物联网数据融合技术

合集下载

物联网安全技术第8章 物联网安全数据融合

物联网安全技术第8章 物联网安全数据融合
物联网数据融合安全需求 数据机密性 数据完整性 和机密性 身份认证 可用性
与数据融合过程的交互
机密数据的 融合
融合数据的 改变
针对融合节点的 Sybil攻击
数据融合节 点的可用性
10
第八章 物联网安全数据融合
8.1 安全数据融合概述 8.2 安全数据融合的分类及特点 8.3 数据融合面临的安全问题 8.4 基于同态加密的安全数据融合 8.5 基于模式码和监督机制的数据融合安全 方案 8.6 安全数据融合设计与开发
8.5.2 博弈论验证
基本要素
通过非对称信息重复静态非合作博弈论的战略分析,得出 监督节点、恶意融合节点、基站的策略,在反复剔除劣策 略的情况下,将三方博弈转换为恶意融合节点和基站的双 方博弈,最终得出监督报文上传的安全方式。
参与者 监督节点 恶意 融合节点 基站 行为集 直接上传监督信息给基站 将监督信息上传给融合节点 如实上传监督信息 丢弃或篡改监督信息 次序 信息 参与者 决策所依 据的信息
不足
(1) 构造数据融合树以及融合操作都会增加网络的平均延时; (2) 数据融合在减少数据的传输量的同时,也损失掉了更多 的信息,同时网络的鲁棒性有所下降; (3) 数据融合带来了很多安全隐患,容易受到各种潜在的攻 击,如:数据窃听、数据篡改、数据伪造、数据重放攻击 等。
6
第八章 物联网安全数据融合
散列链元素 发布 个体密钥 分发
密钥更新
密钥更新
数据采集与发送
节点
数据采集与发送
32
8.6.2 系统实现
关键功能模块的设计与实现
1. 数据融合模块
数据融合模块 的实现部分主要包 括路由节点构造融 合数据包和网关解 析融合数据包,其 中路由节点的融合 过程又包括簇内融 合和簇间融合两种 类型,具体流程如 图所示。

物联网中的信息融合技术研究

物联网中的信息融合技术研究

物联网中的信息融合技术研究随着物联网不断发展,各种设备和传感器的互联互通成为了最关键的问题之一。

而实现这种互联互通的核心技术便是信息融合技术。

信息融合技术是指将来自不同源头的信息进行统一处理和融合,最终形成一系列有用的级别更高的信息,并用于支持各种决策。

物联网中的信息融合技术是将来的关键技术之一,应用范围非常广泛,对智能家居、智慧城市、智能医疗等领域有着重要的推动作用。

一、物联网中信息融合技术的应用物联网中的信息融合技术主要应用于以下方面:1.智能家居:智能家居设备与传感器需要互联互通,才能够实现各种功能,例如,温度、湿度、光线等环境数据的检测,通过信息融合技术可以将这些数据融合,最终实现精准控制智能家居设备的效果。

2.智慧城市:在智慧城市中,各种传感器和设备的数据非常多,通过信息融合技术可以将这些数据进行统一处理和融合,最终形成一系列有用的信息,帮助城市管理者决策。

例如,交通监测设备、气象监测设备和安全监测设备等都可以通过信息融合技术进行有效地整合使用。

3.智能医疗:在智能医疗领域中,将来的医疗设备和传感器也需要实现互联互通,以减少医疗错误和提高医疗效率。

通过信息融合技术,医疗设备和传感器之间的数据可以进行统一处理和融合,从而帮助医护人员进行更加准确的诊断和治疗。

二、物联网中信息融合技术的研究方法信息融合技术是一种复杂的技术,需要应用多种技术手段才能实现,例如,各种传感器的集成、信号处理和数据建模。

物联网中的信息融合技术研究方法主要包括以下几个方面:1.传感器的选择与合理布局:应根据需要监控的参数来选择不同类型的传感器,同时考虑传感器的布局、布线和能耗等因素,合理布局传感器会对信息融合起到很大的帮助。

2.信号处理和融合技术:将多个传感器中获得的信息进行处理、整合和融合是实现信息融合技术的核心技术。

需要针对不同的数据类型进行算法研究。

3.数据建模与优化:针对不同的应用场景,需要对数据进行建模和优化,通过建立模型去预测和优化系统的行为。

物联网中的数据融合与信息融合技术研究

物联网中的数据融合与信息融合技术研究

物联网中的数据融合与信息融合技术研究摘要:随着物联网技术的发展,越来越多的设备和传感器被连接到互联网上,产生大量的数据和信息。

数据融合和信息融合技术在物联网中起着至关重要的作用,可以帮助实现设备之间的互联互通、信息的整合和智能决策。

本文将详细探讨物联网中的数据融合与信息融合技术的研究现状和挑战,并介绍一些主要的研究方向和方法。

1. 引言物联网技术的迅速发展使得越来越多的设备和传感器能够连接到互联网上并实现互联互通。

这些设备产生的数据和信息对于各个领域的决策和管理具有重要意义。

然而,这些数据和信息通常来自不同的设备和传感器,格式和结构各异,因此需要进行数据融合和信息融合的处理。

2. 数据融合技术数据融合技术是指将来自不同设备和传感器的数据进行整合和处理,以提高数据的准确性、可靠性和可用性。

主要的数据融合技术包括数据预处理、数据清洗、数据对齐和数据融合算法等。

2.1 数据预处理数据预处理是对原始数据进行处理和筛选,以去除冗余数据、填充缺失数据、降噪和归一化等。

通过数据预处理可以提高后续处理的效率和准确性。

2.2 数据清洗数据清洗是指对数据进行错误检测和纠正,去除异常值和噪声数据,确保数据的准确性和一致性。

数据清洗是数据融合的关键步骤,对于后续的数据处理和分析具有重要意义。

2.3 数据对齐数据对齐是指将来自不同设备和传感器的数据进行时间和空间上的对齐,以便进行数据融合和分析。

数据对齐能够消除时间和空间差异对数据融合的影响,提高数据的一致性和可比性。

2.4 数据融合算法数据融合算法是指将来自不同设备和传感器的数据进行结合和整合,以提取有价值的信息和知识。

常用的数据融合算法包括加权平均法、贝叶斯融合法和神经网络融合法等。

3. 信息融合技术信息融合技术是指将来自不同设备和传感器的信息进行整合和分析,以提取隐藏在信息中的知识和洞见。

信息融合技术主要包括特征提取、决策融合和知识发现等。

3.1 特征提取特征提取是指从原始的数据和信息中提取有意义的特征,以帮助进行后续的决策和分析。

物联网数据融合技术浅析

物联网数据融合技术浅析

知识文库 第11期22物联网数据融合技术浅析刘召华大数据时代的到来,要求我们需要使用更加有效的数据处理方式,但实际应用中获得大量数据相当一部分是冗余和无效的,这些数据在网络中传输和处理会极大降低效率,数据融合技术是比较理想的解决办法。

物联网与互联网结合起来形成了一个巨大信息网络系统,在这个系统中,有大量感知数据,需要选取适当的融合模式、处理算法进行综合分析,才能提高数据质量,获得最佳决策和完成评估,这些工作的完成需要使用数据融合技术。

一、物联网数据融合“数据融合”是20世纪70年代美国国防部针对多传感器系统而提出,经过40多年发展,现已被应用在多源影像复合、智能仪器系统、无人驾驶飞机、图像分析与理解、自动目标识别等多个领域。

数据融合是利用现代计算机技术对时序获得的若干感知数据,在一定准则下加以分析、综合,以完成所需决策和评估任务而进行的数据处理过程。

数据融合的目标数据是全空间的,即包括所有确定的和模糊的、全空间的和子空间的、同步的和异步的,数字的和非数字的,是复杂多维多源的;数据融合是内部特征,是系统动态过程中的一种数据综合加工处理;数据融合是数据的互补,即表达方式互补、结构互补、功能互补、不同层次互补,只有互补数据融合才能使系统发生质的变化。

数据融合的实质是针对多维数据进行关联或综合分析,选取适当的融合模式和处理算法,用以提高数据质量,为数据处理奠定基础。

二、数据融合原理、步骤和分类数据融合可以是物联网多个传感器的信息融合,也可以是多个传感器信息和人机界面观测事实信息融合。

原理是先将多个不同类型传感器获取数据收集;对传感器输出数据进行特征提取的变换,提取代表观测数据的特征矢量Y i;对特征矢量Y i利用聚类算法、神经网络等模式识别处理完成各传感器关于目标的说明;将各传感器关于目标的说明数据按同一目标进行关联;利用融合算法将每一个目标传感器数据进行合成,得到该目标的一致性解释与描述。

例如故障诊断系统中,从获取数据中提取征兆信息,在推理机作用下,将征兆与知识库中的知识匹配,做出故障诊断决策,继而提供给用户使用。

物联网中的数据融合与信息处理

物联网中的数据融合与信息处理

物联网中的数据融合与信息处理第一章:引言物联网(Internet of Things,简称IoT)是指一种通过互联网连接和传输信息的网络系统,它通过传感器、设备、云计算等技术实现对各种物理实体的感知、控制和管理。

物联网系统产生的大量数据对于实现智能化和自动化具有重要意义。

但是,物联网中数据的多样性、分散性和不一致性给数据融合和信息处理带来了挑战。

因此,本文将从数据融合和信息处理两个方面,对物联网中的数据融合与信息处理进行深入探讨。

第二章:物联网中的数据融合2.1 数据来源的多样性在物联网中,数据来源多样,包括传感器、设备、用户交互等。

这些数据以不同形式、不同频率、不同质量进行传输,如何将这些来自不同来源的数据进行融合,成为保证物联网系统正常运行的重要环节。

2.2 数据采集与传输数据采集是物联网中数据融合的第一步。

多种传感器和设备能够采集到各种类型的数据。

采集到的数据根据预定的协议和标准进行传输,如WiFi、蓝牙、ZigBee等。

有效地采集和传输数据对于数据融合的成功至关重要。

2.3 数据预处理在数据融合之前,首先需要对采集到的原始数据进行预处理。

数据预处理包括数据清洗、去噪、归一化等操作,以提高数据的质量和减小数据的不一致性。

2.4 数据融合算法数据融合算法是物联网中实现数据融合的核心。

常用的数据融合算法包括加权平均法、卡尔曼滤波算法等。

这些算法能够将来自不同数据源的数据进行融合,得到更准确、更可信的数据结果。

第三章:物联网中的信息处理3.1 数据分析与挖掘在物联网系统中,数据分析和挖掘是从海量数据中提取有用信息的过程。

通过对数据进行分类、聚类、关联分析等操作,可以发现数据中潜在的规律和关联性,为后续决策和应用提供支持。

3.2 实时数据处理在物联网系统中,实时数据处理非常重要。

物联网中的设备和传感器实时产生大量数据,并需要实时进行处理和分析,以获得及时的结果和反馈。

实时数据处理技术包括复杂事件处理、流数据处理等,能够满足应用对实时性的需求。

物联网中传感器网络数据融合技术的使用方法

物联网中传感器网络数据融合技术的使用方法

物联网中传感器网络数据融合技术的使用方法随着物联网的快速发展和智能化设备的普及,传感器网络成为实现物联网功能的重要组成部分。

然而,单个传感器采集的数据量有限,不足以满足复杂环境下的要求。

为了解决这个问题,传感器网络数据融合技术应运而生。

本文将介绍物联网中传感器网络数据融合技术的使用方法,以及它对于物联网应用的重要意义。

1. 传感器网络数据融合技术的概念和原理传感器网络数据融合技术是指将来自多个传感器的数据进行整合和分析,得出准确的结论。

在传感器网络中,每个传感器负责采集一定范围内的数据,如温度、湿度、光照等。

数据融合技术通过将传感器的数据进行组合、比较和分析来得出更准确的结果。

数据融合技术的原理主要包括以下几个方面:- 数据预处理:对采集到的原始数据进行滤波、增强等处理,去除噪声和干扰。

- 特征提取:通过对数据进行处理和分析,提取出有用的特征信息,如峰值、均值等。

- 数据融合:将来自不同传感器的数据进行整合,形成一个综合的数据集。

- 结果推理:通过逻辑推理、模型匹配等方法,得出准确的结果。

2. 物联网中传感器网络数据融合技术的应用2.1 环境监测物联网中的环境监测是传感器网络数据融合技术的一个重要应用领域。

通过部署传感器网络,可以实时监测空气质量、噪音水平、温湿度等环境参数。

传感器网络数据融合技术可以将来自不同传感器的数据整合起来,形成一个综合的环境状态。

这可以帮助我们更准确地评估环境的质量,并采取相应的措施来改善环境。

2.2 智能交通在智能交通领域,传感器网络数据融合技术可以帮助我们实时监测交通流量、道路状况等。

通过将来自不同传感器的数据进行融合,可以得到准确的交通信息,如拥堵状况、车辆密度等。

这对于交通管理部门和驾车者来说都非常重要,可以帮助他们更好地规划行程和做出决策。

2.3 智能农业在智能农业中,传感器网络数据融合技术可以用于监测土壤湿度、温度、光照等参数。

通过将来自多个传感器的数据进行融合,可以得到对于农作物生长非常有帮助的信息。

物联网数据分析中的异构数据融合技术

物联网数据分析中的异构数据融合技术

物联网数据分析中的异构数据融合技术一、引言物联网数据分析是指将物联网设备产生的数据进行搜集、分析、挖掘等技术处理,以提供服务和决策支持的过程。

物联网数据来源众多,包括传统物理量(如温度、压力等)、光学量(如照度、颜色等)、声学量(如噪声、声音等)、运动量(如速度、位移等)等多种形式的数据。

因此,异构数据融合技术在物联网数据分析中扮演着重要的角色。

二、异构数据融合技术的定义及意义异构数据包括不同类型、不同源头的数据,如结构化数据、半结构化数据和非结构化数据等。

异构数据融合技术是指将这些不同类型、不同源头的数据集成到一个统一的框架下,以便实现数据分析和决策支持。

在物联网数据分析中,异构数据融合技术可以实现物联网设备产生的各种数据的统一管理和分析,从而提高数据的价值和使用效益。

三、异构数据融合技术的实现方式异构数据融合技术的实现方式主要包括以下几种:1. ETL技术ETL技术是一种数据抽取、转换和加工的技术,可以将不同类型、不同源头的数据抽取出来,进行转换和加工,最终形成一个数据仓库。

数据仓库中的数据是可以快速查询、分析和统计的。

ETL技术能够实现异构数据的融合,但是需要针对不同的数据源编写不同的程序和脚本,比较繁琐。

2. 元数据管理技术元数据是指描述数据的数据,是信息系统中的数据的重要组成部分。

元数据管理技术可以管理不同类型、不同源头的元数据,以实现异构数据的管理和融合。

具体地说,可以通过元数据管理技术将不同数据源的元数据抽象成一种通用格式,然后将这些通用格式整合在一起,实现异构数据的统一管理和融合。

3. 数据标准化技术数据标准化是指将不同数据源中的数据经过规范化处理,转化为一种统一的格式,以便于在数据分析中使用。

数据标准化技术可以将不同类型、不同来源的数据进行标准化处理,并将标准化后的数据整合在一个库中,方便管理和分析。

四、异构数据融合技术在物联网数据分析中的应用物联网数据分析需要对传感器产生的大量数据进行管理和分析,异构数据融合技术在这方面的应用非常广泛。

物联网中的数据融合与分析技术研究

物联网中的数据融合与分析技术研究

物联网中的数据融合与分析技术研究随着物联网的快速发展,人们对于数据的需求日益增长,数据融合与分析技术也变得日益重要。

然而,要想真正实现数据的融合与分析,并从其中获得有意义的信息,需要采用最新的技术手段和方法。

一、物联网中的数据融合技术在物联网中,大量的传感器设备会不断地产生大量的数据。

这些数据可能来自不同的传感器设备,有着不同的格式和语义,而物联网中的数据融合技术可以将这些异构数据整合起来。

因此,数据融合技术是物联网中至关重要的一项技术。

数据融合技术通常被分为两种类型:横向数据融合和纵向数据融合。

横向数据融合是指来自不同源的数据的融合,而纵向数据融合是指来自同一源的数据的融合。

数据融合技术通常涉及到信息特征的提取、数据的转换和数据的整合等方面。

在物联网中,数据融合技术可以帮助用户根据自身需求,将来自不同源的数据融合成一个整体,为后续的数据分析提供数据基础。

二、物联网中的数据分析技术数据分析技术是物联网中的另一项核心技术。

通过数据分析技术,可以对物联网中的数据进行挖掘和分析,从中发现有意义的信息和规律。

数据分析技术包括:数据挖掘、机器学习、深度学习和神经网络等方面。

数据分析技术可以对物联网中的数据进行筛选、分类、聚类、预测等处理,在此基础上制定相应的业务策略。

三、物联网中的数据融合与分析技术研究物联网中的数据融合与分析技术研究是未来物联网发展的方向之一,也是企业在物联网领域取得成功的重要因素。

最新的技术研究,通常会结合云计算和大数据等最新技术手段,以应对物联网中大量数据的快速增长,帮助用户更准确地分析和决策。

目前,物联网中的数据融合与分析技术研究越来越多地关注于以下几个方面:1. 数据融合和分析的自动化随着物联网的快速发展,数据量也在快速增长中。

数据融合和分析技术需要保证在这种情况下仍能保持准确性和可靠性。

因此,自动化已经成为一个重要的研究方向。

2. 个性化和实时性的变化在物联网中,数据的来源可能会不断改变,因此数据的分析和融合也必须具有灵活性和个性化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
路漫漫其悠远
1.数据融合的定义 数据融合的定义简洁地表述为:数据融合是利用计算机 技术对时序获得的若干感知数据,在一定准则下加以分析、 综合,以完成所需决策和评估任务而进行的数据处理过程。 数据融合有三层含义: (1) 数据的全空间,即数据包括确定的和模糊的、全空 间的和子空间的、同步的和异步的、数字的和非数字的,它 是复杂的、多维多源的,覆盖全频段。
路漫漫其悠远
9.1.2 物联网中的数据融合
数据融合是针对多传感器系统而提出的。在多传感器系 统中,由于信息表现形式的多样性、数据量的巨大性、数据 关系的复杂性以及要求数据处理的实时性、准确性和可靠性, 都已大大超出了人脑的信息综合处理能力,在这种情况下, 多传感器数据融合技术应运而生。
路漫漫其悠远
多传感器数据融合(Multi-Sensor Data Fusion,MSDF), 简称数据融合,也被称为多传感器信息融合(Multi-Sensor Information Fusion,MSIF)。它由美国国防部在20世纪70年 代最先提出,之后英、法、日、俄等国也做了大量的研究。 近40年来数据融合技术得到了巨大的发展,同时伴随着电子 技术、信号检测与处理技术、计算机技术、网络通信技术以 及控制技术的飞速发展,数据融合已被应用在多个领域,在 现代科学技术中的地位也日渐突出。
路漫漫其悠远
3.物联网数据融合的意义和作用 物联网是利用射频识别(RFID)装置、各种传感器、全球 定位系统(GPS)、激光扫描器等各种不同装置、嵌入式软硬 件系统,以及现代网络及无线通信、分布式数据处理等诸多 技术,能够协作地实时监测、感知、采集网络分布区域内的 各种环境或监测对象的信息,实现包括物与物、人与物之间 的互相连接,并且与互联网结合起来而形成的一个巨大的信 息网络系统。
路漫漫其悠远
现在数据融合的主要应用领域有多源影像复合、机器人 和智能仪器系统、战场和无人驾驶飞机、图像分析与理解、 目标检测与跟踪、自动目标识别、工业控制、海洋监视和管 理等。在遥感中,数据融合属于一种属性融合,它是将同一 地区的多源遥感影像数据加以智能化合成,产生比单一信息 源更精确、更完全、更可靠的估计和判断等。
路漫漫其悠远
这个巨大的信息网络系统是一个物联网系统,在这个物 联网系统中,有大量感知数据需要选取适当的融合模式、处 理算法进行综合分析,才能提高数据的质量,获得最佳决策 和完成评估任务。这就是物联网数据融合的意义和作用。
路漫漫其悠远
4.物联网数据融合所要解决的关键问题和要求 1) 物联网数据融合所要解决的关键问题 物联网数据融合所要解决的关键问题有以下几个: (1) 数据融合节点的选择。融合节点的选择与网络层的 路由协议有密切关系,需要依靠路由协议建立路由回路数据, 并且使用路由结构中的某些节点作为数据融合的节点。 (2) 数据融合时机。 (3) 数据融合算法。
路漫漫其悠远
在基于信息融合的故障诊断系统中可以加入自学习模块, 故障决策经自学习模块反馈给知识库,并对相应的置信度因 子进行修改,更新知识库。同时,自学习模块能根据知识库 中的知识和用户对系统提问的动态应答进行推理,以获得新 知识、总结新经验,不断扩充知识库,实现专家系统的自学 习功能。
路漫漫其悠远
2) 物联网数据融合技术要求 与以往的多传感器数据融合有所不同,物联网具有它自 己独特的融合技术要求: (1) 稳定性。 (2) 数据关联。 (3) 能量约束。 (4) 协议的可扩展性。
路漫漫其悠远
9.2 数据融合的原理
9.2.1 数据融合的基本原理
1.数据融合的原理 数据融合中心对来自多个传感器的信息进行融合,也可 以将来自多个传感器的信息和人机界面的观测事实进行信息 融合(这种融合通常是决策级融合),提取征兆信息,在推理 机作用下,将征兆与知识库中的知识匹配,做出故障诊断决 策,提供给用户。
路漫漫其悠远
多源遥感影像的实质是在统一地理坐标系中将对同一目 标检测的多幅遥感图像数据采用一定的算法,生成一幅新的、 更能有效表示该目标的图像信息。
多源遥感影像的目的是将单一传感器的多波段信息或不 同类别传感器所提供的信息加以综合,消除多传感器信息之 间可能存在的冗余和矛盾,加以互补,改善遥感信息提取的 及时性和可靠性,提高数据的使用效率。
物联网数据融合技术
路漫漫其悠远
2020/3/31
9.1 数据融合概述
9.1.1 数据融合简介
数据融合(Data Fusion)一词最早出现在20世纪70年代, 并于20世纪80年代发展成一项专门技术。数据融合技术最早 被应用于军事领域,1973年美国研究机构就在国防部的资助 下,开展了声呐信号解释系统的研究。
路漫漫其悠远
相对于单源遥感影像数据,多源遥感影像数据所提供的 信息具有以下特点:
(1) 冗余性:指多源遥感影像数据对环境或目标的表示、 描述或解译结果相同。
(2) 互补性:指信息来自不同的自由度且相互独立。 (3) 合作性:不同传感器在观测和处理信息时对其他信 息有依赖关系。 (4) 信息分层的结构特性:数据融合所处理的多源遥感 信息可以在不同的信息层次上出现,这些信息抽象层次包括 像素层、特征层和决策层,分层结构和并行处理机制还可保 证系统的实时性。
路漫漫其悠远
路漫漫其悠远
图9.1 数据融合示意图
数据融合的实质是针对多维数据进行关联或综合分析, 进而选取适当的融合模式和处理算法,用以提高数据的质量, 为知识提取奠定基数据融合是针对一个网络感知系统中使用多个和多类感 知节点(如多传感器)展开的一种数据处理方法,研究的内容 主要包含以下几个方面。 (1) 数据对准。 (2) 数据相关。 (3) 数据识别,即估计目标的类别和类型。 (4) 感知数据的不确定性。 (5) 不完整、不一致和虚假数据。 (6) 数据库。 (7) 性能评估。
路漫漫其悠远
(2) 数据的融合不同于组合,组合指的是外部特性,融 合指的是内部特性,它是系统动态过程中的一种数据综合加 工处理。
(3) 数据的互补过程,数据表达方式的互补、结构上的 互补、功能上的互补、不同层次的互补,是数据融合的核心, 只有互补数据的融合才可以使系统发生质的飞跃。数据融合 示意图如图9.1所示。
相关文档
最新文档