String Dual of N=1 Super Yang-Mills on the Cylinder

合集下载

2022年12月青少年软件编程Python等级考试试卷四级真题(含答案和解析)

2022年12月青少年软件编程Python等级考试试卷四级真题(含答案和解析)

2022年12月青少年软件编程Python等级考试试卷四级(含答案和解析)分数:100 题数:38一、单选题(共25题,共50分)1.有n个按名称排序的商品,使用对分查找法搜索任何一商品,最多查找次数为5次,则n的值可能为?(C)A. 5B. 15C. 30D. 35解析:对分查找最多查找次数m与个数之间n的关系是:n对2的对数的取整后加1,现在最多查找次数是5次,因此n的取值范围在[2^4+1,2^5]即[16,31]之间,因此选C。

2.下列有关分治算法思想的描述不正确的是?(D)A. 将问题分解成的子问题具有相同的模式。

B. 当问题足够小时,可以直接求解。

C. 可以将子问题的结果合并成原问题的解。

D. 将问题分解出的各个子问题相互包含,相互之间可以有公共子问题。

解析:将问题分解出的各个子问题是相互独立的,即子问题之间不包含公共子子问题。

3.下列问题使用分治算法思想的是?(D)A. 求100以内的素数B. 求100个整数之和C. 求斐波那契数列第n项D. 快速排序算法对n个数排序解析:快速排序算法使用了分治算法。

因此选D。

4.李宇同学利用Python语言编写了一段“根据出.生.年月判断生肖属相”的程序,调试运行时,程序没有报错且顺利运行,但未能正确输出对应属相,造成这个结果的原因可能是?(C)A. 程序语句语法错误B. 时间复杂度太高C. 求解算法逻辑错误D. Python环境配置不对解析:程序能正常运行,排除了其他三个可能。

5.一般来说,递归需要有边界条件、递归前进段和递归返回段。

当不满足边界条件时,();当满足边界条件时,()。

(C)A. 返回,前进B. 中断,前进C. 前进,返回D. 中断,返回解析:递归运行的条件,不满足边界条件前进,满足返回。

6.以下哪一项不是递归算法的特征?(D)A. 要实现递归必须有一个函数,并且在这个函数体内要自己调用自己。

B. 递归必须要有判断条件,这个判断条件可以是判断次数。

[baltic2001]box of mirrors题解

[baltic2001]box of mirrors题解

[baltic2001]box of mirrors题解摘要:1.题目概述2.题目背景3.题目分析4.题目解答5.总结正文:一、题目概述“box of mirrors”是一道来自Baltic 2001 的题目,该题目要求参赛者编写一个程序,对输入的字符串进行处理,输出一个新的字符串,使得新字符串中每个字符都等于其相邻字符的镜像。

例如,输入字符串"abracadabra",输出字符串应为"madaratram"。

二、题目背景这道题目主要考察参赛者对字符串处理和逻辑思维的能力。

题目要求较为简单,但实际操作过程中需要仔细分析每个字符之间的关系,并设计合适的算法来实现题目要求。

三、题目分析为了解决这道题目,我们需要对输入字符串中的每个字符进行处理。

首先,我们需要判断一个字符是否需要进行镜像处理。

判断的依据是该字符是否为小写字母,并且其前一个字符是否为小写字母,后一个字符是否为小写字母。

如果满足这两个条件,则需要进行镜像处理。

镜像处理的方法是将该字符转换为其在字母表中关于中间字母"l"的对称位置的字符。

例如,"a"关于"l"的对称字符是"d","b"关于"l"的对称字符是"r"。

四、题目解答下面是一个简单的Python 程序来解决这道题目:```pythondef box_of_mirrors(s):result = ""for i in range(len(s)):if i > 0 and s[i] == s[i - 1] == s[i + 1]:if s[i].islower():result += chr(122 - (ord(s[i]) - 97))else:result += s[i]else:result += s[i]return result```五、总结这道题目难度适中,需要参赛者对字符串处理和逻辑思维有一定的掌握。

连续相同字母的子串最大长度

连续相同字母的子串最大长度

连续相同字母的子串最大长度连续相同字母的子串最大长度是一个经常在编程中遇到的问题。

这个问题可以通过各种算法和技巧来解决。

在本文中,我将介绍一些常见的解决方法,并提供一些代码示例来帮助读者更好地理解。

一种最简单的方法是使用暴力破解法。

这种方法的思路是使用两个嵌套的循环来遍历字符串中的每个字符,并比较它与相邻字符是否相同。

如果相同,则增加计数器的值,并与之前的最大长度进行比较,更新最大长度。

以下是使用暴力破解法求解连续相同字母子串最大长度的示例代码:```pythondef max_length(string):max_len = 0for i in range(len(string)):count = 1for j in range(i+1, len(string)):if string[j] == string[i]:count += 1else:breakmax_len = max(max_len, count)return max_len```这个方法的时间复杂度是O(n^2),其中n是字符串的长度。

尽管它的效率不高,但是在一些简单的应用场景中仍然是可行的。

另一种方法是使用动态规划。

动态规划的思路是将问题划分为子问题,并使用递推公式来计算问题的解。

对于这个问题,我们可以定义一个状态数组dp,其中dp[i]表示以字符string[i]结尾的连续相同字母子串的最大长度。

递推公式为:```dp[i] = dp[i-1] + 1 if string[i] == string[i-1]dp[i] = 1 otherwise```以下是使用动态规划求解连续相同字母子串最大长度的示例代码:```pythondef max_length(string):n = len(string)dp = [0] * ndp[0] = 1for i in range(1, n):if string[i] == string[i-1]:dp[i] = dp[i-1] + 1else:dp[i] = 1return max(dp)这个方法的时间复杂度是O(n),相对于暴力破解法有较大的优势。

字符串string相关函数的时间复杂度

字符串string相关函数的时间复杂度

字符串string相关函数的时间复杂度字符串是计算机编程中常用的数据类型之一,用于表示文本信息。

在处理字符串时,常常需要使用一些相关函数来进行操作,比如查找子串、替换字符、拼接字符串等。

这些字符串相关函数的时间复杂度不尽相同,下面将对其中几个常用的函数进行介绍。

一、查找子串在字符串中查找子串是一种常见的操作,常用的函数有`indexOf`和`contains`。

`indexOf`函数用于返回子串第一次出现的位置,如果没有找到则返回-1;`contains`函数用于判断字符串是否包含子串。

这两个函数的时间复杂度均为O(n),其中n为字符串的长度。

因为需要遍历整个字符串来进行查找,所以时间复杂度是线性的。

二、替换字符替换字符串中的字符是另一种常见的操作,常用的函数有`replace`和`replaceAll`。

`replace`函数用于将指定字符替换为新的字符;`replaceAll`函数用于将指定的子串替换为新的子串。

这两个函数的时间复杂度也为O(n),其中n为字符串的长度。

因为需要遍历整个字符串来进行替换,所以时间复杂度是线性的。

三、拼接字符串拼接字符串是将多个字符串连接在一起的操作,常用的函数有`concat`和`+`运算符。

`concat`函数用于将多个字符串连接在一起,`+`运算符也可以实现相同的功能。

这两个函数的时间复杂度为O(m+n),其中m和n分别为两个字符串的长度。

因为需要将两个字符串的字符逐个复制到新的字符串中,所以时间复杂度是线性的。

字符串相关函数的时间复杂度一般为线性的,即O(n),其中n为字符串的长度。

在使用这些函数时,需要注意字符串的长度对算法的影响,尽量避免在大规模字符串上进行操作,以提高程序的效率。

另外,还应根据具体情况选择合适的字符串操作函数,以便更好地满足实际需求。

java string科学计数法

java string科学计数法

java string科学计数法Java中的String类支持科学计数法,这种表示方法通常用于大型数字的存储和处理。

科学计数法的实现依赖于Java语言中的字符串字面值和内置的String类方法。

Java的字符串字面值可以包含科学计数法的表示形式,例如"3.14e2"表示3.14 * 10的2次方,即314。

也可以使用大写或小写的字母E 代替小写e。

String类中的valueOf()方法可以将数值转化为字符串,并支持科学计数法。

例如,可以使用以下代码将一个双精度浮点数转化为科学计数法表示的字符串:double num = 1.234e-5;String str = String.valueOf(num);此时,str的值为"1.234E-5",即1.234 * 10的负5次方。

除了valueOf()方法之外,String类还提供了各种方法来处理和操作科学计数法表示的字符串。

例如,可以使用split()方法按照指数符号将科学计数法表示的字符串分割成底数和指数两部分:String str = "1.23e-4";String[] parts = str.split("e");String baseStr = parts[0]; // "1.23"String expStr = parts[1]; // "-4"可以使用Double.parseDouble()方法将底数和指数部分转化为双精度浮点数,然后进行数学运算和处理。

总的来说,Java中的String类提供了灵活且强大的功能来支持科学计数法的表示和处理。

使用这些功能可以方便地处理大型数字,从而使得Java成为科学计算和数据分析方面的强有力工具。

图灵python习题答案

图灵python习题答案

图灵python习题答案图灵Python习题答案Python编程语言是一门功能强大且易于学习的语言,广泛应用于各个领域。

为了帮助初学者更好地掌握Python编程技巧,图灵出版社推出了一本名为《图灵Python习题》的教材。

本文将为大家提供一些图灵Python习题的答案,希望能够帮助大家更好地理解和掌握Python编程。

第一章:基础知识1. 编写一个Python程序,输出"Hello, World!"。

```pythonprint("Hello, World!")```2. 编写一个Python程序,输出1到100之间所有的偶数。

```pythonfor i in range(1, 101):if i % 2 == 0:print(i)```3. 编写一个Python程序,计算1到100之间所有奇数的和。

```pythonsum = 0for i in range(1, 101):if i % 2 != 0:print(sum)```第二章:条件和循环1. 编写一个Python程序,判断一个数是否为素数。

```pythondef is_prime(n):if n <= 1:return Falsefor i in range(2, int(n ** 0.5) + 1):if n % i == 0:return Falsereturn Truenum = int(input("请输入一个数:"))if is_prime(num):print(num, "是素数")else:print(num, "不是素数")```2. 编写一个Python程序,找出1到100之间所有的质数。

```pythondef is_prime(n):return Falsefor i in range(2, int(n ** 0.5) + 1):if n % i == 0:return Falsereturn Truefor i in range(1, 101):if is_prime(i):print(i)```3. 编写一个Python程序,计算斐波那契数列的前n项。

圈量子引力

圈量子引力

三. 黑洞熵的启示
迄今为止对量子引力理论最具体最直接的 “理论 证据” 来自于对黑洞热力学的研究。一九七二年, Princeton 大学的研究生 J. D. Bekenstein 受黑洞 动力学与经典热力学之间的相似性启发,提出了黑 洞熵的概念,并估算出黑洞的熵正比于其视界 (Event Horizon) 面积。稍后,S. W. Hawking 研究 了黑洞视界附近的量子过程,结果发现了著名的 Hawking 幅射,即黑洞会向外幅射粒子 (也称为黑 洞蒸发),从而表明黑洞是有温度的。由此出发 Hawking 也推导出了 Bekenstein 的黑洞熵公式, 并确定了比例系数,这就是所谓的 BekensteinHawking 公式:
与协变量子化方法一样,早期的正则量子化方法也 遇到了大量的困难,这些困难既有数学上的,比如 Wheeler-DeWitt 方程别说求解,连给出一个数学上 比较严格的定义都困难;也有物理上的,比如无法 找到合适的可观测量和物理态。引力量子化的这些 早期尝试所遭遇的困难,特别是不同的量子化方法 给出的结果大相径庭这一现象是具有一定启示的。 这些问题的存在反映了一个很基本的事实,那就是 许多不同的量子理论可以具有同样的经典极限,因 此对一个经典理论量子化的结果是不唯一的,原则 上就不存在所谓唯一 “正确” 的量子化方法。其实 不仅量子理论,经典理论本身也一样,比如经典 Newton 引力就有许多推广,以 Newton引力为共同
一. 量子时代的流浪儿

二十世纪理论物理学家说得最多的话之一也许就 是: “广义相对论和量子理论是现代物理学的 两大支柱”。两大支柱对于建一间屋子来说可能 还太少,但对于物理学却已嫌多,二十世纪物理 学家的一个很大的梦想就是把这两大支柱合而为 一。如今二十世纪已经走完,回过头来重新看看 这两大支柱,在量子理论这根支柱上已经建起了 十分宏伟的殿堂,物理学的绝大多数分支都在这 座殿堂中搭起了自己的舞台。物理学中已知的四 种基本相互作用有三种在这座殿堂内得到了一定 程度的描述。可以说,物理学的万里河山量子理 论已经十有其九。今天的物理学正处在一个不折 不扣的量子时代。而这个辉煌的量子时代最大的 缺憾就在于物理学的另一根支柱 - 广义相对论 还孤零零地游离在量子理论的殿堂之外。 广义 相对论成了量子时代的流浪儿。

Generalized WDVV equations for B_r and C_r pure N=2 Super-Yang-Mills theory

Generalized WDVV equations for B_r and C_r pure N=2 Super-Yang-Mills theory

a r X i v :h e p -t h /0102190v 1 27 F eb 2001Generalized WDVV equations for B r and C r pure N=2Super-Yang-Mills theoryL.K.Hoevenaars,R.MartiniAbstractA proof that the prepotential for pure N=2Super-Yang-Mills theory associated with Lie algebrasB r andC r satisfies the generalized WDVV (Witten-Dijkgraaf-Verlinde-Verlinde)system was given by Marshakov,Mironov and Morozov.Among other things,they use an associative algebra of holomorphic diffter Ito and Yang used a different approach to try to accomplish the same result,but they encountered objects of which it is unclear whether they form structure constants of an associative algebra.We show by explicit calculation that these objects are none other than the structure constants of the algebra of holomorphic differentials.1IntroductionIn 1994,Seiberg and Witten [1]solved the low energy behaviour of pure N=2Super-Yang-Mills theory by giving the solution of the prepotential F .The essential ingredients in their construction are a family of Riemann surfaces Σ,a meromorphic differential λSW on it and the definition of the prepotential in terms of period integrals of λSWa i =A iλSW ∂F∂a i ∂a j ∂a k .Moreover,it was shown that the full prepotential for simple Lie algebras of type A,B,C,D [8]andtype E [9]and F [10]satisfies this generalized WDVV system 1.The approach used by Ito and Yang in [9]differs from the other two,due to the type of associative algebra that is being used:they use the Landau-Ginzburg chiral ring while the others use an algebra of holomorphic differentials.For the A,D,E cases this difference in approach is negligible since the two different types of algebras are isomorphic.For the Lie algebras of B,C type this is not the case and this leads to some problems.The present article deals with these problems and shows that the proper algebra to use is the onesuggested in[8].A survey of these matters,as well as the results of the present paper can be found in the internal publication[11].This paper is outlined as follows:in thefirst section we will review Ito and Yang’s method for the A,D,E Lie algebras.In the second section their approach to B,C Lie algebras is discussed. Finally in section three we show that Ito and Yang’s construction naturally leads to the algebra of holomorphic differentials used in[8].2A review of the simply laced caseIn this section,we will describe the proof in[9]that the prepotential of4-dimensional pure N=2 SYM theory with Lie algebra of simply laced(ADE)type satisfies the generalized WDVV system. The Seiberg-Witten data[1],[12],[13]consists of:•a family of Riemann surfacesΣof genus g given byz+µz(2.2)and has the property that∂λSW∂a i is symmetric.This implies that F j can be thought of as agradient,which leads to the followingDefinition1The prepotential is a function F(a1,...,a r)such thatF j=∂FDefinition2Let f:C r→C,then the generalized WDVV system[4],[5]for f isf i K−1f j=f j K−1f i∀i,j∈{1,...,r}(2.5) where the f i are matrices with entries∂3f(a1,...,a r)(f i)jk=The rest of the proof deals with a discussion of the conditions1-3.It is well-known[14]that the right hand side of(2.1)equals the Landau-Ginzburg superpotential associated with the cor-∂W responding Lie ing this connection,we can define the primaryfieldsφi(u):=−∂x (2.10)Instead of using the u i as coordinates on the part of the moduli space we’re interested in,we want to use the a i .For the chiral ring this implies that in the new coordinates(−∂W∂a j)=∂u x∂a jC z xy (u )∂a k∂a k )mod(∂W∂x)(2.11)which again is an associative algebra,but with different structure constants C k ij (a )=C k ij(u ).This is the algebra we will use in the rest of the proof.For the relation(2.7)weturn to another aspect of Landau-Ginzburg theory:the Picard-Fuchs equations (see e.g [15]and references therein).These form a coupled set of first order partial differential equations which express how the integrals of holomorphic differentials over homology cycles of a Riemann surface in a family depend on the moduli.Definition 6Flat coordinates of the Landau-Ginzburg theory are a set of coordinates {t i }on mod-uli space such that∂2W∂x(2.12)where Q ij is given byφi (t )φj (t )=C kij (t )φk (t )+Q ij∂W∂t iΓ∂λsw∂t kΓ∂λsw∂a iΓ∂λsw∂a lΓ∂λsw∂t r(2.15)Taking Γ=B k we getF ijk =C lij (a )K kl(2.16)which is the intended relation (2.7).The only thing that is left to do,is to prove that K kl =∂a mIn conclusion,the most important ingredients in the proof are the chiral ring and the Picard-Fuchs equations.In the following sections we will show that in the case of B r ,C r Lie algebras,the Picard-Fuchs equations can still play an important role,but the chiral ring should be replaced by the algebra of holomorphic differentials considered by the authors of [8].These algebras are isomorphic to the chiral rings in the ADE cases,but not for Lie algebras B r ,C r .3Ito&Yang’s approach to B r and C rIn this section,we discuss the attempt made in[9]to generalizethe contentsof the previoussection to the Lie algebras B r,C r.We will discuss only B r since the situation for C r is completely analogous.The Riemann surfaces are given byz+µx(3.1)where W BC is the Landau-Ginzburg superpotential associated with the theory of type BC.From the superpotential we again construct the chiral ring inflat coordinates whereφi(t):=−∂W BC∂x (3.2)However,the fact that the right-hand side of(3.1)does not equal the superpotential is reflected by the Picard-Fuchs equations,which no longer relate the third order derivatives of F with the structure constants C k ij(a).Instead,they readF ijk=˜C l ij(a)K kl(3.3) where K kl=∂a m2r−1˜C knl(t).(3.4)The D l ij are defined byQ ij=xD l ijφl(3.5)and we switched from˜C k ij(a)to˜C k ij(t)in order to compare these with the structure constants C k ij(t). At this point,it is unknown2whether the˜C k ij(t)(and therefore the˜C k ij(a))are structure constants of an associative algebra.This issue will be resolved in the next section.4The identification of the structure constantsThe method of proof that is being used in[8]for the B r,C r case also involves an associative algebra. However,theirs is an algebra of holomorphic differentials which is isomorphic toφi(t)φj(t)=γk ij(t)φk(t)mod(x∂W BC2Except for rank3and4,for which explicit calculations of˜C kij(t)were made in[9]we will rewrite it in such a way that it becomes of the formφi(t)φj(t)=rk=1 C k ij(t)φk(t)+P ij[x∂x W BC−W BC](4.3)As afirst step,we use(3.4):φiφj= Ci·−→φ+D i·−→φx∂x W BC j= C i−D i·r n=12nt n2r−1 C n·−→φ+D i·−→φx∂x W BCj(4.4)The notation −→φstands for the vector with componentsφk and we used a matrix notation for thestructure constants.The proof becomes somewhat technical,so let usfirst give a general outline of it.The strategy will be to get rid of the second term of(4.4)by cancelling it with part of the third term,since we want an algebra in which thefirst term gives the structure constants.For this cancelling we’ll use equation(3.4)in combination with the following relation which expresses the fact that W BC is a graded functionx ∂W BC∂t n=2rW BC(4.5)Cancelling is possible at the expense of introducing yet another term which then has to be canceled etcetera.This recursive process does come to an end however,and by performing it we automatically calculate modulo x∂x W BC−W BC instead of x∂x W BC.We rewrite(4.4)by splitting up the third term and rewriting one part of it using(4.5):D i·−→φx∂x W BC j= −12r−1 D i·−→φx∂x W BC j= −D i2r−1·−→φx∂x W BC j(4.6) Now we use(4.2)to work out the productφkφn and the result is:φiφj= C i·−→φ−D i2r−1·r n=12nt n D n·−→φx∂x W BC j +2rD i2r−1·rn=12nt n −D n·r m=12mt m2r−1[x∂x W BC−W BC]j(4.8)Note that by cancelling the one term,we automatically calculate modulo x∂x W BC −W BC .The expression between brackets in the first line seems to spoil our achievement but it doesn’t:until now we rewrote−D i ·r n =12nt n 2r −1C m ·−→φ+D n ·−→φx∂x W BCj(4.10)This is a recursive process.If it stops at some point,then we get a multiplication structureφi φj =r k =1C k ij φk +P ij (x∂x W BC −W BC )(4.11)for some polynomial P ij and the theorem is proven.To see that the process indeed stops,we referto the lemma below.xby φk ,we have shown that D i is nilpotent sinceit is strictly upper triangular.Sincedeg (φk )=2r −2k(4.13)we find that indeed for j ≥k the degree of φk is bigger than the degree ofQ ij5Conclusions and outlookIn this letter we have shown that the unknown quantities ˜C k ijof[9]are none other than the structure constants of the algebra of holomorphic differentials introduced in [8].Therefore this is the algebra that should be used,and not the Landau-Ginzburg chiral ring.However,the connection with Landau-Ginzburg can still be very useful since the Picard-Fuchs equations may serve as an alternative to the residue formulas considered in [8].References[1]N.Seiberg and E.Witten,Nucl.Phys.B426,19(1994),hep-th/9407087.[2]E.Witten,Two-dimensional gravity and intersection theory on moduli space,in Surveysin differential geometry(Cambridge,MA,1990),pp.243–310,Lehigh Univ.,Bethlehem,PA, 1991.[3]R.Dijkgraaf,H.Verlinde,and E.Verlinde,Nucl.Phys.B352,59(1991).[4]G.Bonelli and M.Matone,Phys.Rev.Lett.77,4712(1996),hep-th/9605090.[5]A.Marshakov,A.Mironov,and A.Morozov,Phys.Lett.B389,43(1996),hep-th/9607109.[6]R.Martini and P.K.H.Gragert,J.Nonlinear Math.Phys.6,1(1999).[7]A.P.Veselov,Phys.Lett.A261,297(1999),hep-th/9902142.[8]A.Marshakov,A.Mironov,and A.Morozov,Int.J.Mod.Phys.A15,1157(2000),hep-th/9701123.[9]K.Ito and S.-K.Yang,Phys.Lett.B433,56(1998),hep-th/9803126.[10]L.K.Hoevenaars,P.H.M.Kersten,and R.Martini,(2000),hep-th/0012133.[11]L.K.Hoevenaars and R.Martini,(2000),int.publ.1529,www.math.utwente.nl/publications.[12]A.Gorsky,I.Krichever,A.Marshakov,A.Mironov,and A.Morozov,Phys.Lett.B355,466(1995),hep-th/9505035.[13]E.Martinec and N.Warner,Nucl.Phys.B459,97(1996),hep-th/9509161.[14]A.Klemm,W.Lerche,S.Yankielowicz,and S.Theisen,Phys.Lett.B344,169(1995),hep-th/9411048.[15]W.Lerche,D.J.Smit,and N.P.Warner,Nucl.Phys.B372,87(1992),hep-th/9108013.[16]K.Ito and S.-K.Yang,Phys.Lett.B415,45(1997),hep-th/9708017.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a rXiv:084.4836v1[he p-th]3A pr28String Dual of N =1Super Yang-Mills on the Cylinder Felipe Canoura 1Departamento de F´ısica de Part´ıculas,Universidade de Santiago de Compostela and Instituto Galego de F´ısica de Altas Enerx´ıas (IGFAE)E-15782Santiago de Compostela,Spain ABSTRACT We study the stringy description of N =1supersymmetric SU (N )gauge theory on R 1,2×S 1.Our description is based on the known Maldacena-N´u ˜n ez solution,properly modified to account for the compact dimension.The most interesting of its properties is that extra BPS M-branes are present,which generate a non-perturbative superpotential that we explicitly compute.1IntroductionThe duality between string andfield theory,in the framework originated by the AdS/CFT correspondence[1,2,3],provides powerful tools to investigate the strong coupling dynamics of the latter.In view of their rich and quite well understood dynamics,N=1supersym-metric Yang-Mills(SYM)theories provide perhaps the best example to be studied in this perspective.One of their nice properties is that,sometimes,their infrared strong coupling properties can be encoded in a superpotential sourced by non-perturbative effects.The non-perturbative generation of a superpotential makes them appealing also for cosmological purposes and the related moduli stabilization problem[4,5,6].In general it is important to find examples where such superpotential can be directly calculated.In this talk wefind such a concrete example by studying the string dual of N=1SYM on the cylinder(by cylinder we mean theflat space R1,2×S1,i.e.four-dimensional Minkowski space with one spatial direction compactified).This cylindrical geometry improves the un-derstanding of the string theoretic description of non-perturbative gauge phenomena.From thefield theory point of view,the generation of a superpotential in this geometry is nicely described in[7].Our analysis starts from the Maldacena-N´u˜n ez(MN)[8]solution,which describes the infrared(IR)of N=1pure SYM theory.Its ultraviolet(UV)completion is instead related to little string theory and the two regimes of the theory are not smoothly connected in terms of a unique solution(they are S-dual to each other).The source of this problem is the bad asymptotic behavior of the dilaton.On the gauge theory side this reflects the difficulties of joining the weak coupling with the strong coupling regime of confining SYM theory in a unifying picture.On thefield theory side it is known that such an interpolating picture exists if we com-pactify one spatial dimension and consider SYM on R1,2×S1[7].In this case the non-perturbative physics is much better understood and typically infrared phenomena(such as gaugino condensation)have a semiclassical exhaustive description[7].It is indeed possible to explicitly write a non-perturbatively generated superpotential that leads to a mass gap (providing a mass for the“magnetic”photons)and gaugino condensation.To investigate SYM theory on the cylinder,we look for the proper modification of the MN background.When one deals with compact directions(as in the cylinder geometry we are considering here)the natural thing to do is T-duality.We then T-dualize the IIB MN solution along one of itsflat spatial directions and consider the corresponding type IIA solution.This could be enough to study SYM on the cylinder,but the dilaton still diverges. As it is well known,this is a sign of the opening of the eleventh dimension.We then uplift the solution to eleven dimensions andfind a globally well behaved solution.In this set-up SYM theory is the theory living on the worldvolume of N M5-branes that wrap a three cycle with topology S2×S1.Their backreaction generates the dual background.The eleven dimensional solution encodes in a non-trivial way the information that the dual SYM theory has one compact spatial direction.In principle the solution we build in the way sketched above is just valid to describe the infrared of N=1SYM.Wefind that also its UV description(related to NS5-branes in type1IIB)corresponds to the same eleven dimensional solution.We have then a unique picture connecting the UV and the IR of the gauge theory in terms of the worldvolume theory of N M5-branes in the background wefind.On this solution we perform various gauge theory computations and wefind perfect agreement with expectations.Both for the perturbative and non-perturbative calculations, it is crucial to use the M5and M2worldvolume actions.In particular,wefind that in this set-up the theory is naturally formulated in terms of the scalarfield dual to the three dimensional vector and such dualization has not to be imposed,as it is usually done,by hand.Such degree of freedom is related to the“self-dual”three form living on the M5 worldvolume(to which the boundary of the M2-branes couples to).The main novelty is that in this solution new kinds of instantons(the so-called“fractional instantons”)have a natural description.They are responsible for the generation of the non-perturbative superpotential that we compute.In the M-theory description,they correspond to Euclidean M2branes wrapping a three-cycle.Precisely two zero-modes are left by such configurations.This is the right number to generate a non-perturbative contribution to the superpotential[9].2Eleven dimensional solution dual to Maldacena-N´u˜n ez The Maldacena-Nu˜n ez background is a solution of the equations of motion of type IIB supergravity[8].If we perform a T-duality along one of the Minkowski coordinates and call z to the periodic T-dual coordinate,the type IIA background we obtain is(in string frame):ds210=g sα′Neφ dx21,24 i(w i−A i)2 +e−φdz2,(2.1)whereφis the type IIB dilaton and h is a function which depends on the dimensionless radial coordinateρ:e2h=ρcoth2ρ−ρ24,e−2φ=e−2φ02e h4 i(ωi−A i)2+ 2+e2/3φdy2+e−4/3φdz2,(2.3) C(3)=C(2)∧dz,where C(3)is the magnetic potential under which the M5-branes are charged and the new eleventh coordinate y is also periodic.This solution corresponds to have N M5branes wrapping,besides an S2,the y circle1 and smeared in the z direction.The gauge theory we are describing corresponds thus to the worldvolume theory of such M5-branes.We begin noticing an intriguing property of such description.Starting from eleven dimensions,for smallρit isfine to go down to IIA along the y-circle:it has small radius and the IIA theory is well behaved.Thus we get a solution in terms of D4-branes.For bigρinstead the radius of the y-circle becomes big.If we insist on making the dimensional reduction along that circle,the dilaton diverges.But,as it is clear from eq.(2.3),the radius of the z-circle becomes small in the largeρlimit:it is now possible to reduce along z and get a well behaved IIA solution in terms of NS5-branes.The same happens in the type IIB MN solution,where for smallρone has a well behaved solution in terms of D5branes,while for bigρthe dilaton diverges and one needs to S-dualize the background and gets instead NS5branes.We see here that the eleven dimensional picture gives a unifying picture of this phe-nomenon in terms of a unique theory on the M5-brane worldvolume.3M5-brane worldvolume theoryLet us consider a M5-brane where its worldvolume geometry is of the form R1,2×S1×Ω2, whereΩ2is a two dimensional compact manifold whose volume element is V2dΩ2( dΩ2= 4π).S1is a circle of radius g s√−det(g+˜H)+√4∂a·∂a∂i a(⋆H)ijk H jkl∂l a +T M53!√1This S2is a mixture of the two two-spheres of the geometry,see[10].2This is related to the fact that the PST scalar is naturally an angular variable.3and T M5is the M5-brane tension.Specifying to our case,we want to implement the KK reduction on the internal manifold S.We need to do a gaugefixing for the PST scalar.The most natural one is a=y, where y∈[0,2π√(2π)2g s =α′y2F ab dx a∧dx b+α′3(2π)3g sα′3/2 A(2).(3.8)ThefieldΣis thus naturally periodic.With our normalizations(3.7)its period is:TΣ=122π√V2 d1,2x∂cΣ∂cΣ+1α′g s4N=1super Yang-Mills on the cylinderWe are now ready to interpret the eleven dimensional solution given in section2from the field theory point of view.This is a N=2supersymmetricfield theory in three dimensions obtained from a circle reduction of N=1(pure)super Yang-Mills in four dimensions.Being the M5-branes smeared in the z-circle,the gauge group is U(1)N−1(the degree of freedom corresponding to the center of mass of the system is decoupled).Applying the analysis we described in the previous section(but omitting the dualization term),namely making an M5-probe computation and expanding the result in powers ofα′,for the i-th gauge groupwe get:S i=−1g2Y M4R∂a b i∂a b i+g2Y M4g2Y M4=Nα′b.RedefiningthefieldΣi asγi=g2 Y Mg2Y MR d3x∂aΨi∂aΨi.(4.14) From(3.9)and(4.13)we can read offthe period ofγi:Tγ=g2 Y Mstretching between two consecutive M5-branes.In this way we get a picture very close to thefield theoretical one of the instanton as being composed by more fundamental instanton partons[12],the so-called”fractional instantons”(our open M2-branes).For the kappa-symmetry analysis of this kind of configurations one can show that half of the supersymmetries of the background are preserved(in the proper limit)by such M2-branes[13].This implies that two(real)supersymmetries are broken and,consequently, there are two fermionic zero modes in this background:they are the goldstinos of the broken supersymmetries.The equations of motion for the fermionicfluctuations(up to second order in fermions)in an arbitrary bosonic background were written in[14].A direct inspection of such equations shows that the presence of other zero modes is unlikely.Therefore,we assume that in this background there are just the two goldstinos zero modes we discussed here.4.1The non-perturbative superpotentialTo proceed further and write explicitly the superpotential generated by these M2-branes via the formula(4.16),we need the form of their worldvolume action.As we are considering open M2-branes stretching between two M5s,we have to pay attention to the fact that on the M5-brane worldvolume,the boundary of an M2-brane(a string)sources a potential. This is precisely the A(2)M5worldvolume two-form potential.The coupling of open M2to it is easily evaluated[15](perhaps the best way of seeing it is by requiring gauge invariance for the C(3)potential).The resulting(open)M2worldvolume action is:iS M2i=−T M2 d3ξg2Y M (b i−b i−1)+i g2Y Mg2Y M(Ψi−Ψi−1)=−8π2g2Y MRα′+N−1i=18π2Putting all together and redefining(∆Ψ)i asΦi,we get the superpotential(4.16): W=M3 N−1 i=1e−8π2g2Y M Rα′+P N−1i=18π2√4πkN[9]E.Witten,Nucl.Phys.B474(1996)343.[10]M.Bertolini and P.Merlatti,Phys.Lett.B556(2003)80.[11]P.Pasti,D.P.Sorokin and M.Tonin,Phys.Lett.B398(1997)41.[12]A.A.Belavin,V.A.Fateev,A.S.Schwarz and Yu.S.Tyupkin,Phys.Lett.B83(1979)317.[13]F.Canoura and P.Merlatti,JHEP0707,042(2007).[14]D.Marolf,L.Martucci and P.J.Silva,JHEP0307,019(2003).[15]A.Strominger,Phys.Lett.B383(1996)44;P.K.Townsend,Nucl.Phys.Proc.Suppl.58(1997)163.8。

相关文档
最新文档