人教版八年级(下册)平行四边形练习题

合集下载

人教版八年级数学下册 平行四边形 测试卷 含答案

人教版八年级数学下册 平行四边形 测试卷 含答案

人教版八年级数学下册平行四边形测试卷一、选择题1.菱形具有而矩形不具有的性质是()A.对角线互相平分 B.四条边都相等C.对角相等D.邻角互补2.关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等;以上四个条件中可以判定四边形ABCD 是平行四边形的有()A.1个 B.2个 C.3个 D.4个3.能判定一个四边形是菱形的条件是()A.对角线相等且互相垂直B.对角线相等且互相平分C.对角线互相垂直 D.对角线互相垂直平分4.正方形、菱形、矩形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直 D.对角线平分一组对角5.若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD必然是()A.菱形B.对角线相互垂直的四边形C.正方形D.对角线相等的四边形6.下列说法中,不正确的是()A.有三个角是直角的四边形是矩形B.对角线相等的四边形是矩形C.对角线互相垂直的矩形是正方形D.对角线互相垂直的平行四边形是菱形7.如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为()A.36°B.18°C.27°D.9°二、填空题8.平行四边形ABCD中,∠A=50°,AB=30cm,则∠B=,DC=cm.9.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD=cm.10.菱形的两条对角线分别是6cm,8cm,则菱形的边长为cm,面积为cm2.11.如图,△ABC中,EF是它的中位线,M、N分别是EB、CF的中点,若BC=8cm,那么EF=cm,MN=cm.12.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的边长为cm和cm.13.在▱ABCD中,若添加一个条件,则四边形ABCD是矩形;若添加一个条件,则四边形ABCD是菱形.14.如图,在等腰梯形ABCD中,AD∥BC,AD=6cm,BC=8cm,∠B=60°,则AB =cm.三、解答题15.如图,在平行四边形ABCD中,E、F是AC上的两点,且AE=CF.求证:DE=BF.16.如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.求:(1)两条对角线的长度;(2)菱形的面积.17.如图所示,矩形ABCD的对角线AC、BD相交于点O,AE⊥BD,垂足为E,∠1=∠2,OB=6(1)求∠BOC的度数;(2)求△DOC的周长.18.如图:已知在△ABC中,AB=AC,D为BC上任意一点,DE∥AC交AB于E,DF∥AB交AC于F,求证:DE+DF=AC.19.如图,在菱形ABCD中,E为AD中点,EF⊥AC交CB的延长线于F.求证:AB与EF互相平分.参考答案1.菱形具有而矩形不具有的性质是()A.对角线互相平分 B.四条边都相等C.对角相等D.邻角互补【考点】矩形的性质;菱形的性质.【专题】选择题.【分析】与平行四边形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等.【解答】解:A、对角线互相平分是平行四边形的基本性质,两者都具有,故A 不选;B、菱形四条边相等而矩形四条边不一定相等,只有矩形为正方形时才相等,故B符合题意;C、平行四边形对角都相等,故C不选;D、平行四边形邻角互补,故D不选.故选B.【点评】考查菱形和矩形的基本性质.2.关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等;以上四个条件中可以判定四边形ABCD 是平行四边形的有()A.1个 B.2个 C.3个 D.4个【考点】平行四边形的判定.【专题】选择题.【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.按照平行四边形的判定方法进行判断即可.【解答】解:①符合平行四边形的定义,故①正确;②两组对边分别相等,符合平行四边形的判定条件,故②正确;③由一组对边平行且相等,符合平行四边形的判定条件,故③正确;④对角线互相平分的四边形是平行四边形,故④错误;所以正确的结论有三个:①②③,故选C.【点评】本题考查了平行四边形的判定,熟练掌握平行四边形的定义和判定方法是解答此类题目的关键.3.能判定一个四边形是菱形的条件是()A.对角线相等且互相垂直B.对角线相等且互相平分C.对角线互相垂直D.对角线互相垂直平分【考点】菱形的判定.【专题】选择题.【分析】根据菱形的判定方法:对角线互相垂直平分来判断即可.【解答】解:菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.只有D能判定为是菱形,故选D.【点评】本题考查菱形对角线互相垂直平分的判定.4.正方形、菱形、矩形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直 D.对角线平分一组对角【考点】正方形的性质;菱形的性质;矩形的性质.【专题】选择题.【分析】根据正方形、菱形、矩形对角线的性质,分析求解即可求得答案.【解答】解:∵正方形的对角线互相平分,互相垂直,相等且平分一组对角,菱形的对角线互相平分,互相垂直且平分一组对角,矩形的对角线互相平分且相等,∴正方形、菱形、矩形都具有的性质是:对角线互相平分.故选B.【点评】此题考查了正方形、菱形、矩形的性质.此题比较简单,注意熟记正方形、菱形、矩形对角线的性质是解此题的关键.5.若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD必然是()A.菱形B.对角线相互垂直的四边形C.正方形 D.对角线相等的四边形【考点】矩形的判定;三角形中位线定理.【专题】选择题.【分析】此题要根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.【解答】解:已知:如图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD;故选B.【点评】本题主要利用了矩形的性质和三角形中位线定理来求解.6.下列说法中,不正确的是()A.有三个角是直角的四边形是矩形B.对角线相等的四边形是矩形C.对角线互相垂直的矩形是正方形D.对角线互相垂直的平行四边形是菱形【考点】矩形的判定;菱形的判定;正方形的判定.【专题】选择题.【分析】根据各四边形的性质对各个选项进行分析从而得出最后答案.【解答】解:A、正确,有三个角是直角的四边形是矩形是矩形的判定定理;B、错误,对角线相等的四边形不一定是矩形,对角线相等的平行四边形才是矩形;C、正确,对角线互相垂直的矩形是正方形;D、正确,对角线互相垂直的平行四边形是菱形.故选B.【点评】考查了对四边形性质与判定的综合运用,特殊四边形之间的相互关系是考查重点.7.如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为()A.36°B.18°C.27°D.9°【考点】矩形的性质;三角形内角和定理.【专题】选择题.【分析】本题首先根据∠ADE:∠EDC=3:2可推出∠ADE以及∠EDC的度数,然后求出△ODC各角的度数便可求出∠BDE.【解答】解:已知∠ADE:∠EDC=3:2⇒∠ADE=54°,∠EDC=36°,又因为DE⊥AC,所以∠DCE=90°﹣36°=54°,根据矩形的性质可得∠DOC=180°﹣2×54°=72°所以∠BDE=180°﹣∠DOC﹣∠DEO=18°故选B.【点评】本题考查的是三角形内角和定理以及矩形的性质,难度一般.8.平行四边形ABCD中,∠A=50°,AB=30cm,则∠B=,DC=cm.【考点】平行四边形的性质.【专题】填空题.【分析】根据平行四边形的性质:平行四边形的对边相等且平行,即可求得.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=30cm,∴∠A+∠B=180°,∵∠A=50°,∴∠B=130°.故答案为130°,30.【点评】此题考查了平行四边形的性质:平行四边形的对边相等且平行.解题时注意数形结合思想的应用.9.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD=cm.【考点】平行四边形的性质.【专题】填空题.【分析】根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△BOC 的周长比△AOB的周长大2cm,则BC比AB长7cm,所以根据周长的值可以求出AB,进而求出CD的长.【解答】解:如图∵平行四边形的周长为20cm,∴AB+BC=10cm;又△BOC的周长比△AOB的周长大2cm,∴BC﹣AB=2cm,解得:AB=4cm,BC=6cm.∵AB=CD,∴CD=4cm故答案为:4.【点评】此题主要考查平行四边的性质:平行四边形的两组对边分别相等且平行四边形的对角线互相平分.10.菱形的两条对角线分别是6cm,8cm,则菱形的边长为cm,面积为cm2.【考点】菱形的性质.【专题】填空题.【分析】根据菱形的性质利用勾股定理可求得菱形的边长,根据面积公式可求得菱形的面积.【解答】解:菱形的两条对角线分别是6cm,8cm,得到两条对角线相交所构成的直角三角形的两直角边是×6=3cm和×8=4cm,那么它的斜边即菱形的边长=5cm,面积为6×8×=24cm2.故答案为5,24.【点评】本题考查的是菱形的性质以及其面积的计算方法的运用.11.如图,△ABC中,EF是它的中位线,M、N分别是EB、CF的中点,若BC=8cm,那么EF=cm,MN=cm.【考点】三角形中位线定理;梯形中位线定理.【专题】填空题.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出EF的长,再利用梯形的中位线等于两底和的一半求出MN的长度.【解答】解:∵EF是△ABC的中位线,BC=8cm,∴EF=BC=×8=4cm,∵M、N分别是EB、CF的中点,∴MN=(EF+BC)=(4+8)=6cm.故答案为4,6.【点评】本题主要利用三角形的中位线定理和梯形的中位线定理求解,熟练掌握定理是解题的关键.12.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的边长为cm和cm.【考点】矩形的性质.【专题】填空题.【分析】根据矩形的性质得出∠ABC=90°,AB=DC,AD=BC,AC=BD,AC=2AO=2CO,BD=2BO=2DO,求出AO=BO=4cm,得出△AOB是等边三角形,推出AB=AO=4cm,在Rt△ABC中,由勾股定理求出BC即可.【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,AB=DC,AD=BC,AC=BD,AC=2AO=2CO,BD=2BO=2DO,∵AC=BD=8cm,∴AO=BO=4cm,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=AO=4cm,在Rt△ABC中,由勾股定理得:BC===4,即矩形的边长是4cm,4cm,4cm,4cm,故答案为:4;4.【点评】本题考查了矩形性质,等边三角形的性质和判定,勾股定理的应用,注意:矩形的对角线互相平分且相等.13.在▱ABCD中,若添加一个条件,则四边形ABCD是矩形;若添加一个条件,则四边形ABCD是菱形.【考点】矩形的判定;平行四边形的性质;菱形的判定.【专题】填空题.【分析】根据矩形是对角线相等的平行四边形,菱形是邻边相等的平行四边形可得.【解答】解:在▱ABCD中,若添加一个条件AC=BD,则四边形ABCD是矩形;若添加一个条件AB=BC,则四边形ABCD是菱形.故答案为:AC=BD;AB=BC.【点评】本题主要考查的是矩形和菱形的判定定理.但需要注意的是本题的知识点是关于平行四边形、矩形、菱形之间的关系.14.如图,在等腰梯形ABCD中,AD∥BC,AD=6cm,BC=8cm,∠B=60°,则AB= cm.【考点】平行四边形的判定.【专题】填空题.【分析】过A作AE∥DC,可得到平行四边形AECD,从而可求得BE的长,由已知可得到△ABE是等边三角形,此时再求AB就不难求得了.【解答】解:等腰梯形ABCD中,AD∥BC,作AE∥DC,则四边形AECD是平行四边形,因而AB=AE,CE=AD,再由∠B=60°得到△ABE是等边三角形,AE=2cm,AB=2cm.【点评】此题考查平行四边形的判定及梯形中常见的辅助线的作法.15.如图,在平行四边形ABCD中,E、F是AC上的两点,且AE=CF.求证:DE=BF.【考点】平行四边形的性质;全等三角形的判定与性质.【专题】解答题.【分析】由平行四边形的性质得AD=CB,∠DAE=∠BCF,再由已知条件,可得△ADE≌△CBF,进而得出结论.【解答】证明:在平行四边形ABCD中,则AD=CB,∠DAE=∠BCF,又AE=CF,∴△ADE≌△CBF(SAS),∴DE=BF.【点评】本题主要考查平行四边形的性质及全等三角形的判定问题,应熟练掌握.16.如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.求:(1)两条对角线的长度;(2)菱形的面积.【考点】菱形的性质.【专题】解答题.【分析】(1)由在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm,可求得△ABO是含30°角的直角三角形,AB=2cm,继而求得AC与BD的长;(2)由菱形的面积等于其对角线积的一半,即可求得答案.【解答】解:(1)∵四边形ABCD是菱形,∴AB=BC,AC⊥BD,AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC与∠BAD的度数比为1:2,∴∠ABC=×180°=60°,∴∠ABO=∠ABC=30°,∵菱形ABCD的周长是8cm.∴AB=2cm,∴OA=AB=1cm,∴OB==,∴AC=2OA=2cm,BD=2OB=2cm;(2)S菱形ABCD=AC•BD=×2×2=2(cm2).【点评】此题考查了菱形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.17.如图所示,矩形ABCD的对角线AC、BD相交于点O,AE⊥BD,垂足为E,∠1=∠2,OB=6(1)求∠BOC的度数;(2)求△DOC的周长.【考点】矩形的性质.【专题】解答题.【分析】(1)AE⊥BD,∠1+∠ABD=∠ADB+∠ABD,得出∠ACB=∠ADB=∠2=∠1=30°,可知△AOB为等边三角形,继而求出∠BOC的度数;(2)由(1)知,△DOC≌△AOB,OD=OC=CD=OB,继而求出△DOC的周长.【解答】解:(1)∵四边形ABCD为矩形,AE⊥BD,∴∠1+∠ABD=∠ADB+∠ABD=∠2+∠ABD=90°,∴∠ACB=∠ADB=∠2=∠1=30°,又AO=BO,∴△AOB为等边三角形,∴∠BOC=120°;(2)由(1)知,△DOC≌△AOB,∴△DOC为等边三角形,∴OD=OC=CD=OB=6,∴△DOC的周长=3×6=18.【点评】本题考查矩形的性质,难度适中,解题关键是根据矩形的性质求出∠1=∠2=∠ACB=30°.18.如图:已知在△ABC中,AB=AC,D为BC上任意一点,DE∥AC交AB于E,DF∥AB交AC于F,求证:DE+DF=AC.【考点】平行四边形的判定与性质;等腰三角形的性质.【专题】解答题.【分析】由题意可得四边形AEDF是平行四边形,得DE=AF再由等腰三角形的性质及平行线可得DF=CF,进而可求出其结论.【解答】证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴DE=AF,又AB=AC,∴∠B=∠C,∵DF∥AB,∴∠CDF=∠B,∴∠CDF=∠C,∴DF=CF,∴AC=AF+FC=DE+DF.【点评】本题主要考查平行四边形的判定及性质以及等腰三角形的性质问题,能够熟练求解.19.如图,在菱形ABCD中,E为AD中点,EF⊥AC交CB的延长线于F.求证:AB与EF互相平分.【考点】菱形的性质;平行四边形的判定与性质.【专题】解答题.【分析】由菱形的性质可证AC⊥BD,又已知EF⊥AC,所以AG=BG,GE=BD,AD∥BC,可证四边形EDBF为平行四边形,可证GE=GF,即证结论.【解答】证明:连接BD,AF,BE,在菱形ABCD中,AC⊥BD∵EF⊥AC,∴EF∥BD,又ED∥FB,∴四边形EDBF是平行四边形,DE=BF,∵E为AD的中点,∴AE=ED,∴AE=BF,又AE∥BF,∴四边形AEBF为平行四边形,即AB与EF互相平分.【点评】本题是简单的推理证明题,主要考查菱形的性质,同时综合利用平行四边形的判定方法及中位线的性质.。

人教版八年级数学下册第十八章平行四边形练习(含答案)

人教版八年级数学下册第十八章平行四边形练习(含答案)

第十八章 平行四边形一、单选题1.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为( ).A .120︒B .60︒C .30°D .15︒2.如图,在平行四边形ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC=2,平行四边形ABCD 的周长是在14,则DM 等于( )A .1B .2C .3D .43.在下列条件中,不能确定四边形ABCD 为平行四边形的是( ∠.A .∠A=∠C∠∠B=∠DB .∠A+∠B=180°∠∠C+∠D=180°C .∠A+∠B=180°∠∠B+∠C=180°D .∠A=∠B=∠C=90°4.如图,在△ABC 中,D 是AB 上一点,AD =AC ,AE ⊥CD ,垂足为点E ,F 是BC 的中点,若BD =16,则EF 的长为( )A .32B .16C .8D .45.如图,将矩形A B C D 沿 GH 折叠,点C 路在点 Q 处,点 D 落在 AB 边上的点 E 处,若∠AG E =34°.则∠BH Q 等于( )A .73°B .34°C .45°D .30°6.如图,在ABC V 中,90,28ACB B ∠=︒∠=︒.分别以点,A B 为圆心,大于12AB 的长为半径画弧,两弧交于点D 和E ,直线DE 交AB 于点F ,连结CF ,则AFC ∠的度数为( )A .62oB .60︒C .58oD .56︒7.如图,四边形ABCD 为菱形,8, 6, AC BD DH AB ==⊥于点H ,则DH 的长为( )A .4B .4.8C .5D .68.下列命题中,真命题是( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线互相垂直平分的四边形是正方形9.如图,将三个同样的正方形的一个顶点重合放置,如果145∠=°,330∠=°时,那么2∠的度数是( )A .15°B .25°C .30°D .45°10.如图,正方形ABCD 中,点E 是AD 边的中点,BD 、CE 交于点H ,BE 、AH 交于点G ,则下列结论:①AG ⊥BE ;②;③S △BHE =S △CHD ;④∠AHB=∠EHD .其中正确的个数是A .1B .2C .3D .4二、填空题 11.平行四边形ABCD 的对角线交于点O ,且AB=5,∠OCD 的周长为23,则平行四边形ABCD 的两条对角线的和是 .12.将一个矩形纸片沿BC 折叠成如图所示的图形,若27ABC ∠=︒,则ACD ∠的度数为________.13.某花木场有一块如等腰梯形ABCD 的空地(如图),各边的中点分别是E 、F 、G 、H ,用篱笆围成的四边形EFGH 场地的周长为40cm ,则对角线AC =________.14.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF.给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中正确的结论是___________________(填序号)三、解答题15.如图,在□ ABCD中,点E∠F在对角线BD上,且BE∠DF.(1)求证:AE∠CF∠(2)求证:四边形AECF是平行四边形.16.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD交于点O,AO =BO,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.17.如图,点O 是菱形ABCD 对角线的交点,////CE BD EB AC ,,连接OE ,交BC 于F .()1求证:OE CB =;()2如果OC :1OB =:2OE =,,求菱形ABCD 的面积.18.如图1,在正方形ABCD 中,E ,F 分别是AD ,CD 上两点,BE 交AF 于点G ,且DE=CF . (1)写出BE 与AF 之间的关系,并证明你的结论;(2)如图2,若AB=2,点E 为AD 的中点,连接GD ,试证明GD 是∠EGF 的角平分线,并求出GD 的长.答案1.B2.C3.B4.C5.B6.D7.B8.C9.A10.D11.3612.126°13.20cm14.①②④15.(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠ABE=∠CDF.在△ABE 和△CDF 中,AB CD ABE CDF BE DF =∠=∠=⎧⎪⎨⎪⎩, ∴△ABE ≌△DCF (SAS ).∴AE=CF .(2)∵△ABE ≌△DCF ,∴∠AEB=∠CFD ,∴∠AEF=∠CFE ,∴AE ∥CF ,∵AE=CF ,∴四边形AECF 是平行四边形.16.(1)证明:∵AD ∥BC ,∴∠ABC+∠BAD =180°,∠ADC+∠BCD =180°,∵∠ABC =∠ADC ,∴∠BAD =∠BCD ,∴四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵OA =OB ,∴AC =BD ,∴四边形ABCD 是矩形.(2)解:作OF ⊥BC 于F ,如图所示.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=12CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=12•EC•OF=1.17.Q四边形ABCD是菱形,AC BD∴⊥∠CE//BD EB//ACQ,∠∴四边形OCEB是平行四边形,∴四边形OCEB是矩形,OE CB∴=∠()2Q由()1知,AC BD OC⊥,∠OB1=∠2∠BC OE∴==∴在Rt BOCV中,由勾股定理得222BC OC OB=+∠CO1OB2∴==,∠Q四边形ABCD是菱形,AC2BD4∴==,∠∴菱形ABCD的面积是:1BD AC4 2⋅=∠18.解:(1)BE=AF,BE⊥AF,理由:四边形ABCD是正方形,∴BA=AD=CD,∠BAE=∠D=90°,∵DE=CF,∴AE=DE,∴△BAE≌△ADF(SAS),∴BE=AF,∠ABE=∠DAF,∵∠ABE+∠AEB=90°,∴∠DAE+∠AEB=90°,∴∠BGA=90°,∴BE⊥AF;(2)如图2,过点D作DN⊥AF于N,DM⊥BE交BE的延长线于M,在Rt△ADF中,根据勾股定理得,∵S△ADF=12AD×FD=12AD×DN,∴,∵△BAE≌△ADF,∴S△BAE=S△ADF,∵BE=AF,∴AG=DN,又∵∠AGE=∠DME,∠AEG=∠DEM ∴△AEG≌△DEM(AAS),∴AG=DM,∴DN=DM,∵DM⊥BE,DN⊥AF,∴GD平分∠MGN,∴∠DGN=12∠MGN=45°,∴△DGN是等腰直角三角形,∴.。

【精选】人教版八年级下册数学第十八章《平行四边形》测试卷(含答案)

【精选】人教版八年级下册数学第十八章《平行四边形》测试卷(含答案)

【精选】人教版八年级下册数学第十八章《平行四边形》测试卷(含答案)一、选择题(每题3分,共30分)1.已知在▱ABCD中,∠B+∠D=200°,则∠B的度数为( ) A.100° B.160° C.80° D.60°2.【2022·广东】如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=( )A.14B.12C.1 D.2(第2题) (第4题) (第5题) (第8题) 3.【2022·河北】依据所标数据,下列一定为平行四边形的是( )4.【教材P44例2改编】【2021·恩施州】如图,在▱ABCD中,AB=13,AD=5,AC ⊥BC,则▱ABCD的面积为( )A.30 B.60 C.65 D.65 25.【教材P53例1改编】如图,在矩形ABCD中,对角线AC,BD交于点O,∠AOB =60°,AB=5,则BD的长为( )A.20 B.15 C.10 D.56.【2021·河南】关于菱形的性质,以下说法不正确...的是( )A.四条边相等 B.对角线相等C.对角线互相垂直 D.是轴对称图形7.下列命题中,是真命题的为( )A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形8.如图,已知在菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是( )A.16 3 B.16 C.8 3 D.89.【2022·青岛】如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE的长度为( )A.62B. 6 C.2 2 D.2 3(第9题) (第10题) (第11题) (第13题)10.【教材P68复习题T13拓展】【2022·恩施州】如图,在四边形ABCD中,∠A=∠B=90°,AD=10 cm,BC=8 cm,点P从点D出发,以1 cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是( )A.当t=4时,四边形ABMP为矩形B.当t=5时,四边形CDPM为平行四边形C.当CD=PM时,t=4D.当CD=PM时,t=4或6二、填空题(每题3分,共24分)11.如图,在▱ABCD中,AB=5,AC=8,BD=12,则△COD的周长是________.12.在Rt△ABC中,∠C=90°,AC=5,BC=12,则斜边上的中线CD=________. 13.【2021·益阳】如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC =BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是________(限填序号).14.如图,平行四边形ABCD的三个顶点的坐标分别为A(1,1),B(4,1),D(2,3),要把顶点A平移到顶点C的位置,则其平移方式可以是:先向右平移________个单位长度,再向上平移________个单位长度.(第14题) (第15题) (第16题) (第17题) 15.【2022·哈尔滨】如图,菱形ABCD的对角线AC,BD相交于点O.点E在OB 上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为________.16.如图,在矩形ABCD中,E是BC边上一点,AE=AD,DF⊥AE于点F,连接DE,AE=5,BE=4,则DF=________.17.【2022·苏州】如图,在平行四边形ABCD中,AB⊥AC, AB=3, AC=4,分别以A,C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N,过M,N两点作直线,与BC交于点E,与AD交于点F,连接AE,CF.则四边形AECF的周长为________.18.以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是____________.三、解答题(19,20题每题8分,21,22题每题12分,其余每题13分,共66分)19.【2022·桂林】如图,在▱ABCD中,点E和点F是对角线BD上的两点,且BF =DE.(1)求证:BE=DF;(2)求证:△ABE≌△CDF.20.【2021·郴州】如图,四边形ABCD中,AB=DC,将对角线AC向两端分别延长至点E,F,使AE=CF, 连接BE,DF.若BE=DF,证明:四边形ABCD是平行四边形.21.【教材P55练习T2改编】【2021·长沙】如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4.(1)求证:▱ABCD是矩形;(2)求AD的长.22.【2021·十堰】如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.23.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF;(2)若正方形的边长是5,BE=2,求AF的长.24.【2022·北京八中模拟】在▱ABCD中,AB≠AD,对角线AC,BD交于点O,AC =10,BD=16.点M,N在对角线BD上,点M从点B出发以每秒1个单位长度的速度向点D运动,到达点D时停止运动,同时点N从点D出发,运动至点B后立即返回,点M停止运动的同时,点N也停止运动,设运动时间为t 秒(t>0).。

【3套】人教版八年级下册数学第十八章平行四边形复习题(含答案)

【3套】人教版八年级下册数学第十八章平行四边形复习题(含答案)

人教版八年级下册数学第十八章平行四边形复习题(含答案)一、选择题1.如图,在□ ABCD中,已知∠ ODA= 90°, AC= 10cm, BD= 6cm,则 BC的长为()A. 4cmB. 5cmC. 6cmD. 8cm2.如图,在平行四边形ABCD中,连结对角线AC、BD,图中的全等三角形的对数()A. 1 对B. 对2C. 对3D. 对43.正方形的一条对角线长为 2 厘米,则正方形的面积(A. 2B. 3C. 4D.4.如图,矩形ABCD 的对角线AC、 BD 订交于点O, CE∥ BD, DE∥ AC,若 AC=4,则四边形CODE的周长()A. 4B. 6C. 8D. 105.如图,将△ABC沿 BC 方向平移获得△DCE,连结AD,以下条件中能够判断四边形ACED为菱形的是 ( )A. AB= BC B∠. ACB= 60°C∠. B= 60° D. AC= BC6.如图,在菱形 ABCD中,∠ ABC=60°,AB=1,E为 BC的中点,则对角线BD 上的动点P 到 E、C 两点的距离之和的最小值为()A. B. C. D.7.八个边长为 1 的正方形如图摆放在平面直角坐标系中,经过P 点的一条直线l 将这八个正方形分红面积相等的两部分,则该直线l 的分析式为()A. B. y=x+C. D.8.如图,在正方形 ABCD中, E,F 分别为 AD,CD 的中点, BF 与 CE订交于点 H,直线 EN 交CB 的延伸线于点 N,作 CM⊥ EN 于点 M ,交 BF 于点 G,且 CM=CD,有以下结论:① BF ⊥CE;② ED=EM ;③ tan ∠ ENC=;④S 四边形DEHF=4S△CHF,此中正确结论的个数为()A. 1 个B. 个2C. 个3D. 个49.如图,在正方形ABCD中,△BPC是等边三角形,BP、 CP的延伸线分别交AD 于点 E、 F,连结 BD、DP,BD 与 CF 订交于点H,给出以下结论:①BE=2AE;②△DFP∽△ BPH;③△PFD ∽△ PDB;④DP 2=PH?PC此中正确的选项是()A. ①②③④B. ②③C. ①②④D.①③④10.如图, ?ABCD中, AB=4,BC=6,AC 的垂直均分线交 AD 于点 E,则△CDE的周长是()A. 6B. 8C. 10D. 1211.如图,△ABC 周长为 1,连结△ABC 三边中点构成第二个三角形,再连结第二个三角形三边中点构成第三个三角形,以此类推,第2016 个三角形的周长为()A. 22016B. 22017C.D.12.如图,将边长为2cm 的菱形ABCD 沿边AB 所在的直线l 翻折获得四边形ABEF,若∠DAB=30°,则四边形CDFE的面积为()A. 2cm 2222B. 3cmC. 4cmD. 6cm13.如图,已知正方形ABCD边长为 1,连结 AC、BD,CE均分∠ ACD交 BD 于点 E,则 DE长为()A. 2-2B.-1C.-1D. 2-14.如图,P 为正方形 ABCD的对角线 BD 上任一点,过点 P 作 PE⊥ BC于点 E,PF⊥ CD 于点 F,连结 EF.给出以下 4 个结论:① △FPD是等腰直角三角形;②AP=EF;③AD=PD ;④∠ PFE=∠BAP.此中,全部正确的结论是()A. ①②B. ①④C. ①②④D. ①③④二、填空题15.在平行四边形ABCD中,∠ B=100°,则∠ A=________,∠ D= ________16.如图,已知△ABC 的三个极点的坐标分别为A(﹣ 2, 0),B(﹣ 1, 2), C( 2, 0).请直接写出以A, B, C 为极点的平行四边形的第四个极点 D 的坐标 ________17.如图,在 ?ABCD中, DE 均分∠ ADC, AD=6, BE=2,则 ?ABCD的周长是 ________.18.如图,平行四边形ABCD 中, AF、 CE分别是∠ BAD 和∠ BCD 的角均分线,依据现有的图形,请增添一个条件,使四边形AECF为菱形,则增添的一个条件能够是________ .(只要写出一个即可,图中不可以再增添其余“点”和“线”)19.如图,平行四边形的四个内角均分线订交,如能构成四边形,则这个四边形是________20.如图,正方形 ABCD被分红两个小正方形和两个长方形,假如两个小正方形的面积分别是18cm2和 10cm2,那么两个长方形的面积和为________cm 2.21.如图,在矩形ABCD中, AB=2,AD=4,点E是BC边上一个动点,连结AE,作 DF⊥AE 于点 F,当 BE的长为 ________时,△CDF是等腰三角形.三、解答题22.如图,四边形ABCD是平行四边形,E、 F 是对角线AC 上的两点,∠ 1=∠ 2.(1)求证: AE=CF;(2)求证:四边形 EBFD是平行四边形.F, G 是 EF 的中点,连结CG.求证:① △ABM≌△ CBM;②CG⊥CM.24.如图,在矩形ABCD中, M 、N 分别是 AD、BC 的中点, P、 Q 分别是 BM、 DN 的中点.(1)求证:△MBA≌△ NDC;(2)求证:四边形 MPNQ 是菱形.25.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D, AN 是△ABC 外角∠ CAM 的平分线, CE⊥ AN,垂足为点E,(1)求证:四边形 ADCE为矩形;(2)当△ABC知足什么条件时,四边形ADCE是一个正方形?并给出证明.26.如图,矩形 OABC的边 OA 在 x 轴正半轴上,边 OC在 y 轴正半轴上, B 点的坐标为(1,3).矩形 O′ A′是BC矩′形 OABC绕 B 点逆时针旋转获得的.O′点恰幸亏x 轴的正半轴上,O′ C′交 AB 于点 D.(1)求点 O′的坐标,并判断△O′DB的形状(要说明原因)(2)求边 C′O所′在直线的分析式.(3)延伸 BA 到 M 使 AM=1,在( 2)中求得的直线上能否存在点P,使得△POM 是以线段OM 为直角边的直角三角形?若存在,请直接写出P 点的坐标;若不存在,请说明原因.参照答案一、选择题1. A2.D3. A4.C5. D6. C7.B8.D9. C10. C11. D12. C13. C14. C二、填空题15.80 ;°100 °16.( 3,2 ),(﹣ 5,2),( 1,﹣ 2)17.2018.AC⊥ EF19.矩形20.21.2 或 2或 4﹣ 2三、解答题22.( 1)证明:如图:∵四边形ABCD是平行四边形,∴AD=BC, AD∥ BC,∠ 3=∠4,∵∠ 1=∠ 3+∠5,∠ 2=∠4+∠ 6,∠ 1=∠ 2∴∠ 5=∠ 6∵在△ADE 与△CBF中,∴△ ADE≌△ CBF( ASA),∴A E=CF(2)证明:∵∠ 1=∠ 2,∴DE∥BF.又∵由( 1)知△ADE≌△ CBF,∴DE=BF,∴四边形 EBFD是平行四边形.23.证明:① ∵四边形ABCD是正方形,∴A B=CB,∠ ABM=∠ CBM,在△ABM 和△CBM 中,,∴△ ABM≌△ CBM( SAS),② ∵△ ABM≌△ CBM,∴∠ BAM=∠ BCM,∵∠ ECF=90°, G 是 EF的中点,∴GC=GF,∴∠ GCF=∠F,又∵ AB∥ DF,∴∠ BAM=∠ F,∴∠ BCM=∠ GCF,∴∠ BCM+∠ GCE=∠ GCF+∠ GCE=90°,∴GC⊥ CM.24.( 1)证明:∵四边形 ABCD是矩形,∴AB=CD, AD=BC,∠ A=∠ C=90°,∵在矩形 ABCD中, M、 N 分别是 AD、 BC的中点,∴AM=AD, CN=BC,∴AM=CN,在△MAB 和△NDC中,∵,∴△ MBA≌△ NDC( SAS)(2)证明:四边形 MPNQ 是菱形.原因以下:连结 AP, MN ,则四边形 ABNM 是矩形,∵AN 和 BM 相互均分,则A,P,N 在同一条直线上,易证:△ABN≌△ BAM,∴AN=BM ,∵△ MAB≌△ NDC,∴BM=DN,∵P、 Q 分别是 BM、 DN 的中点,∴PM=NQ,∵,∴△ MQD≌△ NPB( SAS).∴四边形MPNQ 是平行四边形,∵M 是 AD 中点, Q 是 DN 中点,∴MQ=AN,∴MQ=BM,∵MP=BM,∴MP=MQ ,∴平行四边形MQNP 是菱形.25.(1)证明:在△ABC中, AB=AC, AD⊥ BC,∴∠ BAD=∠ DAC,∵AN 是△ABC外角∠ CAM 的均分线,∴∠ MAE=∠ CAE,∴∠ DAE=∠ DAC+∠CAE=180°=90°,又∵ AD⊥ BC,CE⊥AN,∴∠ ADC=∠ CEA=90°,∴四边形ADCE为矩形(2)当△ABC知足∠ BAC=90°时,四边形ADCE是一个正方形.原因:∵ AB=AC,∴∠ ACB=∠ B=45°,∵AD⊥ BC,∴∠ CAD=∠ ACD=45°,∴DC=AD,∵四边形ADCE为矩形,∴矩形 ADCE是正方形.∴当∠ BAC=90°时,四边形ADCE是一个正方形26.(1)解:如图,连结OB, O′B,则 OB=O′B,∵四边形OABC是矩形,∴AO=AO′,∵B 点的坐标为( 1, 3),∴O A=1,∴A O′=1,∴点 O′的坐标是( 2,0 ),△O′ DB为等腰三角形,原因以下:在△BC′D与△O′AD中,,∴△ BC′D≌△ O′AD(AAS),∴BD=O′D,∴△ O′DB是等腰三角形(2)解:设点 D 的坐标为( 1, a),则 AD=a,∵点 B 的坐标是( 1, 3),∴O′D=3﹣ a,222在 Rt△ADO′中, AD +AO′=O′D,∴a2+12=( 3﹣ a)2,解得 a=,∴点 D 的坐标为( 1,),设直线 C′O的′分析式为y=kx+b,则,解得,∴边 C′O所′在直线的分析式:y=﹣x+(3)解:∵ AM=1, AO=1,且 AM⊥AO,∴△ AOM 是等腰直角三角形,① PM 是另向来角边时,∠ PMA=45°,∴P A=AM=1,点P 与点O′重合,∴点 P 的坐标是( 2, 0),② PO 是另向来角边,∠ POA=45°,则 PO 所在的直线为 y=x,∴,解得,∴点 P 的坐标为P( 2, 0)或(,).人教版八年级数学下单元测试题:第十八章平行四边形一、填空题 (每题 3 分,共 24 分 )1.如图, ?ABCD 中, AC,BD 订交于点O,若 AD = 6,AC+BD = 16,则△BOC 的周长为________.2.如图,四边形ABCD 是对角线相互垂直的四边形,且OB= OD ,请你增添一个适合的条件____________,使四边形 ABCD 成为菱形 (只要增添一个即可 ).3.若以A(- 0.5, 0), B(2, 0), C(0, 1)三点为极点画平行四边形,则第四个极点不行能在第________象限.4.如图,在平面直角坐标系中,菱形OABC 的极点 B 的坐标为 (8, 4),则 C 点的坐标为________.5.如图, BD 为正方形ABCD 的对角线, BE 均分∠ DBC,交 DC 于点 E,延伸 BC 到 F ,使CF= CE,连结 DF .若 CE= 1 cm,则 BF= __________ .6.矩形 ABCD 中, AB= 3, AD= 4, P 是 AD 上一动点, PE⊥ AC 于 E, PF⊥ BD 于 F,则PE+ PF 的值为 ________.7.以正方形ABCD 的 AD 作等三角形ADE,∠ BEC 的度数是 __________.8.如,在 1 的菱形 ABCD 中,∠ DAB = 60°.接角AC,以 AC 作第二个菱形 ACEF ,使∠ FAC= 60°.接 AE,再以 AE 作第三个菱形AEGH ,使∠ HAE =60°⋯⋯按此律所作的第n 个菱形的是________.二、 (每 3 分,共 30 分 )9.如,在 ?ABCD 中,已知 AC= 4 cm,若△ACD 的周13 cm, ?ABCD 的周 ()A . 26 cm B. 24 cm C. 20 cm D. 18 cm10.如, ?ABCD 中,角AC ,BD 交于点 O,点 E 是 BC 的中点.若O E =3 cm,AB 的 ()A . 12 cm B. 9 cm C. 6 cm D. 3 cm11.以下四条件中,不可以判断四形ABCD 是平行四形的是()A . AB= DC , AD= BC B. AB∥ DC , AD∥ BCC.AB ∥DC , AD= BC D.AB ∥DC , AB= DC12.如,在平行四形ABCD 中,已知∠ ODA = 90°,AC =10 cm , BD = 6 cm, AD 的()13.如图,在菱形ABCD 中,∠ B= 60°,AB= 4,则以 AC 为一边的正方形ACEF 的周长为()A . 14B. 15C. 16D. 1714.以下说法中,正确的个数有()①对顶角相等;②两直线平行,同旁内角相等;③对角线相互垂直的四边形为菱形;④对角线相互垂直均分且相等的四边形为正方形.A . 1 个B. 2 个C. 3 个D. 4 个15.如图,已知在菱形ABCD 中,对角线AC 与 BD 交于点 O,∠ BAD = 120 °,AC =4,则该菱形的面积是()A . 16 3B . 16C. 8 3D. 816.用尺规在一个平行四边形内作菱形ABCD ,以下作法中错误的选项是()17.如图,在矩形ABCD 中, AD =3AB,点 G, H 分别在 AD,BC 上,连结BG,DH ,且AG=()时,四边形 BHDG 为菱形.BG∥ DH ,当AD4B.343A. 55 C.9 D.818.如图,在 ?ABCD 中, CD = 2AD, BE⊥ AD 于点 E,F 为 DC 的中点,连结EF ,BF ,以下结论:①∠ ABC= 2∠ ABF;② EF = BF;③ S 四边形DEBC= 2S△EFB;④∠ CFE = 3∠ DEF ,此中正确的结论有 ()A . 1 个B . 2 个C.3 个 D . 4 个三、解答题 (19 题 8 分, 20~ 22 题每题 10 分,其余每题14 分,共 66 分 )19.如图,在 ?ABCD 中,点 E, F 分别在边CB, AD 的延伸线上,且BE= DF , EF 分别与AB, CD 交于点 G,H .求证 AG =CH.20.如图,正方形 ABCD 中,E 是 BC 上的一点,连结 AE,过 B 点作 BH ⊥ AE,垂足为点 H ,延伸 BH 交 CD 于点 F,连结 AF .(1)求证 AE= BF;(2)若正方形的边长是5, BE= 2,求 AF 的长.21.如图,矩形A BCD 中, E 是 AD 的中点,连结CE 并延伸与BA 的延伸线交于点F,连接AC、 DF .(1)求证:四边形ACDF 是平行四边形;(2)当 CF 均分∠ BCD 时,写出BC 与 CD 的数目关系,并说明原因.22.在△ABC 中, AD 是 BC 边上的中线, E 是 AD 的中点,过点 A 作 BC 的平行线交BE 的延伸线于点F,连结 CF .(1)求证 AF= DC ;(2)若 AB⊥ AC,试判断四边形ADCF 的形状,并证明你的结论.23.如图,△ABC 中,∠ ACB= 90°, D 为 AB 的中点,四边形BCED 为平行四边形,DE ,AC 订交于 F .连结 DC, AE.(1)试确立四边形ADCE 的形状,并说明原因.(2)若 AB= 16, AC= 12,求四边形ADCE 的面积.(3)当△ABC 知足什么条件时,四边形ADCE 为正方形?请赐予证明.24.我们给出以下定义:按序连结随意一个四边形各边中点所得的四边形叫做中点四边形.(1)如图①,在四边形ABCD 中,点 E,F , G,H 分别为边 AB, BC,CD , DA 的中点,求证:中点四边形 EFGH 是平行四边形;(2)如图②,点 P 是四边形 ABCD 内一点,且知足点E,F , G, H 分别为边 AB, BC, CD ,DA PA= PB,PC= PD,∠ APB =∠ CPD ,的中点,判断中点四边形 EFGH 的形状,并说明原因;(3)若改变 (2) 中的条件,使∠APB=∠ CPD= 90°,其余条件不变,直接写出中点四边形EFGH 的形状 (不用证明 ).答案一、 1.142.OA=OC(答案不独一)3.三4.(3,4)5.(2+2) cm126.57.30°或150°8.(3)n-1二、 9-18: DCCAC BCCCD三、 19.证明:∵四边形ABCD是平行四边形,∴AD= BC,AD∥ BC,∠ A=∠ C.∴∠ F=∠ E.∵BE= DF,∴AD+ DF= CB+BE,即 AF=CE.在△AGF和△CHE中,∠ A=∠ C,AF= CE,∠ F=∠ E,∴△ AGF≌△ CHE(ASA).∴AG= CH.20.(1)证明:∵四边形ABCD是正方形,∴AB= BC,∠ ABE=∠ BCF= 90°.∴∠ BAE+∠ AEB= 90°.∵BH⊥ AE,∴∠ BHE=90°.∴∠ AEB+∠ EBH= 90°.∴∠ BAE=∠ EBH.在△ABE 和△BCF中,∠BAE=∠ CBF,AB= BC,∠ABE=∠ BCF,∴△ABE≌△BCF(ASA).∴AE= BF.∴BE= CF.∵正方形的边长是5, BE= 2,∴DF= CD- CF= CD- BE= 5- 2=3.在Rt△ADF 中,由勾股定理得: AF= AD2+ DF2= 52+ 32= 34. 21.(1)证明:∵四边形ABCD是矩形,∴AB∥ CD.∴∠ FAE=∠ CDE.∵E 是 AD 的中点,∴ AE= DE.又∵∠ FEA=∠ CED,∴△ FAE≌△ CDE(ASA).∴CD= FA.又∵ CD∥ FA,∴四边形 ACDF是平行四边形.(2)解: BC= 2CD.原因以下:∵CF均分∠BCD,∴∠ DCE= 45°.∵∠ CDE= 90°,∴△ CDE是等腰直角三角形.∴CD=DE.∵E是AD 的中点,∴ AD= 2DE.∴AD= 2CD.∵AD= BC,∴ BC= 2CD.22.(1)证明:∵AF∥BC,∴∠ AFE=∠ DBE.∵E 是 AD 的中点,∴ AE= DE.在△AFE 和△DBE 中,∠AFE=∠ DBE,∠FEA=∠ BED,AE= DE,∴△ AFE≌△ DBE(AAS).∴A F=BD.∵AD 是 BC边上的中线,∴DC= BD.∴A F= DC.(2)解:四边形ADCF是菱形.证明:由 (1)得 AF=DC,又 AF∥ BC,∴四边形ADCF是平行四边形.∵ AC⊥ AB, AD 是斜边 BC 上的中线,1∴AD=2BC= DC.∴?ADCF是菱形.23.解:(1)四边形ADCE是菱形.原因:∵四边形BCED为平行四边形,∴CE∥ BD, CE= BD, BC∥ DE.∵D 为 AB 的中点,∴ AD= BD.∴CE∥ AD, CE= AD.∴四边形ADCE为平行四边形.又∵ BC∥ DF,∴∠ AFD=∠ ACB=90°,即 AC⊥ DE.∴四边形ADCE为菱形.(2)在 Rt△ABC中,∵ AB= 16, AC=12 ,∴ BC= 4 7.而 BC= DE,∴ DE=4 7.1∴四边形ADCE的面积=2AC·DE= 24 7.(3)当 AC= BC 时,四边形ADCE为正方形.证明:∵ AC= BC,D 为 AB 的中点,∴ CD⊥ AB,即∠ ADC=90°.∴菱形 ADCE为正方形.24.(1)证明:如图①,连结BD.∵点 E, H 分别为边AB, DA 的中点,1∴EH∥ BD, EH=2BD.∵点 F, G 分别为边BC,CD 的中点,1∴FG∥BD,FG=2BD.∴EH∥ FG,EH= FG.∴中点四边形EFGH是平行四边形.(2)解:中点四边形EFGH是菱形.原因:如图②,连结AC,BD.∵∠ APB=∠ CPD,∴∠ APB+∠ APD=∠ CPD+∠ APD,即∠ BPD=∠ APC.在△APC和△BPD 中,PA= PB,∠APC=∠ BPD,PC= PD,∴△ APC≌△ BPD(SAS).∴AC= BD.∵点 E, F, G 分别为边AB, BC, CD 的中点,11∴EF=2AC, FG=2BD.∴EF= FG.又由 (1)中结论知中点四边形EFGH是平行四边形,∴中点四边形EFGH是菱形.(3)解:中点四边形EFGH是正方形.人教版数学八年级下册第十八章《平行四边形》检测卷一、选择题 (每题 3 分,共 30 分 )1. 平行四边形的周长为24 cm,相邻两边的差为 2 cm,则平行四边形的各边长为()A . 4 cm, 8 cm, 4 cm, 8 cm B. 5 cm, 7 cm,5 cm, 7 cmC.5.5 cm , 6.5 cm, 5.5 cm, 6.5 cm D. 3 cm, 9 cm,3 cm, 9 cm2. 如图,在? ABCD中,AB>AD,按以下步骤作图:以点 A 为圆心,小于AD 的长为半径画弧,分别交AB,AD 于点 E,F ;再分别以点E, F 为圆心,大于12EF 的长为半径画弧,两弧交于点G;作射线AG 交 CD 于点 H ,则以下结论中不可以由条件推理得出的是()A . AG 均分∠ DAB B. AD= DHC.DH = BC D. CH = DH第 2 题第3题3.如图,在 ? ABCD 中, AB= 4,BC =6,AC 的垂直均分线交 AD 于点 E,则△ CDE 的周长是 ()A . 7B .10C. 11 D . 124. 正方形的一条对角线长为4,则这个正方形面积是()A . 8B .42C. 82D. 165.如图,? ABCD 的对角线 AC 的长为 10 cm,∠ CAB= 30°,AB 的长为 6 cm,则? ABCD 的面积为 ()A . 60 cm2B. 30 cm2C. 20 cm2D. 16 cm2第 5 题第6题6.如图, ? ABCD 的对角线 AC 与 BD 订交于点 O,AE⊥ BC,垂足为 E, AB= 3, AC=2, BD = 4,则 AE 的长为 ()3321221A.2B. 2C.7D.77. 如图,在△ABC中,∠BAC=45°,AB=AC=8,P为AB边上一动点,以PA, PC 为边作 ? PAQC,则对角线PQ 长度的最小值为 ()A . 6B. 8C. 2 2 D .4 2第 7 题第8题8.如图,在矩形 ABCD 中, E, F 分别是 AD, BC 中点,连结 AF, BE, CE, DF 分别交于点 M, N,四边形EMFN 是 ()A .正方形B.菱形C.矩形D.没法确立9. 将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当∠ B= 90°时,如图 1,测得 AC= 2,当∠ B= 60°时,如图 2,AC 的长是 ()A.2 B . 2 C. 6D. 22第 9 题第 10 题10.如图, ? ABCD 中, AB= 8 cm, AD= 12 cm,点 P 在 AD 边上以每秒 1 cm 的速度从点A 向点 D 运动,点 Q 在 BC 边上以每秒 4 cm 的速度从点 C 出发,在 CB 间来回运动,两个点同时出发,当点P 抵达点 D 时停止 (同时点 Q 也停止 ),在运动此后,以P, D, Q,B 四点构成平行四边形的次数有()A . 4 次B. 3 次C. 2 次D. 1 次二、填空题 (每题 3 分,共 24 分 )11. 若平行四边形中两个内角度数比为1∶ 2,则此中较大的内角是度.12. 如图,在菱形ABCD中,AC,BD订交于点O,若∠BCO=55°,则∠ADO=.第 12 题第13题13.如图, ? ABCD 与? DCFE 的周长相等,且∠ BAD = 60°,∠ F= 110 °,则∠ DAE 的度数为.14.已知直角坐标系内有四个点O(0, 0),A(3,0),B(1,1),C(x,1),若以 O, A,B,C 为极点的四边形是平行四边形,则x=.15.如图,在四边形 ABCD 中, P 是对角线 BD 的中点, E, F 分别是 AB, CD 的中点,AD =BC,∠ PEF = 18°,则∠ PFE 的度数是.第 15 题第16题16.如图,在 ? ABCD 中,对角线 AC 与 BD 交于点 E,∠ AEB= 45°,BD= 2,将△ ABC 沿 AC 所在直线翻折,若点 B 的落点记为B′,则 DB′的长为.17.如图,正方形 ABCO 的极点 C,A 分别在 x 轴、y 轴上, BC 是菱形 BDCE 的对角线,若∠ D= 60°, BC= 2,则点 D 的坐标是.第 17 题第18题18.如图,边长为 4 的正方形 ABCD,点 P 是对角线 BD 上一动点,点 E 在边 CD 上,EC= 1,则 PC+ PE 的最小值是.三、解答题 (共 66 分 )19.(8 分)如图,已知四边形 ABCD 是平行四边形,点 E, B,D , F 在同向来线上,且BE= DF .求证: AE= CF .20.(8 分 )如图,在 Rt△ABC 中,∠ C=90°,∠ B= 60°,AB = 8 cm,E,F 分别为边 AC,AB 的中点.(1)求∠ A 的度数;(2)求 EF 的长.21.(9 分)如图, ? ABCD 的对角线 AC, BD 交于点 O, EF 过点 O 且与 BC, AD 分别交于点E,F.试猜想线段 AE, CF 的关系,并说明原因.22. (9分)如图,E是? ABCD的边CD的中点,延伸AE 交 BC 的延伸线于点 F.(1)求证:△ ADE≌△ FCE;(2)若∠ BAF = 90°, BC =5, EF= 3,求 CD 的长.23. (10分)如图,在正方形ABCD 中, E 是 AB 上一点, F 是 AD 延伸线上一点,且DF =BE .(1)求证: CE= CF;(2)若点 G 在 AD 上,且∠ GCE =45°,则 GE= BE+GD 建立吗?为何?24.(10 分 )如图, ? ABCD 的对角线 AC,BD 订交于点 O,EF 过点 O 且与 AB, CD 分别订交于点 E, F ,连结 EC.(1)求证: OE=OF ;(2)若 EF ⊥ AC,△ BEC 的周长是10,求 ? ABCD 的周长.25.(12 分 )以下图,在四边形 ABCD 中, AD ∥BC ,AD= 24 cm, BC= 30 cm,点 P 从点A 向点 D 以 1 cm/ s 的速度运动,到点 D 即停止.点 Q 从点 C 向点 B 以 2 cm/ s 的速度运动,到点 B 即停止.直线PQ 将四边形ABCD 截成两个四边形,分别为四边形ABQP 和四边形 PQCD ,则当 P,Q 两点同时出发,几秒后所截得两个四边形中,此中一个四边形为平行四边形?参照答案1. B2. D3. B4. A5. B6. D7. D8. B9. A10. B11.12012.35°13.25°14.4 或- 215.18°16.217.(2+ 3, 1)18.519.证明:∵四边形 ABCD 是平行四边形,∴ AB∥ CD,AB= CD . ∴∠ ABD =∠ CDB . ∴∠ ABE =∠ CDF .AB=CD ,在△ ABE 和△CDF 中,∠ABE=∠CDF,∴△ABE≌△CDF (SAS).∴AE=CF .BE=DF ,20.解: (1)∵∠ C= 90°,∴∠ A+∠ B= 90°.∴∠ A=90°-∠ B=90°- 60°= 30°.1(2) 在 Rt△ABC 中,∠ A=30°, AB= 8 cm,∴ BC=2AB= 4 cm. ∵ E, F 分别是 AC, AB 的中1点,∴ EF 是△ ABC 的中位线.∴EF=2BC= 2 cm.21.解: AE= CF 且 AE∥ CF. 原因:∵四边形 ABCD 为平行四边形,∴ OA= OC,AD ∥ BC.∠AFO =∠CEO ,∴∠ AFO =∠ CEO.在△ AOF和△ COE中,∠AOF =∠COE ,OA=OC,∴△ AOF ≌△ COE(AAS) .∴ OF= OE. 又∵ OA= OC,∴四边形 AECF 是平行四边形.∴ AE =C F 且 AE∥ CF .22. 解:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAE=∠F,∠D=∠ECF .∠DAE =∠ F,∵E是CD的中点,∴ DE=CE.在△ ADE和△ FCE中,∠D=∠ECF,DE =CE,∴△ ADE ≌△ FCE (AAS) .(2) ∵△ ADE≌△ FCE ,∴ AE= EF = 3.∵AB ∥CD,∴∠ AED=∠ BAF= 90°. 在 ? ABCD 中,AD =BC= 5,∴ DE = AD 2- AE 2=52- 32= 4. ∴CD= 2DE = 8.23.解: (1) 证明:∵四边形 ABCD 是正方形,∴ BC= CD ,∠ B=∠ CDF . 又∵ BE = DF ,∴△ CBE≌△ CDF (SAS) .∴ CE= CF .(2) GE= BE + GD 建立.原因:由 (1) ,得△ CBE≌△ CDF ,∴∠ BCE =∠ DCF . ∴∠ BCE +∠ECD =∠ DCF +∠ ECD,即∠ BCD =∠ ECF = 90°. 又∵∠ GCE = 45°,∴∠ GCF=∠ GCE =45°. ∵ CE= CF ,∠ GCE=∠ GCF ,GC= GC,∴△ ECG≌△ FCG(SAS) .∴GE= GF. ∴ GE =D F + GD = BE+ GD.24.解:(1) 证明:∵四边形 ABCD 是平行四边形,∴ OD = OB,DC ∥ AB. ∴∠ FDO =∠ EBO.∠FDO =∠ EBO,在△ DFO 和△ BEO 中,OD =OB,∴△ DFO≌△ BEO(ASA).∴ OE=OF .∠FOD =∠ EOB,(2) ∵四边形ABCD 是平行四边形,∴AB=CD ,AD = BC,OA= OC. ∵ EF ⊥ AC,∴ AE= CE.∵△ BEC 的周长是 10,∴ BC+BE + CE=BC +BE+ AE=BC+ AB=10. ∴ C? ABCD= 2(BC+ AB)=20.25.略。

八年级数学下册《平行四边形的性质》练习题及答案(人教版)

八年级数学下册《平行四边形的性质》练习题及答案(人教版)

八年级数学下册《平行四边形的性质》练习题及答案(人教版) 一、单选题1.平行四边形四个顶点分别为O、A、B、C,已知O(0,0)、A(2,3)、B(5,3),且OC边在x 轴上,则点C的坐标为()A.(3,0)B.(5,0)C.(3,0)或(﹣3,0)D.(5,0)或(﹣5,0)2.如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误..的是()A.OA=OC B.AB=CD C.AD=BC D.∠ABD=∠CBD3.如图在8×5的正方形网格中,AB,AC是经过格点的线段,如果能找到这样的格点M,使得S∠ACM=S∠ABM,这样的点M的个数是()A.1B.2C.3D.44.如图,在平行四边形 ABCD中,CE平分∠BCD交AD于点E.若∠B=46°,则∠AEC的大小为()A.110°B.113°C.125°D.134°5.如图,在平行四边形ABCD中,∠BDC=47°42′,依据尺规作图的痕迹,计算α的度数是()A.67°29′B.67°9′C.66°29′D.66°9′6.如图,在平面直角坐标系中,∠MNEF的两条对角线ME,NF交于原点O,点F的坐标是(3,2),则点N的坐标为()A.(-3,-2)B.(-3,2)C.(-2,3)D.(2,3)7.如图:平行四边形ABCD的周长为24,A、B、D相交于点O, EO⊥BD交AD于点E,则△ABE 的周长为()A.8B.10C.12D.168.在□ABCD中,∠C、∠D的度数之比为3∠1,则∠A等于()A.45°B.50°C.135°D.130°9.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=3,则▱ABCD的周长是()A.16B.14C.26D.2410.在∠ABCD中(如图),连接AC,已知∠BAC=40°,∠ACB=80°,则∠BCD=()A.80°B.100°C.120°D.140°二、填空题11.如图,在平面直角坐标系中,AD∠BC,AD=5,B(-3,0),C(9,0),点E是BC的中点,点P 是线段BC上一动点,当PB=时,以点P、A、D、E为顶点的四边形是平行四边形.12.在平面直角坐标系中,AB//x轴,点A(−1,2),AB=3,则点B的坐标为.13.如图,已知直角三角形ABC,∠A=90°,AB=4厘米,AC=3厘米,BC=5厘米,将△ABC沿AC方向平移1.5厘米,线段BC在平移过程中所形成图形的面积为平方厘米.14.在平行四边形ABCD中,∠B+∠D=200°,则∠A=.15.如图,平行四边形ABCD的对角线AC,BD交于点O,三角形AOB是等边三角形,AB=4cm ,求平行四边形ABCD的面积.三、解答题16.如图,在平行四边形ABCD中,对角线AC,BD交于点O,EF过点O交AD于点E,交BC于点F.求证:OE=OF.17.如图,∠ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.18.在平行四边形ABCD中,E为CD的中点,连接BE并延长交AD的延长线于F.求证:AD= DF.19.如图,四边形ABCD是平行四边形,延长AB至点E.使BE = AB.连接DE交BC于点F.求证:CF = BF.20.如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F在AC上,且AF=CE.求证:BE=DF.参考答案1.【答案】C2.【答案】D3.【答案】C4.【答案】B5.【答案】D6.【答案】A7.【答案】C8.【答案】C9.【答案】C10.【答案】C11.【答案】1或1112.【答案】(2,2)或(-4,2)13.【答案】614.【答案】80°15.【答案】16√3cm 216.【答案】证明:∵四边形ABCD 是平行四边形,∴OA =OC ,AD ∥BC∴∠OAE =∠OCF ,∠OEA =∠OFC在△AOE 和△COF 中{∠OAE =∠OCF ∠OEA =∠OFC OA =OC∴△AOE ≅△COF(AAS)∴OE =OF .17.【答案】证明:∵四边形ABCD 是平行四边形,∴OA=OC ,AD∠BC ,∴∠OAE=∠OCF ,在∠OAE和∠OCF 中,{∠OAE =∠OCF OA =OC ∠AOE =∠COF,∴∠AOE∠∠COF (ASA ),∴OE=OF 18.【答案】证明: ∵ 平行四边形 ABCD ∴AD//BC , AD =BC∴∠C =∠FDE∵E 为 DC 的中点∴DE =CE在 △BCE 与 △FDE 中{∠C=∠FDE CE=DE∠BEC=∠FED∴△BCE≌△FDE∴BC=FD∴AD=DF.19.【答案】证明:∵四边形ABCD是平行四边形∴AB∥CD,AB=CD∴∠DCF=∠EBF,∠CDF=∠BEF∵BE=AB∴BE=CD∴△DCF≌△EBF∴CF=BF20.【答案】证明:∵四边形ABCD是平行四边形∴AB=CD∴∠BAE=∠DCF∵AF=CE∴AF−EF=CE−EF即AE=CF∴ΔCDF≌ΔABE∴BE=DF.。

人教版八年级数学下册第十八章《平行四边形》单元练习题(含答案)

人教版八年级数学下册第十八章《平行四边形》单元练习题(含答案)

人教版八年级数学下册第十八章《平行四边形》单元练习题(含答案)一、单选题1.如图,在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD的大小是 ( )A.40° B.45° C.50° D.60°2.下列叙述,错误的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线相等的四边形是矩形3.在四边形 ABCD 中,AD=BC,E、M,F 分别为 AB,BD,CD 的中点,若∠EMF=120°,则∠MEF 等于( )A.20°B.25°C.30°D.35°4.不能判定四边形ABCD为平行四边形的题设是()A.AB=CD,AB∥CD B.∠A=∠C,∠B=∠D C.AB=AD,BC=CD D.AB=CD,AD=BC 5.如图,在矩形ABCD中,AB=3,AD=4,以BC为斜边在矩形的外部作直角三角形BEC,点F是CD的中点,则EF的最大值为( )A 73B.4 C.5 D.926.如图,在△ABC中,点D,E,F分别是BC,AB, AC的中点,则下列四个判断中不一定正确的是()A.四边形AEDF一定是平行四边形B.若∠A=90°,则四边形AEDF是矩形C.若AD平分∠A,则四边形AEDF是正方形D.若AD⊥BC,则四边形AEDF是菱形7.如图所示,直线a∥b,A是直线a上的一个定点,线段BC在直线b上移动,那么在移动过程中△ABC的面积()A.变大B.变小C.不变D.无法确定8.下列命题中的逆命题错误的是()A.如果两个角相等,那么这两个角是对顶角B.两条对角线相等的四边形是矩形C.线段垂直平分线上的点到这条线段的两个端点的距离相等D.全等三角形的对应角相等9.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的平分线分别交AB、BD于M、N两点.若AM=2,则线段BN的长为()2A.1 B2C.22D10.在平面直角坐标系中,称横.纵坐标均为整数的点为整点,如下图所示的正方形内(包括边界)整点的个数是()A.13 B.21 C.17 D.2511.下列命题中,是假命题的是()A.平行四边形的两组对边分别相等B.两组对边分别相等的四边形是平行四边形C.矩形的对角线相等D.对角线相等的四边形是矩形12.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片折叠,使点C与点A重合,折痕为EF,点D的对应点为G,连接DG,则图中阴影部分面积是()A.5 B.3 C.365D.185二、填空题13.菱形的一个内角为120°,平分这个内角的对角线长为8cm,则菱形周长为cm.14.如图,在△ABC中,AD,CD分别平分∠BAC和∠ACB,AE∥CD,CE∥AD.若从三个条件:①AB=AC;②AB=BC;③AC=BC中,选择一个作为已知条件,则能使四边形ADCE为菱形的是__(填序号).15.在平行四边形ABCD中,BE⊥AD于点E,BF⊥CD于点F,若∠EBF=60°,且AE=2,DF=1,则EC的长为_____________.16.如图,在ABCD中,AE⊥BC于点E,AF⊥CD于点F.若∠EAF=56°.则∠B=_________.17.如图,边长为 4cm 的正方形ABCD 先向上平移 2cm ,再向右平移1cm ,得到正方形A ' B 'C ' D ' ,此时阴影部分的面积为 .18.等腰梯形的腰长为5,对角线互相垂直且交点为对角线的三等分点,则梯形的周长为__________19.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1 B 1 C 1 D 1 ;把正方形A 1 B 1 C 1 D 1 边长按原法延长一倍得到正方形A 2 B 2 C 2 D 2 (如图(2));以此下去,则正方形A n B n C n D n 的面积为________.20.如图,已知Rt△ABC中,∠BCA=90°,CD是斜边上的中线,BC=12,AC=5,那么CD=_______.三、解答题21.已知:正方形ABCD 的对角线交于点O ,E 是线段OC 上的一动点,过点A 作AG BE ⊥交G ,交BD 于F .(1)若动点E 在线段OC 上(不含端点),如图(1),求证:OF OE =;(2)若动点E 在线段OC 的延长线上,如图(2),试判断OEF 的形状,并说明理由.22.如图①,在矩形ABCD 中,8AB =,4=AD .点P 从点A 出发,沿A D C D →→→运动,速度为每秒2个单位长度;点Q 从点A 出发向点B 运动,速度为每秒1个单位长度.P 、Q 两点同时出发,点Q 运动到点B 时,两点同时停止运动,设点Q 的运动时间为t (秒).连结PQ 、AC 、CP 、CQ .(1)点P 到点C 时,t =____________;当点Q 到终点时,PC 的长度为_________; (2)用含t 的代数式表示PD 的长;(3)当CPQ的面积为9时,求t的值.23.数学实验室:小明取出一张矩形纸片ABCD,AD=BC=5,AB=CD=25.他先在矩形ABCD的边AB上取一点M,接着在CD上取一点N,然后将纸片沿MN折叠,使MB′与DN交于点K,得到△MNK(如图①).(1)试判断△MNK的形状,并说明理由.(2)如何折叠能够使△MNK的面积最大?请你利用备用图探究可能出现的情况,求出最大值.24.知识再现:已知,如图,四边形ABCD是正方形,点M、N分别在边BC、CD上,连接AM、AN、MN,∠MAN=45°,延长CB至G使BG=DN,连接AG,根据三角形全等的知识,我们可以证明MN=BM+DN.知识探究:(1)在如图中,作AH⊥MN,垂足为点H,猜想AH与AB有什么数量关系?并证明;知识应用:(2)如图,已知∠BAC=45°,AD⊥BC于点D,且BD=2,AD=6,则CD的长为;知识拓展:(3)如图,四边形ABCD是正方形,E是边BC的中点,F为边CD上一点,∠FEC=2∠BAE,AB=24,求DF的长.25.如图,在平行四边形ABCD中,点O是AB的中点,且OC=OD.(1)求证:平行四边形ABCD是矩形;(2)若AD=3,∠COD=60°,求矩形ABCD的面积.26.在矩形ABCD中,AB=3, BC=4,点O为矩形ABCD对角线的交点,点P为AD边上任意一点.(1)如图1,连接PO并延长,与BC边交于点Q.求证: AP=CQ;(2)如图2,连接BP、DQ,将△ABP与△CDQ分别沿BP与DQ翻折,点A与点C分别落在矩形ABCD内的点A′、C′处,连接PA′、QC′,试求证:四边形PA′QC′是平行四边形;(3)在(2)的条件下,请直接写出:当点A′、C′同时落在矩形ABCD 的对角线上时A′C′的长.27.如图,点P 为正方形ABCD 对角线BD 上一点,PE CD ⊥于,E PF BC ⊥于点F .()1求证:PA PC =;()2若正方形ABCD 的边长为1,求四边形PFCE 的周长.28.如图,在矩形ABCD 中,点E 为AD 的中点,不用圆规、量角器等工具,只用无刻度的直尺作图.(1)如图1,在BC 上找点F ,使点F 是BC 的中点;(2)如图2,连接AC ,在AC 上取两点P ,Q ,使P ,Q 是AC 的三等分点.29..动手操作:在一张长12cm、宽5cm的矩形纸片内,折出一个菱形.小颖同学按照取两组对边中点的方法折出菱形EFGH(见方案一),小明同学沿矩形的对角线AC折出∠=∠的方法得到菱形AECF(见方案二).CAE CAD∠=∠,ACF ACB(1)你能说出小颖、小明折出菱形的理由吗?(2)请你通过计算,比较小颖和小明折出的菱形,哪个菱形面积较大?参考答案1.C2.D3.C4.C5.D6.C7.C8.D9.A10.D11.D12.D13.32.14.②15.316.56°17.6cm 218.19.5n 20.6.521.(1)证明:∵四边形ABCD 为正方形, ∴OA OB =,AOB BOC ∠=∠90=︒,∴∠OBE +∠OEG =90°, ∵AG BE ⊥于点G , ∴90AGE ∠=︒, ∴∠OAF +∠OEG =90°, ∴GAE OBE ∠=∠, 在AOF 和BOE △中,AOF BOE AO BOOAF OBE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()AOF BOE ASA △△≌, ∴OF OE =;(2)解:OEF 是等腰直角三角形,理由如下: ∵四边形ABCD 为正方形, ∴OA OB =,AOB BOC ∠=∠90=︒,∴∠OBE +∠OEG =90°, ∵AG BE ⊥于点G , ∴90AGE ∠=︒, ∴∠OAF +∠OEG =90°, ∴GAE OBE ∠=∠, 在AOF 和BOE △中,AOF BOE AO BOOAF OBE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()AOF BOE ASA △△≌∴OF OE =;又∵90BOC ∠=°,∴OEF 是等腰直角三角形.22.(1)8s ,4;(2)当02t ≤≤时,42PD t =-;当26t <<时,24PD t =-;当68t ≤≤时,202PD t =-;(3)当CPQ 的面积为9时1t =或154t =. 23.(1)△MNK 是等腰三角形(2)S △MNK =32.5.24.(1)答:AB =AH ,证明:如图1∵四边形ABCD 是正方形,∴90,ABC D ∠=∠=∴18090,ABG ABC ∠=-∠=又∵AB =AD ,∵在△ABG 和△ADN 中, AB AD ABG ADN BG DN ,=⎧⎪∠=∠⎨⎪=⎩∴△ABG ≌△ADN (SAS ),∴BAG DAN AG AN ∠=∠=,,∵90,45BAD MAN ∠=∠=,∴9045DAN BAM MAN ∠+∠=-∠=,∴45,BAG BAM ∠+∠=即45GAM ∠=,∵在△GAM 和△NAM 中,AG AN GAM NAM AM AM =⎧⎪∠=∠⎨⎪=⎩,∴△GAM ≌△NAM (SAS ),又∵GM 和NM 是对应边,∴AB =AH (全等三角形对应边上的高相等);(2)作△ABD 关于直线AB 的对称△ABE ,作△ACD 关于直线AC 的对称△ACF ,∵AD 是△ABC 的高,∴90,ADB ADC ∠=∠=∴90E F ∠=∠=,又∵45BAC ∠=∴90,EAF ∠=延长EB 、FC 交于点G ,则四边形AEGF 是矩形,又∵AE =AD =AF∴四边形AEGF 是正方形,由(1)、(2)知:EB =DB =2,AE =AF=AD=EG =6,设CD =x ,∴BG =6−2=4;CG =6− x ;BC =2+ x ,在Rt △BGC 中,()2224(62,)x x +-=+解得3,x =故CD 的长为3.(3)如图3,过点A 作AM EF ⊥交EF 于点M,901,21,AEB FEC ∠=-∠∠=∠180901,AEM AEB FEC ∠=-∠-∠=-∠ ,AEB AEM ∴∠=∠在△ABE 和△AME 中,90,ABE AME AEB AEFAE AE ⎧∠=∠=⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△AME (AAS ),1112,22BE ME BC AB ∴==== ,AB AM AD == 在Rt ADF 和Rt AMF 中,,AD AM AF AF =⎧⎨=⎩Rt ADF ≌Rt AMF ,,MF DF ∴=设DF =x ,∴EF =12+ x ;FC =24− x ;EC =12,在Rt △EFC 中,()2221(221)42,x x +-=+解得8,x =故DF 的长为8.图325.(1)证明:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴∠A+∠B=180°,∵O 是AB 的中点,∴AO=BO ,在△DAO 和△CBO 中AD BC AO BO DO CO ⎧⎪⎨⎪⎩===∴△DAO ≌△CBO (SSS ),∴∠A=∠B ,∵∠A+∠B=180°,∴∠A=90°,∵四边形ABCD 是平行四边形,∴四边形ABCD 是矩形;(2)解:∵△DAO ≌△CBO ,∠DOC=60°,∴∠DOA=∠COB=12(180°-∠DOC )=60°,∵∠A=90°,∴∠ADO=30°,∴ DO=2AO ,∵AD=3,由勾股定理得:2223(2),AO AO +=解得:AO=3, ∴AB=2AO=23,∴▱ABCD 的面积是AB×AD=2336 3.⨯=26.(1)连接AC∵O 是矩形是ABCD 的对角线交点.∴AC 过点O ,且AO=OC∵四边形ABCD 是矩形,∴AD//BC∴∠PAO=∠QCO又∠AOP=∠COQ∴△AOP ≌△COQ (ASA )∴AP=CQ(2)∵四边形ABCD 是矩形∴AB=CD ,∠A=∠C又∵AP=CQ ,∴△BAP ≌△DCQ (SAS )∴∠APB=∠DQC .∵翻折∴∠APA'=2∠APB ,∠C'QC=2∠CQD ,AP=AP',CQ=CQ'∴∠APA'=∠C'QC A'P=C'Q∵AD//BC∴∠APQ=∠CQP∴∠APA'-∠APQ=∠C'QC-∠CQP即∠QPA'=∠PQC'∴A'P//C'Q又∵A'P=C'Q∴四边形PA'QC'是平行四边形(3)若点A',点C'都落在BD上时,如图,∵矩形ABCD中,AB=3,BC=4,229165∴==+=+=,BD AC AB CB∵将△ABP与△CDQ分别沿BP与DQ翻折,点A与点C分别落在矩形ABCD内的点A′、C′处,∴AB=A'B=3,CD=C'D=3,∴A'C'=A'B+C'D-BD=1;若点A',点C'都落在AC上时,如图,设BP与AC交于点E,∵将△ABP折叠,∴BP⊥AA',AE=A'E,∵S△ABC=12×AB×BC=12×AC×BE,341255BE ⨯∴==,95AE∴===,∴A'E=AE=95,∴A'C=AC-AA'=75,同理可得AC'=75,∴A'C'=AC-AC'-A'C=115,综上所述:A'C=1或115.27.(1)∵四边形ABCD是正方形,∴AB=CB,∠ABD=∠CBD=45°,∠BCD=90°,在△ABP与△CBP中,AB CBABD CBDBP BP=⎧⎪∠=∠⎨⎪=⎩,∴△ABP≌△CBP(SAS),∴PA=PC;(2)∵PE⊥CD,PF⊥BC,∴∠PFC=90°,∠PEC=90°,又∵∠BCD=90°,∴四边形PFCE是矩形,∴PE=CF,PF=CE,又∵∠CBD=45°,∠PFB=90°,∴△PBF是等腰直角三角形,∴BF=PF,∴矩形PFCE的周长为2(PF+FC)=2(BF+FC)=2BC=2.28.(1)如图1,连接AC、BD交于点O,延长EO交BC于F,则点F即为所求.证明如下:∵ABCD是矩形,∴BO=OD,AD∥BC,AD=BC,∴∠EDO=∠FBO.∵∠EOD=∠FOB,∴△EOD≌△FOB,∴ED=FB=12AD=12BC,∴F为BC的中点.(2)如图2,BD交AC于O,延长EO交BC于F.连接EB交AC于P,连接DF交AC于Q,则P、Q即为所求.证明如下:由(1)可得:F为BC的中点,∴ED=BF=AE=FC,ED∥BF,∴四边形EBFD是平行四边形,∴BE∥FD.∵FC=BF,∴CQ=PQ.∵AD∥BC,∴∠EAC=∠FCA,∠ADQ=∠CFQ.∵BE∥FD,∴∠AEP=∠ADQ,∴∠AEP=∠CFQ.在△AEP和△CFQ中,∵∠EAC=∠FCA,AE=CF,∠AEP=∠CFQ,∴△AEP≌△CFQ,∴AP=CQ,∴P ,Q 是AC 的三等分点.29.(1)小颖的理由:依次连接矩形ABCD 各边的中点及对角线,由于矩形的对角线相等,利用中位线的性质,得四边形EFGH 的四条边相等,根据四边相等的四边形是菱形,得四边形EFGH 是菱形.小明的理由:∵四边形ABCD 是矩形,∴//AD BC ,则DAC ACB ∠=∠,又∵CAE CAD ∠=∠,ACF ACB ∠=∠,∴CAE CAD ACF ACB ∠=∠=∠=∠,∴AE EC CF FA ===,∴四边形AECF 是菱形.(2)方案一:21541254630(cm )22AEH EFGH ABCD S S S ∆=-=⨯-⨯⨯⨯=菱形矩形; 方案二:设cm BE x =,则(12)cm CE x =-, ∴225cm AE x =+,由四边形AECF 是菱形,得22AE CE =,即2225(12)x x +=-, ∴11924x =, 21119845212525(cm )22424ABE AECF ABCD S S S ∆=-=⨯-⨯⨯⨯=菱形矩形. 比较可知,小明所折的菱形面积较大.。

人教版八年级数学下册第18章《平行四边形》练习题(含答案)

人教版八年级数学下册第18章《平行四边形》练习题(含答案)

人教版八年级数学下册第18章《平行四边形》练习题(含答案)1.在正方形ABCD中,E是△ABD内的点,EB=EC.(1)如图1,若EB=BC,求∠EBD的度数;(2)如图2,EC与BD交于点F,连接AE,若S四边形ABFE=a,试探究线段FC与BE之间的数量关系,并说明理由.2.(1)如图1,在正方形ABCD中,E是AB上一点,G是AD上一点,∠ECG=45°,那么EG与图中两条线段的和相等?证明你的结论.(2)请用(1)中所积累的经验和知识完成此题,如图2,在四边形ABCD中,AG∥BC(BC >AG),∠B=90°,AB=BC=12,E是AB上一点,且∠ECG=45°,BE=4,求EG的长?3.如图,正方形ABCD的边长为1,对角线AC、BD交于点O,E是BC延长线上一点,且AC =EC,连接AE交BD于点P.(1)求∠DAE的度数;(2)求BP的长.4.如图,在矩形ABCD中,点O为对角线AC的中点,过点O作EF⊥AC交BC于点E,交AD 于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)连接OB,若AB=8,AF=10,求OB的长.5.如图,在平行四边形ABCD中,对角线AC,BD交于点O,E是AD上任意一点,连接EO 并延长,交BC于点F,连接AF,CE.(1)求证:四边形AFCE是平行四边形;(2)若∠DAC=60°,∠ADB=15°,AC=6.求出平行四边形ABCD的边BC上的高h的值.6.如图,在正方形ABCD中,对角线AC、BD相交于点O,E为OC上动点(不与O、C重合),作AF⊥BE,垂足为G,分别交BC、OB于F、H,连接OG、CG.(1)求证:△AOH≌△BOE;(2)求∠AGO的度数;(3)若∠OGC=90°,BG=,求△OGC的面积.7.如图,在矩形ABCD中,BC=24cm,P、Q、M、N分别从A、B、C、D同时出发,分别沿边AD、BC、CB、DA移动,当有一个点先到达所在边的另一个端点时,其它各点也随之停止移动.已知移动一段时间后,若BQ=xcm(x≠0),AP=2xcm,CM=3xcm,DN=x2cm.当x为何值时,以P、Q、M、N为顶点的四边形是平行四边形?8.在正方形ABCD中,F是BC边的中点,ED⊥AF于点E,连接CE.(1)如图1,求证:CE=CD;(2)如图2,连接BE、BD,请直接写出图2中所有与∠BEF度数相等的角.9.如图1,已知平行四边形ABCD,DE是∠ADC的角平分线,交BC于点E.(1)求证:CD=CE.(2)如图2所示,点P是平行四边形ABCD的边BC所在直线上一点,若BE=CE,且AE =3,DE=4,求△APD的面积.10.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG,如图1所示.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120°,连接BG、CG、DG,如图2所示,①求证:△DGC≌△BGE;②求∠BDG的度数;(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,如图3所示,求DM的长.11.如图,已知平行四边形ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于点M、N.(1)求证:四边形CMAN是平行四边形(2)已知DE=8,FN=6,求BN的长.12.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.若AC=2,CE=4;(1)求证:四边形ACED是平行四边形.(2)求BC的长.13.如图,长方形ABCD中,AB∥CD,∠D=90°,AB=CD,AD=4cm,点P从点D出发(不含点D)以2cm/s的速度沿D→A→B的方向运动到点B停止,点P出发1s后,点Q才开始从点C出发以acm/s的速度沿C→D的方向运动到点D停止,当点P到达点B时,点Q 恰好到达点D.(1)当点P到达点A时,△CPQ的面积为3cm2,求CD的长;(2)在(1)的条件下,设点P运动时间为t(s),运动过程中△BPQ的面积为S(cm2),请用含t(s)的式子表示面积S(cm2),并直接写出t的取值范围.14.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=6,AB=8,求菱形ADCF的面积.15.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.(1)若∠B=30°,AC=6,求CE的长;(2)过点F作AB的垂线,垂足为G,连接EG,试判断四边形CEGF的形状,并说明原因.参考答案1.解:(1)如图1,∵EB=BC=EC,∴△EBC是等边三角形,∴∠EBC=60°,∵四边形ABCD是正方形,∴∠CBD=45°,∴∠EBD=∠EBC﹣∠CBD=60°﹣45°=15°;(2)线段FC与BE之间的等量关系是:FC•BE=2a,理由是:如图2,连接AF交BE于G,∵四边形ABCD是正方形,∴AB=BC,∠ABD=∠DBC,∵BF=BF,∴△ABF≌△CBF(SAS),∴AF=CF,∠BAF=∠BCF,∵EB=EC,∴∠ECB=∠EBC,∵∠ABC=∠DCB=90°,∴∠ABE=∠DCE,∴∠ABE+∠BAF=∠DCE+∠BCE=90°,∴∠AGB=90°,∴AF⊥BE,∴S四边形ABFE=S△ABE+S△BEF,=,=,=,∵S四边形ABFE=a,∴=a,∴FC•BE=2a.2.解:(1)EG=BE+DG.如图1,延长AD至F,使DF=BE,连接CF,∵四边形ABCD为正方形,∴BC=DC,∠ABC=∠ADC=∠BCD=90°,∵∠CDF=180﹣∠ADC,∴∠CDF=90°,∴∠ABC=∠CDF,∵BE=DF,∴△EBC≌△FDC(SAS),∴∠BCE=∠DCF,EC=FC,∵∠ECG=45°,∴∠BCE+∠GCD=∠BCD﹣∠ECG=90°﹣45°=45°,∴∠GCD+DCF=∠FCG=45°,∴∠ECG=∠FCG,∵GC=GC,∴△ECG≌△FCG(SAS),∴EG=GF,∵GF=GD+DF=GD+BE,∴EG=GD+BE.(2)如图2,过点C作CD⊥AG,交AG的延长线于D.∵AG∥BC,∴∠A+∠B=180°,∵∠B=90°,∴∠A=180°﹣∠B=90°,∵∠CDA=90°,AB=BC,∴四边形ABCD是正方形,∵AB=BC=12,∴CD=AD=12,∵BE=4,∴AE=AB﹣BE=8,设EG=x,由(1)知EG=BE+GD,∴GD=x﹣4,∴AG=AD﹣GD=12﹣(x﹣4)=16﹣x,在Rt△AEG中:GE2=AG2+AE2,∴x2=(16﹣x)2+82,解得x=10,∴EG=10.3.解:(1)∵四边形ABCD的正方形,∴∠ACB=45°,AD∥BC,∵AC=EC,∴∠E=∠EAC,∵∠ACB=∠E+∠EAC=45°,∴∠E=22.5°,∵AD∥BC,∴∠DAE=∠E=22.5°;(2)∵四边形ABCD是正方形,正方形ABCD的边长是1,∴AB=1,∠DAB=90°,∠DBC=45°,∵∠DAE=22.5°,∴∠BAP=90°﹣22.5°=67.5°,∠APB=∠E+∠DBC=22.5°+45°=67.5°,∴∠BAP=∠APB,∴BP=AB=1.4.证明:(1)∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)如图,∵AB=8,AF=AE=EC=10,∴BE===6,∴BC=16,∴AC===8,∵AO=CO,∠ABC=90°,∴BO=AC=4.5.证明:(1)∵四边形ABCD是平行四边形∴AD∥BC,AO=CO∴∠AEF=∠CFE,∠EAC=∠FCA,且AO=CO ∴△AOE≌△COF(AAS)∴OF=OE,且AO=CO∴四边形AFCE是平行四边形;(2)∵∠DAC=60°∴,∴h=×AC=3.6.(1)证明:∵四边形ABCD是正方形,∴OA=OB,∠ABC=90°,AC⊥BD,∴∠AOB=∠BOE=90°,∵AF⊥BE,∴∠GAE+∠AEG=∠OBE+∠AEG=90°,∴∠GAE=∠OBE,在△AOH和△BOE中,,∴△AOH≌△BOE(ASA);(2)∠AGO=45°;(3)S△OGC=OG•CG=×6=3.7.当x为2或﹣3+时,以P、Q、M、N为顶点的四边形是平行四边形.8.(1)证明:作CH⊥DE交DE于点H,交AD于点N,∵ED⊥AF,CH⊥DE,∴AF∥CN,又AN∥CF,∴四边形AFCN为平行四边形,∴AN=CF,∵F是BC边的中点,AD=BC,∴N是AD边的中点,∵NH∥AE,DN=NA,∴DH=HE,又CH⊥DE,∴CE=CD;(2)解:作BG⊥AF于点G,设正方形的边长为4a,则BF=2a,由勾股定理得,AF===2a,×AB×BF=×AF×BG,即×4a×2a=×2a×BG,解得,BG=a,∵∠ABF=90°,BG⊥AF,∴BF2=FG•FA,即(2a)2=FG•2a,解得,FG=a,∵∠BAF+∠DAE=90°,∠ADE+∠DAE=90°,∴∠BAG=∠ADE,在△BAG和△ADE中,∴△BAG≌△ADE(AAS)∴AE=BG=a,∴EG=AF﹣AE﹣FG=a,∴BG=EG,∴∠BEF=45°,则图2中所有与∠BEF度数相等的角有∠ABD、∠CBD、∠ADB、∠CDB.9.(1)证明:∵DE是∠ADC的角平分线,∴∠ADE=∠CDE,在平行四边形ABCD中,AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CD=CE;(2)解:∵CD=CE,BE=CE,∴BE=CD=AB,∴△ABE为等腰三角形,∴设∠BAE=∠BEA=α,∠CED=∠CDE=β,∴∠ABE=180°﹣2α,∠DCE=180°﹣2β,又∵∠ABE+∠DCE=180°,∴180°﹣2α+180°﹣2β=180°,∴α+β=90°,∴∠AED=90°,即△AED为直角三角形,∴AD===5,过点E作EK⊥AD,∴EK==,△APD的面积=AD•EK=×5×=6.10.解:(1)证明:∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)①∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△DGC≌△BGE(SAS);②∵△DGC≌△BGE,∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形,∴∠BDG=60°;(3)方法一:如图3中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=8,AD=14,∴BD=2,∴DM=BD=.方法二:过M作MH⊥DF于H,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形,∴∠CEF=45°,∴∠AEB=∠CEF=45°,∴BE=AB=8,∴CE=CF=14﹣8=6,∵MH∥CE,EM=FM,∴CH=FH=CF=3,∴MH=CE=3,∴DH=11,∴DM==.11.(1)证明:∵AE⊥BD,CF⊥BD,∴AM∥CN,∵四边形ABCD是平行四边形,∴CM∥AN∴四边形CMAN是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADE=∠CBF,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在△ADE与△CBF中,∠ADE=∠CBF,∠AED=∠CFB,AD=BC,∴△ADE≌△CBF(AAS);∴DE=BF=8,∵FN=6,∴.12.解:(1)证明:∵∠ACB=90°,DE⊥BC,∴AC∥DE又∵CE∥AD∴四边形ACED是平行四边形.(2)∵四边形ACED是平行四边形.∴DE=AC=2.在Rt△CDE中,由勾股定理得CD===2.∵D是BC的中点,∴BC=2CD=4.13.解:(1)设点P运动时间为t(s),根据题意,得点P出发1s后,点Q才开始从点C出发以acm/s的速度沿C→D的方向运动到点D停止,当点P到达点B时,点Q恰好到达点D.∴2(t﹣2)=a(t﹣1),当点P到达点A时,△CPQ的面积为3cm2,即a×1×4=3,∴a=.即2(t﹣2)=(t﹣1),解得t=5,所以CD=a(t﹣1)=6.答:CD的长为6;(2)根据题意,得BC=AD=4,CD=6DP=2t,CQ=1.5(t﹣1),①点P的运动时间为t,0﹣1秒时点Q还在点C,△BPQ面积不变为=12;即S=12(0<t≤1)②当1<t≤2时,DQ=6﹣1.5(t﹣1)=7.5﹣1.5t,S=S梯形DPBC﹣S△DPQ﹣S△BQC=(2t+4)×6﹣×2t×(7.5﹣1.5t)﹣×1.5(t﹣1)×4 =1.5t2﹣4.5t+15;③当2<t≤5时,BP=10﹣2t,S=BP•BC=(10﹣2t)×4=20﹣4t.综上所述:运动过程中△BPQ的面积为S(cm2),用含t(s)的式子表示面积S(cm2)为:S=12 (0<t≤1)或S=1.5t2﹣4.5t+15(1<t≤2)或S=20﹣4t(2<t≤5).14.解:(1)证明:∵E是AD的中点∴AE=DE∵AF∥BC∴∠AFE=∠DBE在△AEF和△DEB中∴△AEF≌△DEB(AAS)∴AF=DB∴四边形ADCF是平行四边形∵∠BAC=90°,D是BC的中点∴AD=CD=BC∴四边形ADCF是菱形;(2)解:法一、设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,∴S菱形ADCF=CD•h=BC•h=S△ABC=AB•AC=.法二、连接DF∵AF=DB,AF∥DB∴四边形ABDF是平行四边形∴DF=AB=8∴S菱形ADCF=AC•DF=.法三、∵三角形ABD与三角形ADC与三角形AFC的面积相等,∴菱形ADCF的面积等于三角形ABC的面积为24.答:菱形ADCF的面积为24.15.解:(1)∵∠ACB=90°,∠B=30°,∴∠CAB=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=30°,∵AF平分∠CAB,∴∠CAF=∠BAF=30°,∴CE=AE,过点E用EH垂直于AC于点H,∴CH=AH∵AC=6,∴CE=2答:CE的长为2;(2)∵FG⊥AB,FC⊥AC,AF平分∠CAB,∴∠ACF=∠AGF=90°,CF=GF,在Rt△ACF与Rt△AGF中,AF=AF,CF=GF,∴Rt△ACF≌Rt△AGF(HL),∴∠AFC=∠AFG,∵CD⊥AB,FG⊥AB,∴CD∥FG,∴∠CEF=∠EFG,∴∠CEF=∠CFE,∴CE=CF,∴CE=FG,∴四边形CEGF是菱形。

八年级数学下册《平行四边形》练习题与答案(人教版)

八年级数学下册《平行四边形》练习题与答案(人教版)

八年级数学下册《平行四边形》练习题与答案(人教版)一、选择题1.如图,▱ABCD的对角线AC,BD相交于点O,且AC+BD=16,CD=6,则△ABO周长是( )A.10B.14C.20D.222.如图,在▱ABCD中,BC=BD,∠C=74°,则∠ADB的度数是( )A.16°B.22°C.32°D.68°3.下列条件中,不能判定四边形是平行四边形的是( )A.两组对边分别平行B.一组对边平行,另一组对边相等C.两组对边分别相等D.一组对边平行且相等4.如图,已知点E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE度数为( )A.20°B.25°C.30°D.35°5.如图,已知菱形ABCD中,对角线AC与BD相交于点O,OE∥AB交BC于点E,AD=6cm,则OE的长为( )A.6cmB.4cmC.3cmD.2cm6.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为( )A.20°B.30°C.35°D.55°7.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )A.3a+2bB.3a+4bC.6a+2bD.6a+4b8.在四边形ABCD中,AC与BD相交于点O,且OA=OC,OB=OD.如果再增加条件AC=BD,此四边形一定是( )A.正方形B.矩形C.菱形D.都有可能9.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为( )A.2B. 3C. 2D.110.如图,正方形ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D 恰好都落在点G处,已知BE=1,则EF的长为( )A.1.5B.2.5C.2.25D.311.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是( )A.AB∥DCB.AC=BDC.AC⊥BDD.AB=DC12.如图,在四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,…,如此进行下去,得到四边形A n B n C n D n.下列结论正确的是( )①四边形A 4B 4C 4D 4是菱形;②四边形A 3B 3C 3D 3是矩形;③四边形A 7B 7C 7D 7的周长为a +b 8; ④四边形A n B n C n D n 的面积为ab 2n . A.①②③ B.②③④ C.①③④ D.①②③④二、填空题13.如图,在四边形ABCD 中,AD//BC ,在不添加任何辅助线的情况下,请你添加一个条件 ,使四边形ABCD 是平行四边形(填一个即可).14.如图所示,已知▱ABCD ,下列条件:①AC =BD ,②AB =AD ,③∠1=∠2,④AB ⊥BC 中,能说明▱ABCD 是矩形的有(填写序号) .15.如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是_________.16.如图,把矩形ABCD 绕着点A 逆时针旋转90°可以得到矩形AEFG ,则图中△AFC 是 三角形.17.如图,四边形ABCD 是正方形,延长AB 到点E ,使AE =AC ,则∠BCE 的度数是 .18.如图,在矩形纸片ABCD中,AB=6,BC=10,BC边上有一点E,BE=4,将纸片折叠,使A点与E点重合,折痕MN交AD于M点,则线段AM的长是.三、解答题19.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.(1)求证:四边形AECF是平行四边形.(2)若AF=EF,∠BAF=108°,∠CDF=36°,直接写出图中所有的等腰三角形.20.如图,已知在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE.(2)连结DE,线段DE与AB之间有怎样的位置关系和数量关系?请证明你的结论.21.如图,在△ABC中,∠A CB=90°,O,D分别是边AC,AB的中点,过点C作CE∥AB交DO的延长线于点E,连接AE.(1)求证:四边形AECD 是菱形;(2)若四边形AECD 的面积为24,BC :AC =34,求BC 的长.22.如图,已知点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线上一点,且EA ⊥AF.求证:DE =BF.23.已知:如图1,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形EFGH(即四边形ABCD 的中点四边形).(1)四边形EFGH 的形状是 ,证明你的结论.(2)如图2,请连接四边形ABCD 的对角线AC 与BD ,当AC 与BD 满足 条件时,四边形EFGH 是矩形;证明你的结论.(3)你学过的哪种特殊四边形的中点四边形是矩形?说明理由.24.已知四边形ABCD为正方形,E是BC的中点,连接AE,过点A作∠AFD,使∠AFD=2∠EAB,AF交CD于点F,如图①,易证:AF=CD+CF.(1)如图②,当四边形ABCD为矩形时,其他条件不变,线段AF,CD,CF之间有怎样的数量关系?请写出你的猜想,并给予证明;(2)如图③,当四边形ABCD为平行四边形时,其他条件不变,线段AF,CD,CF之间又有怎样的数量关系?请直接写出你的猜想.参考答案1.B.2.C3.B4.C.5.C6.A.7.A.8.B.9.B10.B11.C12.B.13.答案为:AD=BC(答案不唯一).14.答案为:①④.15.答案为:AB=AD或AC⊥BD;16.答案为:等腰直角.17.答案为:22.5°.18.答案为13 2.19.证明:(1)如图,连接AC交BD于点O,在▱ABCD中,OA=OC,OB=OD∵BE=DF∴OB﹣BE=OD﹣DF,即OE=OF∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形);(2)解:∵AB∥CD∴∠ABF=∠CDF=36°∴∠AFB=180°﹣108°﹣36°=36°∴AB=AF∵AF=EF∴△ABF 和△AFE 是等腰三角形同理△EFC 与△CDE 是等腰三角形.20.证明:(1)∵AB =AC∴∠B =∠ACB又∵AD 是BC 边上的中线∴AD ⊥BC ,即∠ADB =90°.∵AE ∥BC∴∠EAC =∠ACB∴∠B =∠EAC.∵CE ⊥AE ,所以∠CEA =90°∴∠ADB =∠CEA.又∵AB =CA∴△ABD ≌△CAE(AAS).(2)解:AB ∥DE 且AB =DE.证明:由△ABD ≌△CAE 可得AE =BD又∵AE ∥BD∴四边形ABDE 是平行四边形∴AB ∥DE 且AB =DE.21.(1)证明:∵点O 是AC 的中点∴OA =OC.∵CE ∥AB∴∠DAO =∠ECO.又∵∠AOD =∠COE∴△AOD ≌△COE(ASA)∴AD =CE∴四边形AECD 是平行四边形.又∵CD 是Rt △ABC 斜边AB 上的中线∴CD =AD =12AB∴四边形AECD 是菱形;(2)由(1)知,四边形AECD 是菱形∴AC ⊥ED.在Rt △AOD 中 OD OA 34可设OD =3x ,OA =4x则ED =2OD =6x ,AC =2OA =8x.由题意可得12·6x ·8x =24 ∴x =1∴OD =3.∵O ,D 分别是AC ,AB 的中点∴OD 是△ABC 的中位线∴BC =2OD =6.22.证明:∵∠FAB +∠BAE =90°,∠DAE +∠BAE =90°∴∠FAB =∠DAE∵∠AB =AD ,∠ABF =∠ADE∴△AFB ≌△ADE∴DE =BF.23.解:(1)四边形EFGH 的形状是平行四边形.理由如下:如图1,连结BD . ∵E 、H 分别是AB 、AD 中点∴EH ∥BD ,EH =12BD同理FG ∥BD ,FG =12BD∴EH ∥FG ,EH =FG∴四边形EFGH 是平行四边形;(2)当四边形ABCD 的对角线满足互相垂直的条件时,四边形EFGH 是矩形.理由如下: 如图2,连结AC 、BD .∵E 、F 、G 、H 分别为四边形ABCD 四条边上的中点∴EH ∥BD ,HG ∥AC∵AC ⊥BD∴EH ⊥HG又∵四边形EFGH 是平行四边形∴平行四边形EFGH 是矩形;(3)菱形的中点四边形是矩形.理由如下:如图3,连结AC 、BD .∵E 、F 、G 、H 分别为四边形ABCD 四条边上的中点∴EH ∥BD ,HG ∥AC ,FG ∥BD ,EH =12BD ,FG =12BD∴EH ∥FG ,EH =FG∴四边形EFGH是平行四边形.∵四边形ABCD是菱形∴AC⊥BD∵EH∥BD,HG∥AC∴EH⊥HG∴平行四边形EFGH是矩形.故答案为:平行四边形;互相垂直.24.解:(1)AF=CD+CF;(2)AF=CD+CF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基础练习
1、一艘帆船由于风向的原因先向正向航行了99千米,然后向正北方向航行了20千米,这时它离出发点 千米。

2、若一个等腰三角形的底边长为8,底边上的高为3,则这个等腰三角形的腰长为 。

3、在△ABC 中,AB =AC =10, BD 是AC 边的高,DC =2, 则BD=__。

4、矩形ABCD 的对角线6AC cm =,则另一条对角线________BD =。

5、已知矩形ABCD ,AC =8,则BD = ,OD = 。

6.①=-2)3.0( ;②=-2)52( 。

7.比较大小:73- 152-。

8.如图所示,以直角三角形ABC 的三边向外作正方形,其面积分别为123,,S S S ,且1234,8,S S S ===则 ;
9.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为
米。

10.如图,90,4,3,12C ABD AC BC BD ︒∠=∠====,则AD= ;
11.已知直角三角形的两条边为6cm 、8cm ,这个直角三角形第三边的长为
12.四边形ABCD 中,对角线AC,BD 相交于点O,下列条件不能判定这个四边形是平行四边形的是( )
A.AB ∥DC,AD ∥BC
B.AB=DC,AD=BC
C.AO=CO,BO=DO
D.AB ∥DC,AD=BC
13.如图,菱形ABCD的两条对角线相交于O,
若AC=6,BD=4,则菱形ABCD的周长是
( )A.24 B.16 C.413 D.23
14.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.
15.已知菱形的两条对角线分别是6cm和8cm ,求菱形的周长和面积.
16.已知菱形ABCD的周长为20cm,且相邻两角之比是1∶2,求
菱形的对角线的长和面积.
17、已知:如图(1),ABCD的四个角的平分线分别相交于点E,F,G,H.
求证:四边形EFGH是矩形.
18.已知:如图,菱形ABCD 中,E 、F 分别是CB 、CD 上的点, 且BE=DF .求证:∠AEF=∠AFE .
19.如图,EB=EC,EA=ED,AD=BC, ∠AEB=∠DEC 。

证明:四边形ABCD 是矩形.
20.计算:
(1)2484554+-+ (2) 2332326--
(3) (4
)22(---
复习巩固
1.①
=-2)3.0( ;②=-2)52( 。

2.比较大小:73- 152-。

3.如图所示,以直角三角形ABC 的三边向外作正方形,其面积分
别为123,,S S S ,且1234,8,S S S ===则 ;
4.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为
米。

5.已知()010021662=-+-+-z y x ,则以x ,y ,z 为三边的三
角形是 三角形。

6.三角形的三边长分别为6,8,10,它的最短边上的高是 。

7.能判断四边形是矩形的条件是( )
A 、两条对角线互相平分
B 、两条对角线相等
C 、两条对角线互相平分且相等
D 、两条对角线互相垂直。

8.正方形的四条边_ __,四个角____,两条对角线____.
9.下列说法是否正确,并说明理由.
①对角线相等的菱形是正方形;( )
②对角线互相垂直的矩形是正方形;( )
③对角线垂直且相等的四边形是正方形;( )
④四条边都相等的四边形是正方形;( )
⑤四个角相等的四边形是正方形.( )
10.如图,
90,4,3,12C ABD AC BC BD ︒∠=∠====,则AD= ;
11.已知□ABCD 中,∠A+∠C=200°,则∠B 的度数是( )
A .100°
B .160°
C .80°
D .60°
12.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )
A . A
B ∥D
C ,A
D ∥BC B . AB=DC ,AD=BC
C . AO=CO ,BO=DO
D . AB ∥DC ,AD=BC
13.已知:如图,四边形ABCD 为正方形,E 、F 分别为CD 、CB 延长线上的点,且DE =BF .求证:∠AFE =∠AEF 。

14.在ABC Rt ∆中,∠C =90°,a 、b 、c 分别表示A ∠、B ∠、C ∠的对边。

①已知c=25,b=15,求a; ②已知a=
6,∠A =60°,求b、c。

15.已知:如图,点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线上一点,且DE=BF .
求证:EA ⊥AF .
16.已知:如图,△ABC 中,∠C=90°,CD 平分∠ACB ,DE ⊥BC 于E ,DF ⊥AC 于F .求证:四边形CFDE 是正方形. B A C a
b
c
17.已知:如图,正方形ABCD中,E为BC上一点,AF平分∠DAE 交CD于F,求证:AE=BE+DF.
18. 已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DG⊥AE于G,DG交OA于F.求证:OE=OF.
19.
如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)①猜想如图中线段BG、线段DE的长度关系及所在直线的位置关系;
②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.
(2)将原题中正方形改为矩形(如图4-6),且AB=a,BC=b,CE=ka, CG=kb (a ≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.
(3)在第(2)题图5中,连结DG、BE,且a=3,b=2,k=,求的值.。

相关文档
最新文档