分析学生在学习本节课之前,已经掌握了平行线的性质、全等三角形的判定和性质等知识。
但在运用这些知识解决实际问题时,部分学生可能会遇到困难。
因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行辅导。
三. 教学目标1.知识与技能:让学生掌握三角形的中位线定理,并能运用定理解决一些几何问题。
2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的动手能力和探究精神。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作能力和勇于挑战的精神。
四. 教学重难点1.重点:三角形的中位线定理及其应用。
2.难点:如何引导学生发现并证明三角形中位线定理。
五. 教学方法1.情境教学法:通过设置有趣的情境,激发学生的学习兴趣。
2.启发式教学法:引导学生主动思考、探究,培养学生的创新能力。
3.合作学习法:鼓励学生分组讨论,培养学生的团队协作能力。
4.反馈评价法:及时了解学生的学习情况,针对性地进行教学调整。
六. 教学准备1.准备相关课件和教学素材。
2.准备三角板、直尺、圆规等教具。
3.提前布置预习任务,让学生初步了解三角形的中位线定理。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的三角形图片,引导学生关注三角形的中位线。
提问:“你们知道三角形的中位线有什么特点吗?”让学生思考并回答。
2.呈现(10分钟)教师简要介绍三角形的中位线定理,并展示定理的证明过程。
引导学生观察和理解定理的内涵。
3.操练(10分钟)学生分组讨论,运用中位线定理解决一些几何问题。
教师巡回指导,解答学生的疑问。