航空发动机涡轮叶片振动模态影响因素研究
某机高压涡轮叶片振动模态分析

某机高压涡轮叶片振动模态分析摘要:以某机高压涡轮工作叶片为研究对象,讨论其模态振动理论,采用UG建立叶片实体模型,利用有限元软件ANSYS Workbench对其进行模态分析,并与电动振动台测量结果进行对比,得到有限元分析结果具有一定的可靠性,为数值模拟振动测试数据提供一定的可信度依据,尤其对一些科研机种叶片的数值振动模态仿真分析提供了参考价值。
关键字:振动测试;模态分析;叶片;ANSYS Workbench引言叶片是航空发动机重要组成部分,工作时主要承受离心载荷、气动载荷、热载荷以及工况环境变化导致的交变载荷,工作中很容易发生故障,据统计振动故障占发动机总故障的15%,而叶片振动故障又占振动故障的75%。
而据粗略统计,我国现役航空发动机发生的重大事故中,涡轮叶片的断裂高达80%以上[1]。
因此叶片工作时的可靠性直接关系到整个发动机的运行安全性及使用寿命,为避免叶片振动故障的出现,在设计、制造及维修过程中对叶片进行振动模态分析,得到其固有频率、振型以及振动应力分析就显得尤其重要。
然而,高压涡轮叶片在发动机工作状态下直接对叶片进行频率及振动形态的观察及测试是比较困难甚至是不可能的。
在生产及制造中,一般只对叶片进行自由振动分析,测得其固有频率及振动形态。
单从使用角度来看,仅仅对叶片进行自由模态分析是不精确的,无法获得叶片全生命使用周期内的准确频率及振动形态。
本文首先在电动振动台ES-10-240上对高压涡轮叶片进行振动测试,得出其平均固有频率。
然后再UG中建立叶片实体模型,利用有限元软件ANSYS Workbench对其进行模态分析,对比有限元分析结果与试验结果。
在此基础上对高压涡轮叶片进行预应力模态分析,得到更准确的振动频率及振动形态,为高压涡轮叶片设计及加工提供一定的参考价值。
1 模态分析理论模态分析是结构动力学分析中最基础、也是最重的一种分析类型,其主要是用于计算结构的振动频率和振动形态,每一个模态都有特定的固有频率、阻尼比和模态阵型。
某航空发动机涡轮叶片的振动特性试验及分析

某航空发动机涡轮叶片的振动特性试验及分析某航空发动机涡轮叶片的振动特性试验及分析目录摘要 (I)Abstract (II)1 绪论 (1)1.1 论文研究目的和意义 (1)1.2 国内外研究现状 (2)1.2.1 新一代航空发动机的要求 (2)1.2.2 叶片振动特性测试技术研究现状 (3)1.2.3 叶片振动特性分析现状 (5)1.3 本课题主要研究内容 (6)2 叶片振动特性分析 (7)2.1 航空发动机叶片的结构及工作原理 (7)2.1.1 叶片的结构 (7)2.1.2 叶片的工作原理 (8)2.2 航空发动机叶片的常见故障原因及振动分析 (9)2.2.1 叶片常见故障分析 (9)2.2.2 叶片振动的基本形式 (9)2.2.3 叶片振动特性的主要参数 (10)2.3 叶片的共振特性分析 (13)2.4 本章小结 (13)3 基于振动台共振法的叶片振动特性试验分析 (14)3.1 试验方法简介 (14)3.2 振动测试系统 (15)3.2.1 静频与振型测试系统 (15)3.2.2 应力测试系统 (18)3.3 试验数据及结果分析 (22)3.3.1 叶片夹具装夹夹持状态测试 (22)3.3.2 固有频率及振型测试 (24)3.3.3 叶片相对振动应力分布测试 (25)3.3.4 干扰问题及解决对策 (27)3.4 本章小结 (28)4 基于锤击法的叶片模态分析试验 (29)4.1 模态分析试验目的及基本原理 (29)- IV-万方数据大连理工大学专业学位硕士学位论文4.1.1 模态分析基本原理 (29)4.1.2 频向函数的幅频特性与相频特性 (30) 4.1.3 频向函数的实频特性与虚频特性 (32) 4.1.4 频向函数的矢端特性 (34)4.2 模态测试系统 (35)4.2.1 硬件系统 (35)4.2.2 软件系统 (36)4.3 试验过程及结果分析 (36)4.3.1 振动模态试验 (36)4.3.2 模态参数识别 (38)4.3.3 试验结果 (41)4.4 本章小结 (42)5 基于ANSYS的叶片振动特性分析 (43) 5.1 基于ANSYS的叶片有限元分析 (43) 5.1.1 有限元方法的基本思想及分析步骤 (43) 5.1.2 叶片实体建模 (44)5.1.3 叶片有限元模型建立 (45)5.1.4 边界条件 (48)5.2 叶片的有限元分析结果 (50)5.2.1 叶片固有频率 (50)5.2.2 叶片模态分析 (50)5.2.3 有限元结果验证 (53)5.3 叶片的共振分析 (54)5.3.1 发动机工况 (54)5.3.2 叶片动态模态分析 (54)5.3.3 叶片共振裕度校核 (56)5.4 本章小结 (56)结论 (58)参考文献 (59)致谢 (61)大连理工大学学位论文版权使用授权书 (62)- V -万方数据大连理工大学专业学位硕士学位论文1 绪论1.1 论文研究目的和意义航空工业水平不仅代表了一个国家的工业水平和科技水平,更集中体现了一个国家的国防实力和综合国力。
飞机发动机涡轮叶片动力学分析

飞机发动机涡轮叶片动力学分析引言:飞机发动机中的涡轮叶片是其关键部件之一,其动力学性能直接决定了发动机的性能和可靠性。
涡轮叶片的正确设计和分析对飞机的安全和可持续发展具有重要意义。
本文将对飞机发动机涡轮叶片的动力学特性进行分析,并讨论其对飞机发动机的影响。
一、涡轮叶片的基本结构和工作原理涡轮叶片是发动机中的一个重要组成部分,它通常由镍基合金制成,具有复杂的三维几何形状。
涡轮叶片通过叶片根部与转子相连,转子的旋转产生的气流将叶片推动,以提供动力给飞机。
涡轮叶片的工作环境条件非常复杂,如高温、高压、高速等,所以其结构设计和动力学分析非常重要。
二、涡轮叶片的基本理论涡轮叶片的动力学分析基于流体力学原理和结构力学原理。
在流体力学方面,通过分析涡轮叶片周围流场的速度和压力分布,可以计算出叶片所受到的气动载荷;在结构力学方面,通过分析叶片本身的刚度和材料特性,可以计算出叶片所受到的惯性力和应力分布。
通过综合考虑流体力学和结构力学的相互作用,可以得到涡轮叶片的动力学性能。
三、涡轮叶片的振动模态和失稳机理涡轮叶片在工作过程中会产生振动,这会严重影响发动机的性能和寿命。
振动模态是指叶片在固有频率下的振动形态,它取决于叶片的几何形状和材料特性。
叶片的失稳机理是指叶片振动失稳的原因,其中一个重要原因是流体力学和结构力学的相互作用导致的共振现象。
因此,减小叶片的振动模态和控制共振现象是提高涡轮叶片动力学性能的关键。
四、涡轮叶片的动力学分析方法涡轮叶片的动力学分析通常采用数值模拟方法和实验验证相结合的方式。
数值模拟方法包括有限元分析、计算流体力学分析和模态分析等。
有限元分析可以对叶片的应力和振动模态进行计算,并确定其失稳机理;计算流体力学分析可以计算叶片周围流场的速度和压力分布,并计算出其受到的气动载荷;模态分析可以通过实验验证和数值模拟结果的对比,验证数值模拟方法的准确性。
五、涡轮叶片动力学分析的应用涡轮叶片动力学分析的结果可以应用于飞机发动机的设计和改进。
航空发动机涡轮叶片的研究与设计

航空发动机涡轮叶片的研究与设计随着现代航空事业的快速发展,航空发动机作为航空工业的核心技术之一也迎来了飞速的发展。
航空发动机主要由压气机、燃烧室和涡轮三部分组成。
其中,涡轮是发动机最核心的组成部分之一,而涡轮叶片则是涡轮中最重要的组成部分。
涡轮叶片的主要作用是将高速气流转化为机械能,驱动整个发动机运转。
同时,涡轮叶片的材质、设计和制造工艺等方面也会直接影响到发动机的运转效率、寿命和可靠性等方面。
因此,涡轮叶片的研究与设计一直是航空工业的研究热点之一。
涡轮叶片的材质涡轮叶片的材质是涡轮叶片设计的首要问题之一。
目前,航空发动机涡轮叶片常用的材料为镍基高温合金和钛合金等。
镍基高温合金具有高的热强度、抗氧化性和抗腐蚀性,是制造高温部件的主要材料;而钛合金则具有良好的强度、韧性和疲劳寿命等特点,是制造低温部件的优选材料之一。
为了满足不同使用环境下的涡轮叶片设计需求,研究人员也在不断探索新的涡轮叶片材料。
近年来,一些新型的高强度、高温度抗氧化性能良好的材料,如SiC、C/C复合材料、La2O3等,也被广泛应用于航空发动机涡轮叶片的研究和设计中。
涡轮叶片的设计涡轮叶片的设计需要考虑很多因素,如叶片的长度、宽度、厚度、倾角、弯曲角度、扭转角度和叶片数量等,以及叶片与叶片之间的间隙和位移等因素。
不同类型的发动机和使用环境,对涡轮叶片的设计也有着不同的要求。
例如,民用飞机的涡轮叶片通常要求具备较高的运转效率和低的噪音、振动等特性,设计时需要将各种因素进行权衡,力求寻求最佳的设计方案。
而在军用飞机和直升机等特殊用途飞行器上,涡轮叶片的设计往往更加考虑高强度、高温度、高抗氧化性、低可检测性等特点。
涡轮叶片的制造工艺涡轮叶片的制造工艺与材料和设计方案一样,也需要考虑到不同的使用环境和要求。
目前,涡轮叶片的制造工艺主要包括:传统的铸造、锻造、粉末冶金和激光熔覆等工艺,以及新兴的快速成型、3D打印和表面喷涂等技术。
其中,传统的铸造和锻造工艺是涡轮叶片生产中最主要的工艺方法之一,这些方法可以制造较大尺寸和复杂形状的叶片,但同时也有一定的缺点,如叶片内部可能产生气孔、夹杂等缺陷,影响叶片的强度和寿命。
浅析航空发动机叶片振动的影响

浅析航空发动机叶片振动的影响摘要航空发动机因为其工作环境的特殊性,对于叶片有着较高的要求。
在文中则主要是针对航空发动机叶片振动及频率测量展开分析,以期可以为航空发动机的设计提供借鉴。
关键词航空发动机;叶片;振动航空发动机是一项追求极限的系统工程,涉及材料、力学、热学等物理方面的理论。
随着现代发动机技术突飞猛进的发展,作为发动机核心部件的压气机压比被设计的越来越高,为了满足发动机整体的大推重比要求,对压气机的效率的要求也越来越高。
压气机工况极其复杂,复杂的工况主要对压气机叶片性能产生消极影响。
压气机转子叶片需要在高负荷、高转速、高振动的环境下工作。
复杂的工作环境造成压气机叶片疲劳失效故障的原因多样化,这一直是世界航空发动机研究者重点研究的方向。
通过对航空发动机压气机叶片失效的分析表明,导致压气机叶片失效的因素很多,颤振引起的失效是叶片故障的主要因素。
航空发动机颤振的机理以及错频装配技术已经获得了广泛深入的研究。
但面对复杂的错频装配工艺技术约束条件,航空发动机主机装配单位的叶片排频装配技术还很薄弱,尤其是面对批产机型的压气机装配,传统的依靠人力装配已经显得效率过于低下压气机转子叶片的装配已经成为整机装配的重要影响因素,所以全新依托于计算机技术手段并应用于装配生的压气机叶片排频技术研究意义更显重大。
1 叶片排频技术应用意义叶片排频技术通过对待装配叶片按照每个叶片的固有频率和质量,遵循装配工艺技术条件进行装配,达到叶片在频率上实现错频,在质量矩上达到平衡,防止发动机产生颤振的方法研究。
我国某型涡喷发动机通过对压气机转子装配工艺进行叶片排频技术改进,在长时间使用过程中,减少了发动机颤振的发生。
航空发动机领域的学者得出结论,航空发动机转子叶片按照频率差和静质量矩进行优化排序对于减小叶片装配造成的不平衡量以及防止发动机颤振具有积极的意义。
目前国内的叶片排频技术主要是基于单纯的计算机算法进行研究,比如:组合优化方法、一般遗传算法、混合遗传算法等。
叶轮叶片振动模态分析与实验研究挺好的

学位授予单位:武汉理工大学
1.学位论文刘淑华增压器压气机工作轮的模态分析与应用2003
该论文题目来源于中国北方机车车辆工业集团公司科技研究开发项目—"提高机车增压器可靠性的研究",论文内容系该研究项目中的主要工作,是很有实际意义和应用背景的课题.机车增压器是一种高速旋转机械,作为柴油机的关键部件,它直接影响柴油机的性能和可靠性,进而影响机车运行的安全、准时.针对某型号增压器在线路运行中曾发生过数起压气机工作轮(导风轮和压气机叶轮)叶片断裂故障,造成机车中途停车的重大事故.因此诊断压气机工作轮事故原因,并进行模态分析势在必行.该文利用大型有限元程序ANSYS5.7求解模态问题的模块分析了某涡轮增压器离心式压气机工作轮的振动特性.对ANSYS进行了二次开发,利用了ANSYS的ADPL语言,编制了压气机工作轮的有限元自动建模和分网程序.该程序适用于各型号的增压器压气机工作轮,能根据用户的需要迅速建立并划分出不同精度的六面体网格来.划分出的有限元网格模型可直接用于压气机工作轮强度、振频等计算.该程序解决了离心式压气机工作轮有限元计算中建模难,特别是六面体网格划分难的问题,大大缩短了计算的时间和难度.具有较强的工程适用性.该文计算了导风轮叶片、轮盘及压气机叶轮的自振频率,求出了压气机工作轮在静态和旋转状态下整体结构的自振频率、模态,并给出模态的彩色云图和振动模态的动画显示.通过共振Campbell图分析确定此轮盘在实际工作中的共振安全裕度,找出导风轮叶片断裂原因,最终提出有效的解决办法.上述计算结果与试验结叶片振动模态分析与实验研究
姓名:袁海峰
申请学位级别:硕士
专业:机械制造及其自动化
指导教师:谭跃刚
20100501
叶轮叶片振动模态分析与实验研究
作者:袁海峰
航空发动机涡轮叶片的动态特性分析与优化研究

航空发动机涡轮叶片的动态特性分析与优化研究航空发动机作为飞机的核心部件之一,其性能的优化研究一直是航空领域的重点关注。
在航空发动机中,涡轮叶片作为能量转化和传递的关键部件,其动态特性分析与优化是提高发动机效能和可靠性的关键环节。
本文将从涡轮叶片的动态特性分析入手,讨论其在设计和优化中的重要性,并介绍一些常用的优化方法,以期为航空发动机涡轮叶片的研究提供一些参考。
首先,动态特性的分析是研究涡轮叶片优化的基础。
涡轮叶片在运行过程中受到各种力的作用,如离心力、气动力、惯性力等。
这些力的大小和方向会导致叶片的变形和振动现象,从而影响到其工作性能和寿命。
因此,了解叶片在不同条件下的动态特性,有助于揭示叶片疲劳破坏的机理,并为优化设计提供参考。
在动态特性的分析中,常用的方法之一是模态分析。
模态分析是通过计算涡轮叶片的固有频率和振型,来研究其受力情况和振动特性。
通过模态分析,可以确定叶片在不同频率下的主要振动模态,并分析其对结构强度和稳定性的影响。
另外,通过模态分析还可以评估叶片的共振风险,从而避免共振振动引起的疲劳破坏。
除了模态分析,流固耦合分析也是动态特性分析的常用方法之一。
在流固耦合分析中,通过同时考虑气动载荷和结构响应,可以获得更加准确和全面的叶片动态特性信息。
例如,通过求解雷诺平均Navier-Stokes方程和线性弹性方程的耦合问题,可以得到叶片的气动力和振动响应。
这种方法可以考虑流场和结构的相互作用,更加真实地模拟实际工况下叶片的动态行为。
了解涡轮叶片的动态特性不仅可以帮助我们优化叶片的设计,还可以指导改进叶片的制造工艺和材料选择。
例如,在叶片的设计中,可以通过调整叶片的结构参数和材料性能,来减小叶片的变形和振动。
同时,在制造过程中,也可以采用一些先进的工艺和技术,如激光焊接和先进材料成形,来提高叶片的制造质量和结构一致性。
这些措施的实施可以显著改善叶片的动态特性,提高航空发动机的可靠性和寿命。
航空发动机叶片振动特性试验研究

航空发动机叶片振动特性试验研究杨文鑫;蔡增杰;陆锦斌;王彦芳【摘要】目的通过理论计算和试验验证获得航空发动机叶片一阶弯曲振动频率,并在一阶弯曲振动模态下获取叶片所受应力与叶片自振频率、叶片振幅之间的关系.方法利用有限元分析软件对叶片进行模态分析,得到叶片的一阶弯曲振动频率.在振动试验系统上,通过扫频试验验证叶片发生一阶弯曲共振的频率,对叶片进行高应力振动试验.结果叶片一阶弯曲振动频率理论计算值为3584 Hz,实验值为3286 Hz,误差为8.31%,满足工程误差小于10%的要求.叶片所受应力与叶片自振频率、叶片振幅之间的关系为σ=1.8759 af.结论得到了叶片的一阶弯曲振动频率以及叶片所受应力与叶片自振频率、叶片振幅之间的关系.%Objective To obtain aeroengine blade first-order bending vibration frequency and the relationship between the stress of the blade and the natural frequency of the blade and the amplitude of the blade, through theoretical calcula-tion and experimental verification. Methods Finite element analysis software was adopted for modal analysis of blade, the first-order bending vibration frequency was obtained, and the first-order bending vibration frequency of blade was veri-fied by the frequency sweep test on the vibration test system; then high stress vibration test was carried out. Results The theoretical calculation value of blade bending vibration frequency was 3584 Hz, and the experimental value was 3286 Hz, the error was 8.31% and the requirement of less than 10% of engineering error was met. The relationship between the stress of the blade and the natural frequency of the blade and the amplitude of the bl ade was σ=1.8759 af.Conclusion Thefirst-order bending vibration frequency of blade and the relationship between stress of blade and the natural frequency of blade and the amplitude of blade are obtained.【期刊名称】《装备环境工程》【年(卷),期】2018(015)002【总页数】4页(P84-87)【关键词】叶片;模态分析;振动试验;振动特性【作者】杨文鑫;蔡增杰;陆锦斌;王彦芳【作者单位】青岛苏试海测检测技术有限公司,山东青岛 266109;青岛苏试海测检测技术有限公司,山东青岛 266109;青岛苏试海测检测技术有限公司,山东青岛266109;青岛苏试海测检测技术有限公司,山东青岛 266109【正文语种】中文【中图分类】TJ07;TH122航空发动机叶片受力复杂,工作环境严酷,叶片振动疲劳损伤故障是整个发动机故障的主要故障模式[1-2]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关键 词 涡轮 叶 片 ; 热固耦合 ; 模 态分 析 ; 预应力 ; 频率 ; 振 型
D OI 1 0 . 3 9 6 9 / j . i s s n . 1 0 0 9 — 3 5 1 6 . 2 0 1 4 . 0 1 . 0 0 2
Ab s t r a c t : Th e mo d e o f a c e r t a i n t y p e a e r o e n g i n e t u r b i n e b l a d e s u n d e r t h e c o n d i t i o n o f o p e r a t i n g r e g i me i s a n a I y z e d b y u s i n g t h e f i n i t e e l e me n t s a n a l y s i s( FEA)s o f t wa r e ANS YS i n c o n s i d e r a t i o n o f i n f l u e n c e f a c t o r s f r o m c e n t r i f u g a l f i e l d ,a e r o d y n a mi c f i e l d,t e mp e r a t u r e a n d t h e r ma 1 f i e l d s e p a r a t e l y .I t i s f o u n d t h a t c e n t r i f — u g a l f i e l d a n d t e mp e r a t u r e f i e l d a r e t h e ma i n f a c t o r s i n f l u e n c i n g t h e n a t u r a l f r e q u e n c y b y c o mp a r i n g t h e f r e —
a u e nc i e s a n d mod e s h a pe s wi t h t ho s e o f s t a t i on a r y o ne s a t r o om t e mpe r a t ur e .Bu t t he y ha ve l e s s i nf l u e nc e on t h e b l a de s " mod e s ha pe s . An d t he n,t h e r ma l — s t r u c t u r e c o up l i ng mo da l a n a l ys i s o f t he b l a d e s i s c on du c —
航 空发 动机 涡 轮 叶片 振 动 模 态 影 响 因素 研 究
李春 旺 , 李 海 云。 , 王 澈 , 张 忠 平 , 孙 强
( 1 _ 空军工程大学理学院 , 陕 西西 安 , 7 1 0 0 5 1 ; 2 . 西 北 工业 大学 航 空学 院 , 陕西西安 , 7 1 0 0 7 2 ;
中 图分 类 号 V2 3 5 . 1
文 献标 志码 A
文 章编 号 1 0 0 9 — 3 5 1 6 ( 2 0 1 4 ) 0 1 — 0 0 0 5 — 0 5
A S t u d y o f I nf l u e n c i ng Fa c t o r s o n Fr e qu e n c i e s a n d Mo d e S ha pe s o f Ae r o e n g i n e Tu r b i ne Bl a d e s
Nor t hwe s t e r n Po l yt e c h ni c a l Un i ve r s i t y,Xi a n 71 00 7 2,Chi n a; 3. Un i t 9 4 6 9 6,Sha n gh a i 20 0 4 36,Chi n a)
L I Ch u n — wa n g , LI Ha i — y u n 。 , W A NG Ch e , ZH ANG Z h o n g — p i n g , S UN Qi a n g
( 1 .S c i e n c e Co l l e g e ,A i r F o r c e En g i n e e r i n g Un i v e r s i t y ,Xi a n 7 1 0 0 5 1 ,Ch i n a ; 2 .S c h o o l o f Ae r o n a u t i c s ,
第 l 5卷 第 1 期
2 0 1 4年 2月
空
军
工
程
大 学
学
报( 自然 科 学 版 )
Vo l | 1 5 NO . 1 F e b . 2 O 1 4
J OURNAL OF AI R F OR CE EN GI NE E RI NG UN I V E R S I T Y ( N A T UR A L S C I E N C E E D I T I O N)
3 . 9 4 9 6 9 部 队,别考 虑 离心 力场 、 气 动力场 、 温度 场及 热力 场等 因素的影 响 , 使 用有 限元 分析 软件 AN—
S YS , 对某 型航 空发 动机 涡轮 叶片 工 作状 态 下 的振 动模 态进 行 分 析 , 并 将 不 同情况 下 的计 算 结 果 与室 温静止 状 态进行 比较 , 发现 温度 场及 离心 力场 是 影 响 叶 片 固有振 动 频率 的 主要 因素 , 但 对 叶片 的振 型影响 很小 。然 后 , 综合考 虑 温度 场及 离心 力场 的作 用 , 对 叶 片进 行 了包 含 预 应 力 的热 固耦 合模 态分 析 , 得到 了叶片工作 状 态下 的 固有振 动频 率及振 型 。所得 结 论对 航 空发 动机