微积分-经管类-第四版-第七章7.1系统答案

合集下载

经管类微积分(上)参考答案

经管类微积分(上)参考答案

经管类《微积分》(上)习题参考答案第一章 函数习题一一、1.否; 2.是; 3.是; 4.否.二、1.)[()5,33,2⋃; 2.()πππ+k k 2,2; 3. 2,24>-<<-x x 或;4.[]a a -1,; 5.[]2,0; 6.222+-x x . 三、1.奇函数;2.奇函数. 3.(略)四、1(略);2.212+x ; 3.11-+x x . 五、1.x v v u u y sin ,,ln 2===;2.x x u e y u ln ,==;3.1525++⋅x x .六、50500,,)50(8.050)(>≤<⎩⎨⎧-+=x x x a a ax x R .第二章极限与连续习题一一、 1.0,1,1,0; 2.e e e e ,,,231- 二、1.1; 2.0; 3.21; 4.4.三、1. (略); 2.证明(略),极限为2 四、()1lim 0=+→x f x ,()1lim 0-=-→x f x ,()x f x 0lim →不存在. 五、都不存在. 六、15832.5,32.4,221.3,1.2,0.1 1.8,3.7,.6e .七、2,1==b a 八、2.4,32.3,21.2,2.1-习题二 一、()().1,1.4,,22,1.3,2.2,.1+∞⋃第一类二、1.为可去间断点1=x ,为第二类间断点2=x ; 2.为跳跃间断点1=x . 三、2ln ,2==b a .四、0,0,10,00,1)(=⎪⎩⎪⎨⎧>=<-=x x x x x f 为()x f 的跳跃间断点。

五、()()+∞⋃∞-,00,. 六、左不连续;右连续. 七、,.4,.3,.2,2ln .1623e e e - 八、九、十 (略).第二章 测验题一、B A C A D .5,.4,.3,.2,.1.二、21.4,2.3,2.2,2.1-e .三、.31.4,3.3,1.2,61.1.四、x x x x p ++=232)(.五、为第二类间断点为可去间断点处连续21,1,2,,1===-=x x x x .六、.3,21==b a 七、(略). 八、a .第三章 导数与微分习题一一、),0(.2),(,)(2,)(.1000f x f x f x f '''')(),(1.3000000x x x y y x x x y y --=--=- 二、00,,2)(<>⎩⎨⎧='x x x e x f x 三、)0(2)(g a f ='. 四、处连续且可导0=x .五、()的有理数;互质与且)2(,201n m mna a ≠> ()互质)的有理数与且n m mna a 2(,1212-≠>. 习题二一、,ln 1.3,1.2,622ln 2.123x xx x x -++- )2(42,)2(42.422ππππππ-=---=-x y x y . )(4)(2.5222x f x x f ''+'二、2)1()sin 3(cos sin cos 2.1x x e x x e x x +-+-;x x x x x x x x cos sin ln cos 2sin .2+-+; 211arcsin 2.3xx -⋅; 21)ln (ln .4x x n x n --;a a x x x ax a a a 21211sec ln .5+⋅+-;6.x x exx 1tan 1sec 221sec 22⋅⋅⋅-; )(87略-.三、1.()x f x f '⋅)(2; 2.)()(222x x x x x e f e e e f xe '+.四、00,,11)12()(222=≠⎪⎪⎩⎪⎪⎨⎧+-='x x x e x x f x . 五、(略) 习题三一、()dx x x x 1ln .1+; ()dx e e f x x '.2;x e x e x x x ln ln ,arctan ),13sin(31,61,2.36+;4. ppQ -+2;252. 二、1.)sin ln (cos sin xxx x x x +⋅; 2.⎥⎦⎤⎢⎣⎡-----+-+------)5(51)4(54)3(53)2(5211)5()4()3()2()1(5432x x x x x x x x x x 三、1.()184-==p dpdQ,54.04-≈=P EP ED经济意义:当价格从4上升%1时,需求量从59下降%54.0;()246.04≈=P EP ER,价格从4上涨%1时总收益将从263增加%46.0.四、1.dx x x x x ⎥⎦⎤⎢⎣⎡--+-2222211cot )1(2)11ln(sin . 五、212x +. 第三章 测验题一、,1.3,1.2,)1(21.1arctan =⋅+--y dx e x x x π21)1()1(2.4xx f x f '-, 2ln 21.5-.二、..3,.2,.1C D D 三、1.yyxey e +-2; 2.0; 3.[]()0,,02121cos )(sin )()(),0(2=≠⎪⎪⎩⎪⎪⎨⎧''++-+'=''=x x g x xx g x x g x x f g a第四章 中值定理与导数的应用 习题一一、1.不满足,没有; 2.1; 3.满足,914; 4.4,1--.;5.不存在二、三、四、五(略)六、1.6,ln .5,21.4,21.3,0.2,21.1a -. 七、连续. 八、1.习题二一、1.单减,凹的; 2.)4,1(;3.0,0==x y ;4.29,23-;5. ac b 32≤.6.e p 1=二、单增区间为[]2,0;单减区间为]()[∞+⋃∞-,20,. 三、拐点为()7,1-;凹区间为)[∞+,1;凸区间为[]1,0.四、0,3,3,1==-==d c b a .五(略)六、为极大值3)3(,2==πf a .七、20000=Q ,最大利润()34000020000=L 元. 八、5.9元,购进140件时,最大利润490元. 九、十(略).第四章 测验题 一、..3;.2;.1A B B 二、()0.4;2,1.3;3.2;1.1=x三、.1.2;61.1-四、.1;0;3==-=c b a 五、获利最大时的销售量()t x -=425,当2=t 政府税收总额最大,其税收总额为10万元.六、()1证明略; ()254.06≈=P EP ER,经济意义:当价格从6上涨%1时,总收益从156增加%54.0.第五章 不定积分习题一一、1.dx x f )(,C x f +)(,)(x f ,C x f +)(; 2.C ; 3.C x +2; 4.32x. 二、1.C x x +-arctan ; 2.C x e x +-2;3.C x x +-sec tan ; 4.C x +tan 21. 三、1ln +=x y .四、12)(2+-=x x x G .习题二一、1.C e x x ++-tan tan ; 2.C x f +--)1(212; 3.C x F ++)12(; 4.C x f +--)2cos 3(31. 二、1.C x +|ln ln |ln ; 2.C x ++-|1cos |ln 2; 3.C e x +arctan ;4.C x +--21)32(312; 5.C x x x +---------999897)1(991)1(491)1(971;6.C e xx ++1; 7.C x x +-32)cos (sin 23; 8.C e x x ++-)1ln(; 9.C x x ++-)9ln(292122; 10.C x +)arctan(sin 212; 11.C x+-arcsin 1;12.C x x ++-+ln 12)ln 1(3223; 13.()()()C x x x +++++-+11ln 313123313132;14.C e x+-1arctan 2; 15.C xx ++61611ln; 16.C x x x +-+22211arccos 21. 习题三一、1.C x e x ++-)1(;2.C x xf +)(; 3.C x f x f x +'-'')()(; 4.C e xe x x +-2. 二、1.C x x x x +++-)1ln(6161arctan 31223; 2.C e xe x x +------11;3.C x x x x x ++-2ln 2ln 2; 4.C x x x x++++-)6ln 6ln 3(ln 123;5.C x x e x ++-)22(33323; 6.()()[]C x x x++ln sin ln cos 2;7.C x x x x x +--+2arcsin 12)(arcsin 22; 8.C x x x x ++-sin 4cos )24(; 9.C x x x +-+arctan )1(; 10.C x x x x x +++-+221ln 1ln .三、C x x x +-++21)arcsin 1(. 四、C x x x x ++-+arctan 22)1ln(2. 五、)1(21x x +.习题四1.C x x x x x x +--+-+++|1|ln 3|1|ln 4||ln 82131232.C x x x x +-+-+-arctan 21)1ln(41|1|ln 21||ln 2第六章 定积分及其应用习题一 一、a b a b -+-)(3331二、1.≥, 2.≥ 三、(提示:用定积分性质6证)四、1.412x x +; 2.81221213x x x x +-+; 3.3; 4.21; 5.28-x ; 6.]41,0(; 7.yx e y 2cos 22. 五、)(x f 在0=x 处有极小值0)0(=f .六、1.6π; 2.4; 3.38.七、1.1; 2.2八、4π.九、)1ln(e +十(略).习题二一、1.)(sin x f ; 2.)0(arctan )1(arctan f f -; 3.)]()([2122a F b F -; 4.3243π;5.0; 6.)()(a x f b x f +-+; 7.8; 8.0二、1.34-π; 2.32ln 22+; 3.a )13(-; 4.34; 5.22; 6.214-π; 7.)11(2e -; 8.)2(51-πe .三、四(略)五、(提示:令x t -=2π); 4π.六、()1,11=-=-a e x f x . 七、x x sin cos -. 八、x 2ln 21.习题三一、1.332; 2.2ln 23-; 3.67; 4.49.二、62221,21-=⎪⎭⎫ ⎝⎛=S a . 三、2ln 214+-x .四、1.π145; 2.24π; 3.ππ564,727. 五、10/100Q Qe -. 六、31666. 七、1.2; 2.2ln 21.。

《微积分》各章习题及详细答案之欧阳育创编

《微积分》各章习题及详细答案之欧阳育创编

第一章 函数极限与连续一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim22x x x x 。

3、0→x 时,x x sin tan -是x 的阶无穷小。

4、01sin lim 0=→xx k x 成立的k 为。

5、=-∞→x e x x arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim 0。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数xxx f +=13arcsin)(的定义域是__________。

13、lim ____________x →+∞=。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xx x +-=11)(α,31)(x x -=β,则当1→x 时有。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小;(C )α与β是同阶无穷小; (D )βα~。

3、函数⎪⎩⎪⎨⎧=-≥≠-+-+=0)1(0,1111)(3x k x x x x x f 在0=x 处连续,则=k 。

概率论与数理统计(经管类)第七章课后习题答案word-推荐下载

概率论与数理统计(经管类)第七章课后习题答案word-推荐下载

似然函数为������(������) =
������
������ = ∏1������������
������������������(������) = (∑������������)������������������ ‒ ������������ ‒ ������������⁡(������1!������2!⋯������������!)
������������������
∑1
������ =
) = ������(������������),
������(������������)
������������ ������ ‒ ������������
=
������
1
(������������
������������������
∑1
������ =
������ = 1

������ ������������������(������) ������ ������
解得
=
∑ ������������
������ ������2 =‒ ������
∑ ������������
������ = 1
������
+
������
=
������������
1
3. 设总体������~������(������,1), ‒ ∞ < ������ < ∞,(������1,������2,������3)为其样品.试证下述三个估计量:
(1) ������1 = 15������1 + 130������2 + 12������3;
(2) ������2 = 13������1 + 14������2 + 152������3;

微积分习题答案第七章定积分

微积分习题答案第七章定积分

4
cos
3 2
3
x
2 0
4 3
(12)
2 dx 1 x x3
21 ( 1x
x
x2
)dx 1
[ln
x
1 2
ln(1
x2 )]
2 1
1 2
ln
8 5
4 dx t
2. (1) 1 1 x
x
2 1 2tdt 1 1t
2
2
(1
1
)dt
1 1t
2[t ln(t 1)]
2 1
2(1 ln 2) 3
0
1
(x 2
0
1 0
f (t)dt) 0
1
xdx 2
0
1
f (t)dt
0
1
dx
0
1 x2 2
1 0
2
1
f (x)dx
0
.
1 f (x)dx 1x2
0
2
1 0
1 2
1
f (t)dt
0
练习 7.4
1
f (x) x 2 2 f (t)dt x 1. 0
1.(1)
2 cos5 x sin2 xdx 2 (1 sin2 )4 sin2 xd sin x
22 3 3
1 x2
0 (1 x 2 )2
dx
4 0
tan 2 sec4
t t
sec2
tdt
4 sin 2 tdt
0
4 0
1
cos 2t 2
dt
1 2
(t
1 2
sin t)
4 0
1 ( 2) 8
(8)

信号与系统第七章课后习题答案

信号与系统第七章课后习题答案


k 1
z
1
k
1 z 1 z
0 z
F( z )
k 1
f (k )z k

k
[(k 1) (k 2)]z k z2 z 1 z

k 1
z k z 1 z 1
例 7.1- 2 已知无限长因果序列f(k)=akε(k)。求f(k)
d d k f ( k ) ( z ) ( z ) F ( z ) z dz dz
d d d z k f ( k ) ( z ) z F ( z ) dz dz dz
|a|<|z|<|b|
Im[z]
Im[z] |a |
Im[z]
|a | o Re[z] o Re[z] o
|a|
Re[z] |b |
(a)
(b)
(c)
图 7.1-1 例7.1-2、例7.1-3、例7.1-4图
7.1.3 常用序列的双边Z变换
(1) f (k ) (k )。
F ( z)
k
例 7.2-3 已知
1 k 1 f (k ) 3 (k 1), 2
k
求f(k)的双边Z变换及其收敛域。 解 令f1(k)=3k+1ε(k+1),则有
1 f ( k ) f1 ( k ) 2
z z2 由于 F1 ( z ) Z [ f1 (k )] z z3 z3
k
(k ) z k 1

(2) f1 (k ) (k m), f 2 (k ) (k m), m为正整数.

《微积分》课后答案第7章(复旦大学版)解析

《微积分》课后答案第7章(复旦大学版)解析
此文档由天天learn()为您收集整理。
第七章
习题 7-1 1. 略. 2. 求点(a,b,c)关于(1) 各坐标面;(2) 各坐标轴;(3) 坐标原点的对称点的坐标. 解:(1)点(a,b,c)关于 xoy 面的对称点是(a,b,-c); 关于 xoz 面的对称点是(a,-b,c); 关于 yoz 面的对称点是(-a,b,c); (2)点(a,b,c)关于 x 轴的对称点是(a,-b,-c); 关于 y 轴的对称点是(-a,b,-c); 关于 z 轴的对称点是(-a,-b,c); (3)点(a,b,c)关于原点的对称点是(-a,-b,-c); 3. 自点 P0(x0, y0, z0)分别作各坐标面和坐标轴的垂线,写出各垂足的坐标.
2.试用向量证明:如果平面上一个四边形的对角线互相平分,则该四边形是平行 四边形. 证:(如上题图),依题意有 AM MC, DM MB. 于是 AB AM MB MC DM DC. 故 ABCD 是平行四边形. 3.已知向量 a=i-2j+3k 的始点为(1,3,-2),求向量 a 的终点坐标. 解:设 a 的终点坐标为( x, y, z ),则
0 ( x0 , y0 , z0 ) 作 xoy 面的垂线,垂足坐标是 ( x0 , y0 , 0) ; 解:自点 P
作 xoz 面的垂线,垂足是 ( x0 , 0, z0 ) ; 作 yoz 面的垂线,垂足是 (0, y0 , z0 ); 自点 P 0 ( x0 , y0 , z0 ) 作 x 轴的垂线,垂线是 ( x0 , 0, 0);
解得 b , c
5 3
38 5 38 ,故所求点的坐标为 0, , . 3 3 3
1
天天learn()为您提供大学各个学科的课后答案、视频教程在线浏览及下载。

计量经济学导论第四版第七章

计量经济学导论第四版第七章
OLS便是不一致的。
当我们把(7.1)和(7.6)结合起来时,
便发现 实际上服从一个二阶自回归模型,
或AR(2)模型。为说明这一点,我们把它
写成 ut -1 yt 1 0 1yt 2,并代入 ut ut 1 et
于是(7.6)就可以写成:
12
出现滞后因变量时的序列相关
中的t统计量忽略了 和 −1 之间可能
的相关,所以在回归元不是严格外生的
情况下它不是有效的。
27
例2检验最低工资方程中的AR(1)序列
相关
在第5章,我们考察了最低工资对波多黎
各就业率的影响 ,我们现在来检验误差
中是否包含了序列相关,所用的检验并
不假定最低工资和GNP有严格外生性。
我们假定潜在的随机过程是弱相关的,
7
效率和推断
单个假设的t统计量也不再确当。因为较
小的标准误意味着较大的t统计量,所以
当 > 时,通常t统计量常常过大。用
于检验多重假设的通常F统计量和LM统
计量也不再可靠。
8
拟合优度
有时我们有这样一种观点:时间序列回
归模型中的误差若存在序列相关,我们
通常的拟合优度指标2 和调整 2 便失效
如同检验异方差性那样,虚拟假设就是
相应的高斯-马尔科夫假定正确。在
AR(1)模型中,误差序列无关的这个虚
拟假设是:H 0 : 0 (7.12)
这里我们把定理(6.2)的渐进正态结论
直接应用于动态回归模型:
ut ut 1 et , t 2,3..., n (7.13)
15
严格外生时对AR(1)的t检验
值。
17
例1菲利普斯曲线AR(1)序列相关

微积分各章习题及详细答案

微积分各章习题及详细答案

《微积分》各章习题及详细答案(总42页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章 函数极限与连续一、填空题1、已知x xf cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim22x x x x 。

3、0→x 时,x x sin tan -是x 的 阶无穷小。

4、01sin lim 0=→xx k x 成立的k 为 。

5、=-∞→x e x x arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim 0 。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数x xx f +=13arcsin )(的定义域是__________。

13、lim ____________x →+∞=。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档