10月月考同步练习

合集下载

重庆市育才中学校2023-2024学年八年级上学期10月月考数学试卷

重庆市育才中学校2023-2024学年八年级上学期10月月考数学试卷

重庆市育才中学2023-2024学年八年级上学期数学月考同步练习(10月份)一.选择题(共10小题,满分40分,每小题4分)1.(4分)如图图片是公能中学初一年级班徽设计比赛的四幅作品,其中是轴对称图形的是()A.B.C.D.2.(4分)下列四个图形中,线段BE是△ABC中AC边上的高的图形是()A.B.C.D.3.(4分)下列长度的三条线段首尾顺次相接能组成三角形是()A.1,2,3 B.2,4,7 C.3,4,8 D.2,3,44.(4分)如图,△ABC≌△BAD,如果AB=6,BD=5,AD=4,则AC的长是()A.6 B.5 C.4 D.不能确定5.(4分)若一个n边形从一个顶点最多能引出5条对角线,则n是()A.5 B.8 C.9 D.106.(4分)一副三角板按如图所示叠放在一起,则图中∠α的度数是()A.60°B.65°C.70°D.75°7.(4分)下列命题中,正确的是()A.三角形的一个外角大于任何一个内角B.三角形三条角平分线交点在三角形的外部C.三角形的三条高都在三角形内部D.三角形的一条中线将三角形分成两个面积相等的三角形8.(4分)如图,在△ABC中,AC=5,中线AD=7,则AB边的取值范围是()A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<199.(4分)如图,在四边形ABCD中,BD平分∠ABC,且AD=CD,若∠CBD=α,则∠ADC一定等于()A.3αB.90°+2αC.135°﹣2αD.180°﹣2α10.(4分)有两个整数x,y,把整数对(x,y)进行操作后可得到(x+y,y),(x﹣y,y),(y,x)中的某一个整数对,将得到的新整数对继续按照上述规则操作下去,每得到一个新的整数对称为一次操作.若将整数对(2,32)按照上述规则进行操作,则以下结论正确的个数是()①若m次操作后得到的整数对仍然为(2,32),则m的最小值为2;②三次操作后得到的整数对可能为(2,﹣30);③不管经过多少次操作,得到的整数对都不会是(﹣3,18).A.3个B.2个C.1个D.0个二.填空题(共8小题,满分32分,每小题4分)11.(4分)起重机的吊臂中有三角形结构,这是利用了三角形的.12.(4分)如图,在△ABC和△ADC中,AB=AD,BC=DC,∠B=130°,则∠D=°.13.(4分)如图,∠1是六边形ABCDEF的一个外角.若∠1=70°,则∠A+∠B+∠C+∠D+∠E的度数为.14.(4分)如图所示,将△ABC沿着DE翻折,B点落到了B′点处.若∠1+∠2=80°,则∠B′=.15.(4分)如图,在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且S△ABC=12cm2,则阴影部分的面积为.16.(4分)如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8.若S△ABC=28,则DE =.17.(4分)已知关于x的不等式组的整数解仅有4个,则a的取值范围是.18.(4分)一个两位自然数m,若各位数字之和小于等于9,则称为“完美数”.将m的各个数位上的数字相加所得的数放在m的前面,得到一个新数m′,那么称m′为m的“前置完美数”;将m的各个数位上的数字相加所得的数放在m的后面,得到一个新数m n,那么称m n为m的“后置完美数”.记,例如:m=12时,m′=312,m n=123,.请计算F(32)=;已知两个“完美数”m=10a+b(6≤a≤9,0≤b≤9),n=10x+y(1≤x≤9,0≤y≤9),若F(m)是一个完全平方数,且2m+F(n)﹣8y=140,则n的最大值为.三.解答题(共8小题,满分78分)19.(10分)已知:如图,E,B,F,C四点在同一直线上,∠A=∠D=90°,BE=FC,AB=DF.求证:ED=AC.20.(8分)尺规作图并完成证明:如图,点C是BD上一点,AB=CD,BC=DE,∠BAE=∠DEA.(1)尺规作图:作∠ACE的平分线,交AE于点F;(2)证明:CF⊥AE证明:∵,∴AB∥DE,∴.在△ABC和△CDE中,∵,①∴△ABC≌△CDE(SAS).∴.又∵CF是∠ACE的角平分线,∴CF⊥AE().21.(10分)如图所示,在平面直角坐标系中,已知A(1,1)、B(2,0)、C(4,3).(1)在平面直角坐标系中画出△ABC,并作出关于y轴对称的△A1B1C1;(2)已知P为y轴上一点,若△ACP的周长最小,则点P的坐标为,周长为.22.(10分)某校开展了“美丽校园”活动周,活动周设置了“A:文明礼仪,B:生态环境,C:校园安全,D:卫生保洁”四个主题活动,每个学生限选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图所示的不完整的条形统计图和扇形统计图.(1)本次随机调查的学生人数是人;被调查学生中,选择C主题的人数是人,请补全条形统计图;(2)在扇形统计图中,“D”主题对应扇形的圆心角为度;(3)若该校共有3000名学生,试估计该校参与“文明礼仪”主题的学生人数.23.(10分)计算(1)一个等腰三角形的一边长为8cm,周长为30cm,求其它两边的长.(2)一个多边形的内角和是外角和的3倍,求它的边数.24.(10分)新能源汽车因其废气排放量比较低,被越来越多的家庭所喜爱,某汽车专卖店销售甲、乙两种型号的新能源汽车,某月的第一周售出1辆甲型车和3辆乙型车,销售额为65万元;第二周售出4辆甲型车和5辆乙型车,销售额为155万元.(1)求每辆甲型车和乙型车的售价各为多少万元?(2)某公司准备向该汽车专卖店购买甲、乙两种型号的新能源汽车共8辆,其购车费用不少于145万元,且不超过153万元,问有哪几种购车方案?从公司节约的角度考虑,你会选择哪种购车方案?25.(10分)如图,在△ABC中,AB=BC,∠ABC=90°,D是边AC上一点,连接DB,过点C作CE⊥BD交BD于点E.(1)如图1,若∠DBC=4∠DCE,BE=2,求AC的长;(2)如图2,在EC上截取EF=EB,连接AF交BD于点G,求证:CF=2EG;26.(10分)如图1,点A、D在y轴正半轴上,点B、C分别在x轴上,CD平分∠ACB与y轴交于D点,∠CAO =∠DBO.(1)求证:AC=BC;(2)如图2,点C的坐标为(4,0),点E为AC上一点,且∠DEA=∠DBO,求BC+EC的长;(3)在(1)中,过D作DF⊥AC于F点,点H为FC上一动点,点G为OC上一动点,(如图3),当H在FC上移动,点G在OC上移动时,始终满足∠GDH=∠GDO+∠FDH,试判断FH、GH、OG这三者之间的数量关系,写出你的结论并加以证明.重庆市育才中学2023-2024学年八年级上学期数学月考同步练习(10月份)(答案)一.选择题(共10小题,满分40分,每小题4分)1.(4分)如图图片是公能中学初一年级班徽设计比赛的四幅作品,其中是轴对称图形的是()A.B.C.D.【答案】D2.(4分)下列四个图形中,线段BE是△ABC中AC边上的高的图形是()A.B.C.D.【答案】C3.(4分)下列长度的三条线段首尾顺次相接能组成三角形是()A.1,2,3 B.2,4,7 C.3,4,8 D.2,3,4【答案】D4.(4分)如图,△ABC≌△BAD,如果AB=6,BD=5,AD=4,则AC的长是()A.6 B.5 C.4 D.不能确定【答案】B5.(4分)若一个n边形从一个顶点最多能引出5条对角线,则n是()A.5 B.8 C.9 D.10【答案】B6.(4分)一副三角板按如图所示叠放在一起,则图中∠α的度数是()A.60°B.65°C.70°D.75°【答案】D7.(4分)下列命题中,正确的是()A.三角形的一个外角大于任何一个内角B.三角形三条角平分线交点在三角形的外部C.三角形的三条高都在三角形内部D.三角形的一条中线将三角形分成两个面积相等的三角形【答案】D8.(4分)如图,在△ABC中,AC=5,中线AD=7,则AB边的取值范围是()A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<19【答案】D9.(4分)如图,在四边形ABCD中,BD平分∠ABC,且AD=CD,若∠CBD=α,则∠ADC一定等于()A.3αB.90°+2αC.135°﹣2αD.180°﹣2α【答案】D10.(4分)有两个整数x,y,把整数对(x,y)进行操作后可得到(x+y,y),(x﹣y,y),(y,x)中的某一个整数对,将得到的新整数对继续按照上述规则操作下去,每得到一个新的整数对称为一次操作.若将整数对(2,32)按照上述规则进行操作,则以下结论正确的个数是()①若m次操作后得到的整数对仍然为(2,32),则m的最小值为2;②三次操作后得到的整数对可能为(2,﹣30);③不管经过多少次操作,得到的整数对都不会是(﹣3,18).A.3个B.2个C.1个D.0个【答案】A二.填空题(共8小题,满分32分,每小题4分)11.(4分)起重机的吊臂中有三角形结构,这是利用了三角形的稳定性.【答案】见试题解答内容12.(4分)如图,在△ABC和△ADC中,AB=AD,BC=DC,∠B=130°,则∠D=130°.【答案】130.13.(4分)如图,∠1是六边形ABCDEF的一个外角.若∠1=70°,则∠A+∠B+∠C+∠D+∠E的度数为610°.【答案】610°.14.(4分)如图所示,将△ABC沿着DE翻折,B点落到了B′点处.若∠1+∠2=80°,则∠B′=40°.【答案】见试题解答内容15.(4分)如图,在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且S△ABC=12cm2,则阴影部分的面积为3cm2.【答案】见试题解答内容16.(4分)如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8.若S△ABC=28,则DE=4.【答案】见试题解答内容17.(4分)已知关于x的不等式组的整数解仅有4个,则a的取值范围是11≤a<13.【答案】11≤a<13.18.(4分)一个两位自然数m,若各位数字之和小于等于9,则称为“完美数”.将m的各个数位上的数字相加所得的数放在m的前面,得到一个新数m′,那么称m′为m的“前置完美数”;将m的各个数位上的数字相加所得的数放在m的后面,得到一个新数m n,那么称m n为m的“后置完美数”.记,例如:m=12时,m′=312,m n=123,.请计算F(32)=23;已知两个“完美数”m=10a+b(6≤a≤9,0≤b≤9),n=10x+y(1≤x≤9,0≤y≤9),若F(m)是一个完全平方数,且2m+F(n)﹣8y=140,则n的最大值为45.【答案】23,45.三.解答题(共8小题,满分78分)19.(10分)已知:如图,E,B,F,C四点在同一直线上,∠A=∠D=90°,BE=FC,AB=DF.求证:ED=AC.【答案】证明△ABC≌△DEF20.(8分)尺规作图并完成证明:如图,点C是BD上一点,AB=CD,BC=DE,∠BAE=∠DEA.(1)尺规作图:作∠ACE的平分线,交AE于点F;(2)证明:CF⊥AE证明:∵∠BAE=∠DEA,∴AB∥DE,∴∠B=∠D.在△ABC和△CDE中,∵,①BC=DE∴△ABC≌△CDE(SAS).∴CE=CA.又∵CF是∠ACE的角平分线,∴CF⊥AE(等腰三角形的三线合一).【答案】∠BAE=∠DEA,∠B=∠D,BC=DE,CE=CA,等腰三角形的三线合一.21.(10分)如图所示,在平面直角坐标系中,已知A(1,1)、B(2,0)、C(4,3).(1)在平面直角坐标系中画出△ABC,并作出关于y轴对称的△A1B1C1;(2)已知P为y轴上一点,若△ACP的周长最小,则点P的坐标为(0,),周长为+.【答案】(0,),+.22.(10分)某校开展了“美丽校园”活动周,活动周设置了“A:文明礼仪,B:生态环境,C:校园安全,D:卫生保洁”四个主题活动,每个学生限选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图所示的不完整的条形统计图和扇形统计图.(1)本次随机调查的学生人数是60人;被调查学生中,选择C主题的人数是18人,请补全条形统计图;(2)在扇形统计图中,“D”主题对应扇形的圆心角为54度;(3)若该校共有3000名学生,试估计该校参与“文明礼仪”主题的学生人数.【答案】(1)60,18;(2)54;(3)750人.23.(10分)计算(1)一个等腰三角形的一边长为8cm,周长为30cm,求其它两边的长.(2)一个多边形的内角和是外角和的3倍,求它的边数.【答案】其它两边的长为11cm,11cm或8cm,14cm;八边形24.(10分)新能源汽车因其废气排放量比较低,被越来越多的家庭所喜爱,某汽车专卖店销售甲、乙两种型号的新能源汽车,某月的第一周售出1辆甲型车和3辆乙型车,销售额为65万元;第二周售出4辆甲型车和5辆乙型车,销售额为155万元.(1)求每辆甲型车和乙型车的售价各为多少万元?(2)某公司准备向该汽车专卖店购买甲、乙两种型号的新能源汽车共8辆,其购车费用不少于145万元,且不超过153万元,问有哪几种购车方案?从公司节约的角度考虑,你会选择哪种购车方案?【答案】(1)每辆甲型车的售价为20万元,每辆乙型车的售价为15万元;(2)有两种方案:①购买甲种型号的新能源汽车5辆,购买乙种型号的新能源汽车3辆;②购买甲种型号的新能源汽车6辆,则购买乙种型号的新能源汽车2辆;从公司节约的角度考虑,选择购买甲种型号的新能源汽车5辆,购买乙种型号的新能源汽车3辆费用较少.25.(10分)如图,在△ABC中,AB=BC,∠ABC=90°,D是边AC上一点,连接DB,过点C作CE⊥BD交BD于点E.(1)如图1,若∠DBC=4∠DCE,BE=2,求AC的长;(2)如图2,在EC上截取EF=EB,连接AF交BD于点G,求证:CF=2EG;(3)如图3,若CD=CB,AC=8,点M是直线BC上一动点,连接MD,将线段MD绕点D顺时针旋转90°得到线段M′D,点P是线段BC的中点,点Q是线段BD上一个动点,连接PQ,M′Q,当PQ+M′Q最小时,请直接写△PBQ的面积.【答案】(1)4;(3)2.26.(10分)如图1,点A、D在y轴正半轴上,点B、C分别在x轴上,CD平分∠ACB与y轴交于D点,∠CAO =∠DBO.(1)求证:AC=BC;(2)如图2,点C的坐标为(4,0),点E为AC上一点,且∠DEA=∠DBO,求BC+EC的长;(3)在(1)中,过D作DF⊥AC于F点,点H为FC上一动点,点G为OC上一动点,(如图3),当H在FC上移动,点G在OC上移动时,始终满足∠GDH=∠GDO+∠FDH,试判断FH、GH、OG这三者之间的数量关系,写出你的结论并加以证明.【答案】(2)8。

山西省忻州市2024-2025学年高三上学期10月月考语文试题及参考答案

山西省忻州市2024-2025学年高三上学期10月月考语文试题及参考答案

山西省忻州市2024-2025学年高三上学期10月月考语文试题及参考答案一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1~5题。

材料一:白居易有大量反映现实、表现民生疾苦的讽喻诗,但由于讽喻诗的创作旨在“为君、为臣、为事而作”,其“干政”的理性意义始终处于主导地位,故而闻一多认为它们只是“在朝居官任内写的一些宣扬政教的政治文献而已”,是有意的创作而非感情的自然流露,虽不乏尖锐深刻,却毕竟隔靴搔痒,总缺乏一种有血有肉的感人的力量。

而“孟郊并没有做过成套的‘新乐府’,他如果哭,还是为他自身的穷愁而哭的次数多,然而他的态度,沉着而有锋棱,却最合于一个伟大的理想的条件”。

如用白居易本人所拟的“根情、苗言、华声、实义”(《与元九书》)定义,其讽喻诗固以义见长,却终乏感同身受之情;而孟郊一生穷愁潦倒,历尽酸辛,他的诗歌却是穷愁生活的实录。

如《答友人赠炭》:“青山白屋有仁人,赠炭价重双乌银。

驱却坐上千重寒,烧出炉中一片春。

吹霞弄日光不定,暖得曲身成直身。

”欧阳修评之曰:“非其身备尝之,不能道此句也。

”(《六一诗话》)极确。

又如《秋怀(其二)》:“秋月颜色冰,老客志气单。

冷露滴梦破,峭风梳骨寒。

席上印病文,肠中转愁盘。

疑虑无所凭,虚听多无端。

梧桐枯峥嵘,声响如哀弹。

”写自己毕生奔波仕途的失意遭遇和晚境的穷愁困苦,极为凄凉哀怨。

其他如“借车载家具,家具少于车”(《借车》),“秋至老更贫,破屋无门扉。

一片月落床,四壁风入衣”(《秋怀》)等等,皆为“身备尝之”之语。

即使是代百姓立言的诗也因有亲身体验而写得格外动人,如他的《寒地百姓吟》写寒地百姓在冻馁难熬之际的反常心理:“寒者愿为蛾,烧死彼华膏。

华膏隔仙罗,虚绕千万遭。

到头落地死,踏地为游遨。

游遨者是谁?君子为郁陶!”为取片刻温暖居然愿意变为扑火飞蛾,可见生不如死之惨痛!然更惨痛者是求死竟不能!将贫苦百姓生死两难的可悲命运写得如此入木三分,悱侧动人。

安徽省合肥市2024-2025学年高三上学期10月月考化学试题含答案

安徽省合肥市2024-2025学年高三上学期10月月考化学试题含答案

合肥2025届高三10月段考试卷化学(答案在最后)考生注意:1.试卷分值:100分,考试时间:75分钟。

2.考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色。

墨水签字笔在答题卡上各题的答案区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效...........................。

3.所有答案均要答在答题卡上,否则无效。

考试结束后只交答题卡。

可能用到的相对原子质量:H-1N-14O-16Al-27Cl-35.5Ti-48Fe-56Ba-137一、选择题(本大题共14小题,每小题3分,共42分。

在每小题给出的四个选项中,只有一项是符合题目要求的)。

1.化学与生活、生产息息相关,从化学视角认识世界,下列说法错误的是NH HCO,蒸制或烘焙食品过程中碳酸氢铵分解产生大量A.加工馒头,面包时,可加入一些膨松剂,如43气体,使面团疏松多孔硅量子点不是胶体B.2023年诺贝尔化学奖授予量子点研究,直径为220nmNaHCO溶液的方法解毒C.过量服用阿司匹林引起酸中毒后,可用静脉注射3D.碳纳米材料主要包括富勒烯、碳纳米管、石墨烯等有机材料【答案】D【解析】【详解】A.NH4HCO3俗称泡打粉,加工馒头,面包时,加入一些NH4HCO3,碳酸氢铵分解产生大量气体,从而使面团变得疏松多孔,A正确;B.硅量子点的直径为2~20nm,虽然符合胶体中分散质粒子直径的范围,但没有构成分散系,所以硅量子点不是胶体,B正确;C.阿司匹林分子中含有羧基,显酸性,当酸中毒时,可静脉注射NaHCO3溶液进行解毒,C正确;D.碳纳米材料主要包括富勒烯、碳纳米管、石墨烯等,它们的主要成分都是碳单质,属于无机非金属材料,D错误;故选D。

2.下列关于物质工业制备的说法中正确的是A.侯氏制碱法应在饱和食盐水中先通二氧化碳再通氨气B.硝酸生产尾气中的x NO 可用23Na CO 溶液或3NH 处理C.工业上用电解熔融氯化钠和熔融氧化镁的方法,来制备金属钠和镁D.工业炼铁时,常用焦炭做还原剂在高温条件下还原铁矿石【答案】B 【解析】【详解】A .2CO 在NaCl 中的溶解度很小,先通入3NH 使食盐水显碱性,能够吸收大量2CO 气体,所以侯氏制碱法应在饱和食盐水中先通氨气再通二氧化碳,A 错误;B .NO x 与23Na CO 溶液反应生成硝酸盐、亚硝酸盐,NO x 与3NH 反应生成氮气,B 正确;C .钠是活泼金属,当前工业上普遍采用熔融氯化钠电解法制金属钠,镁化学性质也比较活泼,工业上常用电解熔融氯化镁的方法制取金属镁,C 错误;D .工业炼铁主要利用的是焦炭产生的CO 在高温下还原铁矿石得到的铁单质,D 错误;故选B 。

2024-2025学年四川省遂宁中学校八年级10月月考语文试题

2024-2025学年四川省遂宁中学校八年级10月月考语文试题

2024-2025学年四川省遂宁中学校八年级10月月考语文试题1. 下列词语加点字注音完全正确的一项是()A.溃.退( kuì)翘.首(qiǎo)凌.空(líng)沿溯.阻绝(shù)B.仲.裁(zhōng)轩邈.(miǎo)缥.碧(piáo)锐不可当.(dāng)C.潇.洒(xiāo)娴.熟(xián)篡.改(cuàn)惨绝人寰.(huán)D.徙.倚(qí)镌.刻(juàn)渗.透(shèn)殚.精竭虑(dān)2. 下列各组词语中,汉字书写全都正确的一组是()A.呓语咆哮屏息鸢飞利天B.泄气遗嘱浩瀚清荣峻茂C.澎湃桅杆揪心振耳欲聋D.叠障曦月磅薄眼花缭乱3. 下列句子成语使用不正确的一项是()A.大火刚着起来,敌人就锐不可当....的从面八方的围起了这间小破屋,有人推倒了老人,有人把小孩子举过头顶就要扔到崖下。

B.南京大屠杀,早已是所有正义力量的集体记忆,唯有日本右翼分子仍在梦中呓...语.。

C.当年那位叱咤风云....的大将军,如今也已经垂垂老矣,真是岁月不饶人!D.1.7秒的时间对她似乎特别慷慨,让她从容不迫....地展示身体优美的线条,从前伸的手指,一直延续到绷直的足尖。

4. 下列句子没有语病....的是()A.水土流失、土地沙化的主要原因,是因为人们长期滥砍滥伐造成的。

B.在教师节庆祝大会上,几个学校的老师都获得了政府的表彰。

C.纪录片《厉害了,我的国》展示了我国在各个领域所取得的举世瞩目的成就。

D.城乡建设,要力争做到合理开发和精心规划。

5. 下列文段画线句子中标点符号使用符合规范的是()我看着父亲两鬓霜花尽染,走路也不再像从前那般虎虎生风,①不知道那个曾经专横霸道的人去哪儿了?②取而代之的是一个越来越虚弱、越来越无力的老者,看得我心中生出痛楚。

③“爸爸,您的箫呢?”我说:“真想听您再吹吹!”父亲笑,把箫放在嘴边比划着,④一首“月光下的风尾竹”仍能吹响,曲调却没有当初那么流畅了。

北京2023-2024学年高一10月月考语文试题含解析

北京2023-2024学年高一10月月考语文试题含解析

之穴无可寄托者,用心躁也。
5. 下列各句中不含通假字的是( )
A. 虽有槁暴,不复挺者
B. 则知明而行无过矣
C. 君子生非异也
D. 臂非加长也,而见者远
6. 下列加点字解释不正确的是( )
A. 木直中.绳
中:合乎
B. 金就.砺则利
就:靠近
C. 于其身也,则耻师焉,惑.矣
惑:疑惑
D. 今其智乃.反不能及,其可怪也欤 乃:竟然
(取材于《人民日报》等相关网络文章) 材料三: 时代造就青年,盛世成就青年。新时代的中国繁荣发展,充满希望,中华民族迎来了新飞跃。新时代 中国青年生逢中华民族发展的最好时期。中国青年拥有更优越的发展环境。他们的物质条件更为优越,超 过 2500 万贫困青年彻底摆脱贫困,迈向小康,消费需求从满足生存转向享受生活,消费方式从大众化迈向 个性化。他们精神成长空间更为富足,基于社会公共文化设施的不断完善,服务水平的显著提高,中国青 年见识阅历更加广博,精神品位不断提升。尤其是互联网的高度普及,使得青年们的学习、生活和工作方 式发生了深刻的改变。中国青年拥有更广阔的成长空间。更多青年享有接受教育的机会,据统计,2021 年 中国各教育阶段学生在学总规模达 4430 万人,居世界第一。青年职业选择丰富多元,非公有制经济组织和 新社会组织逐渐成为青年就业的主要渠道,特别是近年来快速兴起的新产业、新业态,催生了电竞选手、 网络作家等大量新职业,充分体现了时代赋予青年的更多机遇、更多选择。青年发展流动畅通自由,一批 批农村青年走进城市,安家落户,通过城乡之间的发展流动更好地融入城市生活,实现发展跃迁。中国青 年有着较为全面的保障支持。法治保障不断完善,宪法明确规定“国家培养青年、少年、儿童在品德、智 力、体质等方面全面发展”,为建立青年法治保障体系提供了制度依据。政策保障日益完备,国家“十三 五”和“十四五”规划鲜明体现青年元素,科教兴国、人才强国等国家重大战略充分关注青年群体,青年 发展得到越来越多的顶层设计支持。社会保障更加健全,政府出台了一系列支持多渠道灵活就业、加大保 障性租赁住房等政策。组织保障坚强有力,中国共产主义青年团、中华全国青年联合会等组织始终重视维 护青年发展权益,努力为青年健康成长、奋发成才服务。塑造青年才能塑造未来,赢得青年才能赢得未来。 新时代的中国青年,充分享有成长成才、施展才华的人生舞台,必将奋勇前行,为实现中华民族伟大复兴 的中国梦,注入强劲、持久的澎湃动力。

无锡市天一中学2023-2024学年八年级上学期10月月考数学试题

无锡市天一中学2023-2024学年八年级上学期10月月考数学试题

初二数学阶段性练习满分:130分时间:120分钟一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑.............)1.下列四个图形中,是轴对称图形的是()A. B. C. D.2.如图,将ABC 折叠,使点C 与点B 重合,折痕l 与边BC 交于点D ,连接AD ,则AD 是ABC 的()A.角平分线B.高线C.中线D.无法确定3.若等腰三角形有一个内角为110︒,则这个等腰三角形的底角是()A .70︒ B.45︒ C.35︒ D.50︒4.如图,点F ,B ,E ,C 在同一条直线上,ABC DEF ≌△△,若34A ∠=︒,36F ∠=︒,则DEC ∠的度数为()A .50︒ B.60︒ C.70︒ D.80︒5.如图,小敏做了一个角平分仪ABCD ,其中AB AD =,BC DC =,将仪器上的点A 与PRQ ∠的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A 、C 画一条射线AE ,AE 就是PRQ ∠的平分线.此角平分仪的画图原理是()A.SSSB.SASC.ASAD.AAS6.如图,在ABC 中,90C ∠=︒,AD 是BAC ∠的角平分线,若3CD =,8AB =,则ABD 的面积是()A.36B.24C.12D.107.到三角形三个顶点的距离相等的点是()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点8.下列说法:①若三角形一边上的中线和这边上的高重合,则这个三角形是等腰三角形;②全等三角形的中线相等;③成轴对称的两个图形中,对应点的连线被对称轴垂直平分;④两条直角边对应相等的两个直角三角形全等.其中正确的说法有()A.1个 B.2个 C.3个 D.4个9.已知:如图ABC 中,=60B ∠︒,80C ∠=︒,在直线BA 上找一点D ,使ACD 或BCD △为等腰三角形,则符合条件的点D 的个数有()A.7个B.6个C.5个D.4个10.如图,直线MN PQ ⊥,垂足为O ,点A 是射线OP 上一点,2OA =,以OA 为边在OP 右侧作23AOF ∠=︒,且满足4OF =,若点B 是射线ON 上的一个动点(不与点O 重合),连接AB ,作AOB 的两个外角平分线交于点C ,在点B 在运动过程中,当线段CF 取最小值时,OFC ∠的度数为()A.90︒B.67︒C.23︒D.68︒二、填空题(本大题共8小题,8个空,每小空3分,共24分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置.........)11.在Rt ABC △中,CD 是斜边AB 上的中线,若10CD =,则AB =___________.12.已知图中的两个三角形全等,则α∠的度数是______.13.如图,已知点A 、D 、B 、F 在一条直线上,AC EF =,BC DE =,要使ABC FDE △≌△,还需添加一个条件,这个条件可以是_____.14.如图,在Rt ABC △中,90BAC ∠=︒,过顶点A 的直线DE BC ∥,ABC ∠,ACB ∠的平分线分别交DE 于点E 、D .若9AC =,12AB =,则DE 的长为____________.15.如图,已知线段20m AB =,射线MA AB ⊥于点A ,射线BD AB ⊥于B ,P 点从B 点向A 运动,每秒走1m ,Q 点从B 点向D 运动,每秒走4m ,P ,Q 同时从B 出发,则出发___________秒后,在线段MA 上有一点C ,使CAP 与PBQ 全等.16.如图,在ABC 中,直线l 是边AC 的垂直平分线,l 与边AB 交于点D E ,是边BC 上一点,把ABC 沿DE 折叠,点B 落在点F 处,DF 过点C ,且DC DE =.若42F ∠=︒,则A ∠的度数为___________度.17.如图,在四边形ABCD 中,E 是边BC 的中点,AE 平分BAD ∠,且90AED ∠=︒,若2CD AB =,四边形ABCD 的周长为18,5BC =,则AB 的值为___________.18.如图,在ABC 中,13AB AC ==,10BC =,BAC ∠的平分线交BC 于点D ,12AD =,点M N 、分别是边AD 和AB 上的动点,连接BM MN 、,则BM MN +的最小值为___________.三、解答题(本大题共8小题,共76分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)19.已知:如图,点E 、F 在线段BD 上,BE DF =,AF CE =,AF CE ∥.求证:ABF CDE ≌△△.20.已知在ABC 中,20AB =,8BC =,22AC m =-.(1)求m 的取值范围;(2)若ABC 是等腰三角形,求ABC 的周长.21.利用网格线作图.(1)如图1,ABC 为格点三角形,在BC 上找一点P ,使点P 到AB 和AC 的距离相等,然后在射线AP 上找一点Q ,使QB QC =.(2)如图2,四边形ABCD 为格点四边形,在四边形ABCD 的对角线AC 上找一点P ,使APB APD ∠=∠.22.已知:如图,在ABC 中,AB AC =,D E 、分别在AC AB ,上,且AD AE =,BD 和CE 相交于点O .求证:点O 在线段BC 的垂直平分线上.23.如图,已知 ABC .(1)用直尺和圆规按下列要求作图:①作 ABC 的角平分线AD ;②作∠CBE =∠ADC ,BE 交CA 的延长线于点E ;③作AF ⊥BE ,垂足为F .(2)直接判断图中EF 与BF 的数量关系.24.如图,在ABC 中,点E 是BC 边上的一点,连接AE ,BD 垂直平分AE ,垂足为F ,交AC 于点D .连接DE .(1)若ABC 的周长为19,DEC 的周长为7,求AB 的长.(2)若35ABC ∠=︒,50C ∠=︒,求∠CDE 的度数.25.在八年级上册“轴对称图形”一章69页中我们曾做过“折纸与证明”的数学活动.折纸,常能为证明一个命题提供思路和方法.请用你所学知识解决下列问题.【感悟】(1)如图1,AD 是ABC 的高线,2C B ∠=∠,若2CD =,5AC =,求BC 的长.小明同学的解法是:将ABC 沿AD 折叠,则点C 刚好落在BC 边上的点E 处.……请你画出图形并直接写出答案:BC =___________.【探究】(2)如图2,2ACB B ∠=∠,AD 为ABC 的外角CAF ∠的平分线,交BC 的延长线于点D ,则线段AB AC CD 、、又有怎样的数量关系?请写出你的猜想并证明.【拓展】(3)如图3,在四边形ABCD 中,AC 平分BAD ∠,8AD =,10DC BC ==,①求证:180B D ∠+∠=︒;②若2D B ∠=∠,则AB 的长为___________.26.已知等腰直角ABC 中,90ABC ∠=︒,AB BC =,点D E 、分别在边BC 、边AC 上,连接DE ,以D 为直角顶点在DE 右侧作等腰直角DEF 中,连接FC .(1)如图1,点D 与点B 重合时,猜想AE 和FC 的关系,并说明理由;(2)如图2,BD CD =时,点M N 、分别为EF 和AC 的中点,①探究AE FC 、和AC 三条线段之间的数量关系并证明;②若10BC =,直接写出MN 的最小值.初二数学阶段性练习满分:130分时间:120分钟一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑.............)1.下列四个图形中,是轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对选项进行分析即可.【详解】解:A ,B ,C 选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,故不符合题意;D 选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故符合题意.故选:D .【点睛】本题考查了轴对称图形的概念,解本题的关键在寻找图形的对称轴,看图形两部分折叠后是否能够互相重合.2.如图,将ABC 折叠,使点C 与点B 重合,折痕l 与边BC 交于点D ,连接AD ,则AD 是ABC 的()A.角平分线B.高线C.中线D.无法确定【答案】C【解析】【分析】根据折叠的性质可得:D 为BC 中点,于是可得AD 是ABC 的中线.【详解】解:∵将ABC 折叠,使点C 与点B 重合,∴D 为BC 中点,∴AD 是ABC 的中线;故选:C .【点睛】本题考查了折叠的性质和三角形中线的定义,正确理解题意是关键.3.若等腰三角形有一个内角为110︒,则这个等腰三角形的底角是()A .70︒ B.45︒ C.35︒ D.50︒【答案】C【解析】【分析】先判断出110︒的内角是这个等腰三角形的顶角,再根据等腰三角形的定义求解即可得.【详解】解: 等腰三角形有一个内角为110︒,∴这个等腰三角形的底角是180110352︒-︒=︒,故选:C .【点睛】本题考查了等腰三角形的定义,三角形内角和定理,解题的关键是熟练掌握等腰三角形的两个底角相等.4.如图,点F ,B ,E ,C 在同一条直线上,ABC DEF ≌△△,若34A ∠=︒,36F ∠=︒,则DEC ∠的度数为()A.50︒ B.60︒ C.70︒ D.80︒【答案】C【解析】【分析】根据全等三角形的性质可得34D A ∠=∠=︒,再三角形的外角性质,即可求解.【详解】解:∵ABC DEF ≌△△,34A ∠=︒,∴34D A ∠=∠=︒,∴70DEC D F ∠=∠+∠=︒.故选:C .【点睛】本题主要考查了全等三角形的性质,三角形的外角性质,熟练掌握全等三角形的性质是解题的关键.5.如图,小敏做了一个角平分仪ABCD ,其中AB AD =,BC DC =,将仪器上的点A 与PRQ ∠的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A 、C 画一条射线AE ,AE 就是PRQ ∠的平分线.此角平分仪的画图原理是()A.SSSB.SASC.ASAD.AAS【答案】A【解析】【分析】由“SSS ”证明ABC ADC △≌△,可得BAC DAC ∠=∠,可证AE 是PRQ ∠的角平分线,即可求解.【详解】解:在ABC 和ADC △中,AB AD BC CD AC AC =⎧⎪=⎨⎪=⎩,∴()ABC ADC SSS ≌,∴BAC DAC ∠=∠,∴AE 是PRQ ∠角平分线,故选:A .【点睛】本题考查全等三角形的判定与性质、角平分线的定义,熟练掌握全等三角形的判定与性质是解题的关键.6.如图,在ABC 中,90C ∠=︒,AD 是BAC ∠的角平分线,若3CD =,8AB =,则ABD 的面积是()A.36B.24C.12D.10【解析】【分析】过点D 作DE AB ⊥于E ,根据角平分线的性质求出DE ,根据三角形的面积公式计算,得到答案.【详解】解:过点D 作DE AB ⊥于E ,AD 是BAC ∠的角平分线,DE AB ⊥,90C ∠=︒,3DE CD ∴==,11831222ABD S AB DE ∴=⋅=⨯⨯= .故选:C .【点睛】本题考查了角平分线的性质,熟练掌握角平分线的性质是解题的关键.7.到三角形三个顶点的距离相等的点是()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点【答案】D【解析】【分析】三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.【详解】解:根据线段垂直平分线的性质可得:三角形三个顶点的距离相等的点是三边的垂直平分线的交点.故选:D .【点睛】本题考查的是线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.),难度一般.8.下列说法:①若三角形一边上的中线和这边上的高重合,则这个三角形是等腰三角形;②全等三角形的中线相等;③成轴对称的两个图形中,对应点的连线被对称轴垂直平分;④两条直角边对应相等的两个直角三角形全等.其中正确的说法有()A.1个B.2个C.3个D.4个【答案】C【分析】画出图形,根据线段垂直平分线性质得出AB AC =,即可判断①;根据全等三角形对应边上的中线相等可判断②;根据成轴对称图形的性质,即可判断③;根据全等三角形的判定方法即可判断④.【详解】解:①如图所示,∵AD 是高,∴AD BC ⊥,∵BD CD =,∴AB AC =,即ABC 是等腰三角形,故①正确;②全等三角形对应边上的中线相等,故②错误;③成轴对称的两个图形中,对应点的连线被对称轴垂直平分,故③正确;④它们的夹角是直角相等,可以根据边角边定理判定全等,故正确.综上所述,正确的结论有3个.故选:C .【点睛】本题主要考查等腰三角形的性质,轴对称图形以及全等三角形的判断,解题的关键是掌握轴对称定义、等腰三角形的性质及全等三角形的判断方法.9.已知:如图ABC 中,=60B ∠︒,80C ∠=︒,在直线BA 上找一点D ,使ACD 或BCD △为等腰三角形,则符合条件的点D 的个数有()A.7个B.6个C.5个D.4个【答案】B【解析】【分析】分ACD 或BCD △为等腰三角形两种情况画出图形即可判断.【详解】解:如图:当BC BD =时,BCD △是等腰三角形;∵=60CBA ∠︒,∴BCD △是等边三角形,∴BC BD CD ==;当1BC BD =时,BCD △是等腰三角形;当23AC AD AD ==,4CA CD =,当55CD D A =时,ACD 都是等腰三角形;综上,符合条件的点D 的个数有6个.故选:B .【点睛】本题考查等腰三角形存在问题,如果题中没有说明等腰三角形的腰或者底分别是哪条线段,都要进行分类讨论,让三条线段分别两两相等,得出三种情况,再根据题意看有没有需要排除的情况,然后再一一分析符合条件的图形.10.如图,直线MN PQ ⊥,垂足为O ,点A 是射线OP 上一点,2OA =,以OA 为边在OP 右侧作23AOF ∠=︒,且满足4OF =,若点B 是射线ON 上的一个动点(不与点O 重合),连接AB ,作AOB 的两个外角平分线交于点C ,在点B 在运动过程中,当线段CF 取最小值时,OFC ∠的度数为()A.90︒B.67︒C.23︒D.68︒【答案】D【解析】【分析】作CE PQ ⊥于E ,CG MN ⊥于G ,CH AB ⊥于H ,连接OC ,由角平分线的性质可得CE CH =,CG CH =,从而得到CE CG =,即可推出OC 平分AOB ∠,即点C 在AOB ∠的角平分线上,得到45AOC ∠=︒,22FOC ∠=︒,当FC OC ''⊥时,C F '最小,此时点C 在C '处,再由90OFC FOC ''=︒-∠进行计算即可得到答案.【详解】解:如图,作CE PQ ⊥于E ,CG MN ⊥于G ,CH AB ⊥于H ,连接OC ,,AC 平分∠PAB ,CE PQ ⊥,CH AB ⊥,CE CH =∴,同理可得:CG CH =,CE CG ∴=,CE PQ ⊥ ,CG MN ⊥,OC ∴平分AOB ∠,即点C 在AOB ∠的角平分线上,45AOC =∴∠︒,23AOF ∠=︒ ,452322FOC AOC AOF ∴∠=∠-∠=︒-︒=︒,如图,当FC OC ''⊥时,C F '最小,此时点C 在C '处,90FC O '∴∠=︒,90902268OFC FOC ''∴=︒-∠=︒-︒=︒,∴当线段CF 取最小值时,OFC ∠的度数为68︒,故选:D .【点睛】本题考查了角平分线的判定与性质、垂线段最短等知识,熟练掌握角平分线的判定与性质,添加适当的辅助线是解此题的关键.二、填空题(本大题共8小题,8个空,每小空3分,共24分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置.........)11.在Rt ABC △中,CD 是斜边AB 上的中线,若10CD =,则AB =___________.【答案】20【解析】【分析】利用直角三角形斜边上的中线性质,即可解答.【详解】解:由题意得:220AB CD ==,故答案为:20.【点睛】本题考查了直角三角形斜边上的中线,熟练掌握直角三角形斜边上的中线性质是解题的关键.12.已知图中的两个三角形全等,则α∠的度数是______.【答案】50︒##50度【解析】【分析】根据全等三角形对应角相等解答即可.【详解】解:如图:58,72B C �靶= ,180587250A \Ð=°-°-°=°,∵两个三角形全等,50D A a \Ð=Ð==°.故答案为:50︒.【点睛】本题考查全等三角形的性质,掌握全等三角形的对应边相等,对应角相等是解题关键.13.如图,已知点A 、D 、B 、F 在一条直线上,AC EF =,BC DE =,要使ABC FDE △≌△,还需添加一个条件,这个条件可以是_____.【答案】ACB FED ∠=∠(答案不唯一)【解析】【分析】要判定ABC FDE △≌△,已知AC EF =,BC DE =,具备了两组边对应相等,故添加A F ∠=∠,利用SAS 可证全等.(也可添加其它条件).【详解】解:若添加条件:ACB FED ∠=∠,因为AC EF =,AB DF =,所以AC EF ACB FED BC DE =⎧⎪∠=∠⎨⎪=⎩,所以()SAS ABC FDE ≌△△;若添加条件:AB FD =,因为AC EF =,AB DF =,所以AC EF AB FD BC DE =⎧⎪=⎨⎪=⎩,所以()SSS ABC FDE ≌;故答案为:ACB FED ∠=∠(答案不唯一).【点睛】本题考查了全等三角形的判定;熟练掌握三角形全等的判定定理是解题的关键.14.如图,在Rt ABC △中,90BAC ∠=︒,过顶点A 的直线DE BC ∥,ABC ∠,ACB ∠的平分线分别交DE 于点E 、D .若9AC =,12AB =,则DE 的长为____________.【答案】21【解析】【分析】由平行线的性质、角平分线的性质推知E ABE ∠=∠,则AB AE =.同理可得AD AC =,所以线段DE 的长度转化为线段AB 、AC 的和.【详解】解:D E B C ∥,E EBC ∴∠=∠.BE 平分ABC ∠,ABE EBC ∴∠=∠,E ABE ∴∠=∠,AB AE =∴.同理可得:AD AC =,21DE AD AE AB AC ∴=+=+=.故答案为:21.【点睛】本题综合考查了平行线的性质以及等腰三角形的判定与性质,将平行线的性质和等角对等边相结合是常见的考查方法.15.如图,已知线段20m AB =,射线MA AB ⊥于点A ,射线BD AB ⊥于B ,P 点从B 点向A 运动,每秒走1m ,Q 点从B 点向D 运动,每秒走4m ,P ,Q 同时从B 出发,则出发___________秒后,在线段MA 上有一点C ,使CAP 与PBQ 全等.【答案】4或10##10或4【解析】【分析】分两种情况考虑:当≌APC BQP △△时与当≌APC BPQ △△时,根据全等三角形的性质即可确定出时间.【详解】解:设出发x 秒后,在线段MA 上有一点C ,使CAP 与PBQ 全等.当≌APC BQP △△时,AP BQ =,即204x x -=,解得:4x =;当≌APC BPQ △△时,1102AP BP AB ===米,此时所用时间10x =,综上,出发4秒或10秒后,在线段MA 上有一点C ,使CAP 与PBQ 全等.故答案为:4或10.【点睛】此题考查了全等三角形的性质,熟练掌握全等三角形的性质是解本题的关键.16.如图,在ABC 中,直线l 是边AC 的垂直平分线,l 与边AB 交于点D E ,是边BC 上一点,把ABC 沿DE 折叠,点B 落在点F 处,DF 过点C ,且DC DE =.若42F ∠=︒,则A ∠的度数为___________度.【答案】32【解析】【分析】由折叠的性质可得42B F ∠=∠=︒,BDE CDE ∠=∠,设BDE CDE x ∠=∠=,则42DEC BDE B x ∠=∠+∠=+︒,由等腰三角形的性质可得42DCE DEC x ∠=∠=+︒,由三角形内角和定理求出32x =︒,从而得出74DCB ∠=︒,再由线段垂直平分线的性质可得AD CD =推出A ACD ∠=∠,最后由三角形内角和定理进行计算即可得到答案.【详解】解:由折叠的性质可得:42B F ∠=∠=︒,BDE CDE ∠=∠,设BDE CDE x ∠=∠=,则42DEC BDE B x ∠=∠+∠=+︒,DC DE = ,42DCE DEC x ∴∠=∠=+︒,180CDE DCE DEC ∠+∠+∠=︒ ,4242180x x x ∴++︒++︒=︒,解得:32x =︒,32BDE CDE ∴∠=∠=︒,42324274DCB x ∴∠=+︒=︒+︒=︒,直线l 是边AC 的垂直平分线,AD CD ∴=,A ACD ∴∠=∠,180A ACD DCB B ∠+∠+∠+∠=︒ ,27442180A ∴∠+︒+︒=︒,32A ∴∠=︒,故答案为:32.【点睛】本题主要考查了折叠的性质、三角形内角和定理、线段垂直平分线的性质、等腰三角形的判定与性质等知识点,熟练掌握以上知识点是解此题的关键.17.如图,在四边形ABCD 中,E 是边BC 的中点,AE 平分BAD ∠,且90AED ∠=︒,若2CD AB =,四边形ABCD 的周长为18,5BC =,则AB 的值为___________.【答案】136##126【解析】【分析】由E 是边BC 的中点可得BE CE =,由角平分线的定义可得BAE DAE ∠=∠,在AD 上截取AF AB =,连接EF ,证明()SAS ABE AFE △≌△得到BE EF =,BEA FEA ∠=∠,再证明()SAS DEF DEC △≌△得到2DF AB =,最后根据四边形ABCD 的周长为18即可求出AB 的值.【详解】解: E 是边BC 的中点,BE CE ∴=,AE 平分BAD ∠,BAE DAE ∴∠=∠,如图,在AD 上截取AF AB =,连接EF ,,在ABE 和AFE △中,AB AF BAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩,()SAS ABE AFE ∴≌△△,BE EF ∴=,BEA FEA ∠=∠,BE EF CE ∴==,90AED ∠=︒ ,90AEF DEF ∴∠+∠=︒,180AED DE AEB C ∠+∠=︒∠+ ,90AEB DEC ∴∠+∠=︒,DEC DEF ∴∠=∠,在DEF 和DEC 中,EF EC DEF DEC DE DE =⎧⎪∠=∠⎨⎪=⎩,()SAS DEF DEC ∴ ≌,CD DF ∴=,2CD AB = ,2DF AB ∴=,四边形ABCD 的周长为18,18AB BC CD AD ∴+++=,52218AB AB AB AB ∴++++=,136AB ∴=,故答案为:136.【点睛】本题考查了角平分线的定义、三角形全等的判定与性质等知识点,添加适当的辅助线,证明三角形全等是解此题的关键.18.如图,在ABC 中,13AB AC ==,10BC =,BAC ∠的平分线交BC 于点D ,12AD =,点M N 、分别是边AD 和AB 上的动点,连接BM MN 、,则BM MN +的最小值为___________.【答案】12013##3913【解析】【分析】作BE AC ⊥交AC 于点E ,交AD 与M ',作M N AB ''⊥交AB 于点N ',由角平分线的性质可得M N EM '''=,CAD BAD ∠=∠,则BM MN +的最小值为BE ,证明()SAS ACD ABD △≌△得到BD CD =,从而得到AD BC ⊥,再根据1122ABC S BC AD AC BE =⋅=⋅△求出BE 的长即可得到答案.【详解】解:如图,作BE AC ⊥交AC 于点E ,交AD 与M ',作M N AB ''⊥交AB 于点N ', AD 平分CAB ∠,BE AC ⊥,M N AB ''⊥,M N EM '''∴=,CAD BAD ∠=∠,BM M N BM M E BE '''''∴+=+=,即BM MN +的最小值为BE ,在ACD 和ABD △中,AC AB CADF BAD AD AD =⎧⎪∠=∠⎨⎪=⎩,()SAS ACD ABD ∴ ≌,CD BD ∴=,AD BC ∴⊥,1122ABC S BC AD AC BE =⋅=⋅ ,101213BE ∴⨯=⨯,12013BE ∴=,∴BM MN +的最小值为12013,故答案为:12013.【点睛】本题考查了角平分线的性质定理、三角形全等的判定与性质、等腰三角形的性质、三角形的面积公式等知识点,熟练掌握以上知识点,添加适当的辅助线是解此题的关键.三、解答题(本大题共8小题,共76分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)19.已知:如图,点E 、F 在线段BD 上,BE DF =,AF CE =,AF CE ∥.求证:ABF CDE ≌△△.【答案】见解析【解析】【分析】两边夹角对边对应相等的两个三角形全等,据此利用SAS 进行判定即可.【详解】证明:BE DF = ,BE EF DF EF ∴+=+,即BF DE =,∵AF CE ∥,∴AFB CED ∠=∠,在ABF △和CDE 中,AF CE AFB CED BF DE =⎧⎪∠=∠⎨⎪=⎩,()SAS ABF CDE ∴≌△△.【点睛】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.20.已知在ABC 中,20AB =,8BC =,22AC m =-.(1)求m 的取值范围;(2)若ABC 是等腰三角形,求ABC 的周长.【答案】(1)715m <<(2)48【解析】【分析】(1)根据三角形三边关系求解即可;(2)分AB AC =,BC AC =两种情况讨论即可.【小问1详解】解:根据题意,得AB BC AC AB BC -<<+,即20822208m -<-<+,解得715m <<;【小问2详解】解:当20AB AC ==时,ABC 的周长为2020848++=;当8BC AC ==时,16BC AC AB +=<,∴ABC 不存在,故舍去,的周长为48.∴ABC【点睛】本题考查了三角形三边关系,等腰三角形的定义,解不等式组等知识,掌握三角形三边关系是解题的关键.21.利用网格线作图.为格点三角形,在BC上找一点P,使点P到AB和AC的距离相等,然后在射线AP (1)如图1,ABC=.上找一点Q,使QB QC∠=∠.(2)如图2,四边形ABCD为格点四边形,在四边形ABCD的对角线AC上找一点P,使APB APD 【答案】(1)见解析(2)见解析【解析】∠的角平分线交CB于点P,作线段BC的垂直平分线交AP于点Q,点P、【分析】(1)利用网格线作CAB点Q即为所求;(2)作点B关于AC的对称点B',连接DB'并延长交AC于点P,点P即为所求.【小问1详解】解:如图,点P、点Q即为所求,,由角平分线的性质可得点P到AB和AC的距离相等,=;由线段垂直平分线的性质可得QB QC【小问2详解】解:如图,点P即为所求,,由轴对称的性质可得APB APD ∠=∠.【点睛】本题考查了作图—复杂作图,角平分线的性质、线段垂直平分线的性质、轴对称的性质等知识点,熟练掌握以上知识点是解此题的关键.22.已知:如图,在ABC 中,AB AC =,D E 、分别在AC AB ,上,且AD AE =,BD 和CE 相交于点O .求证:点O 在线段BC 的垂直平分线上.【答案】见解析【解析】【分析】先证明()SAS ABD ACE △≌△得到ABD ACE ∠=∠,再由等边对等角可得A ABC CB =∠∠,从而推出CBO BCO ∠=∠,进而得出BO CO =,即可得证.【详解】证明:在ABD △和ACE △中,AE AD BAD CAE AB AC =⎧⎪∠=∠⎨⎪=⎩,()SAS ABD ACE ∴△≌△,ABD ACE ∴∠=∠,AB AC = ,ABC ACB ∴∠=∠,ABC ABD ACB ACE ∴∠-∠=∠-∠,CBD BCE ∴∠=∠,即CBO BCO ∠=∠,BO CO ∴=,∴点O 在线段BC 的垂直平分线上.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质、线段垂直平分线的判定,熟练掌握以上知识点是解此题的关键.23.如图,已知 ABC .(1)用直尺和圆规按下列要求作图:①作 ABC 的角平分线AD ;②作∠CBE =∠ADC ,BE 交CA 的延长线于点E ;③作AF ⊥BE ,垂足为F .(2)直接判断图中EF 与BF 的数量关系.【答案】(1)①作图见解析;②作图见解析;③作图见解析(2)EF BF=【解析】【分析】(1)①如图1,运用直尺与圆规按要求画角平分线即可得直线AD ;②如图1,根据EBC ADC ∠=∠得到AD BE ,过B 作BE AD ∥,交CA 延长线于E 即可;③如图1,根据ABE AEB ∠=∠,可知AE AB =,由AF BE ⊥可知AF 为线段BE 的垂直平分线,作图即可;(2)如图1,由(1)可知,BEA EBA ∠=∠,进而可判定ABE 是等腰三角形,由等腰三角形的性质可证BF EF =.【小问1详解】①解:如图1,射线AD 就是∠BAC 的角平分线;②解:作∠EBC =∠ADC ,点E 就是所求作的点,如图1所示;③解:作线段BE 的垂直平分线AF ,如图1所示;【小问2详解】解:BF EF =.由(1)可知BAD CAD∠=∠∵∠CBE =∠ADC∴AD BE∴CAD BEA ∠=∠,EBA BAD∠=∠∴BEA EBA∠=∠∴AB AE=∴ABE 是等腰三角形∵AF BE⊥∴BF EF =.【点睛】本题考查了作角平分线、作一个角等于已知角、作线段的垂直平分线、等腰三角形的判定与性质.解题的关键在于对知识的灵活运用.24.如图,在ABC 中,点E 是BC 边上的一点,连接AE ,BD 垂直平分AE ,垂足为F ,交AC 于点D .连接DE .(1)若ABC 的周长为19,DEC 的周长为7,求AB 的长.(2)若35ABC ∠=︒,50C ∠=︒,求∠CDE 的度数.【答案】(1)6AB =;(2)45CDE ∠=︒.【解析】【分析】(1)根据线段垂直平分线的性质得到AB BE AD DE ==,,根据三角形的周长公式计算,得到答案;(2)根据三角形内角和定理求出BAC ∠,证明BAD BED △≌△,根据全等三角形的性质得到95BED BAC ∠=∠=︒,根据三角形的外角性质计算即可.【小问1详解】解:∵BD 是线段AE 的垂直平分线,∴AB BE AD DE ==,,∵ABC 的周长为19,DEC 的周长为7,∴19AB BE EC CD AD ++++=,7CD EC DE CD CE AD ++=++=,∴19712AB BE +=-=,∴6AB =;【小问2详解】解:∵35ABC ∠=︒,50C ∠=︒,∴180355095BAC ∠=︒-︒-︒=︒,在BAD 和BED 中,BA BE BD BD DA DE =⎧⎪=⎨⎪=⎩,∴()SSS BAD BED ≌,∴95BED BAC ∠=∠=︒,∴955045CDE BED C ∠=∠-∠=︒-︒=︒.【点睛】本题考查的是线段垂直平分线的性质、三角形全等的判定和性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.25.在八年级上册“轴对称图形”一章69页中我们曾做过“折纸与证明”的数学活动.折纸,常能为证明一个命题提供思路和方法.请用你所学知识解决下列问题.【感悟】(1)如图1,AD 是ABC 的高线,2C B ∠=∠,若2CD =,5AC =,求BC 的长.小明同学的解法是:将ABC 沿AD 折叠,则点C 刚好落在BC 边上的点E 处.……请你画出图形并直接写出答案:BC =___________.【探究】(2)如图2,2ACB B ∠=∠,AD 为ABC 的外角CAF ∠的平分线,交BC 的延长线于点D ,则线段AB AC CD 、、又有怎样的数量关系?请写出你的猜想并证明.【拓展】(3)如图3,在四边形ABCD 中,AC 平分BAD ∠,8AD =,10DC BC ==,①求证:180B D ∠+∠=︒;②若2D B ∠=∠,则AB 的长为___________.【答案】(1)9;(2)AB AC CD +=,证明见解析;(3)①证明见解析;②18【解析】【分析】(1)根据题意画出图形,由折叠的性质可得:5AC AE ==,2DE CD ==,C AED ∠=∠,由2C B ∠=∠可得2AED B ∠=∠,再由三角形外角的定义及性质可得AED B BAE ∠=∠+∠,推出B BAE ∠=∠,进而得到5BE AE ==,最后进行计算即可得到答案;(2)在AF 上截取AG AC =,连接DG ,证明()SAS CAD GAD ≌得到CD GD =,ACD AGD ∠=∠,证明ACB DGF ∠=∠,再由2ACB B ∠=∠得到2DGF B ∠=∠,再根据三角形外角的定义及性质得出B BDG ∠=∠,进而得到BG DG =,即可得证;(3)①在AB 上截取AH AD =,连接CH ,证明()SAS CAH CAD ≌,得到D CHA ∠=∠,CD CH =,从而得到CB CH =,进而B CHB ∠=∠,再由180CHB CHA ∠+∠=︒即可得证;②由①得180B D ∠+∠=︒,结合2D B ∠=∠可得=60B ∠︒,从而推出BCH V 是等边三角形,得出10BH =,最后由AB BH AH =+即可得到答案.【详解】解:(1)如图,将ABC 沿AD 折叠,则点C 刚好落在BC 边上的点E 处,,由折叠的性质可得:5AC AE ==,2DE CD ==,C AED ∠=∠,2C B ∠=∠ ,2AED B ∴∠=∠,AED B BAE ∠=∠+∠ ,B BAE ∴∠=∠,5BE AE ∴==,5229BC BE DE CD ∴=++=++=,故答案为:9;(2)AB AC CD +=,证明:如图,在AF 上截取AG AC =,连接DG ,,AD 平分CAF ∠,CAD GAD ∴∠=∠,在CAD 和GAD 中,AG AC CAD GAD AD AD =⎧⎪∠=∠⎨⎪=⎩,()SAS CAD GAD ∴ ≌,CD GD ∴=,ACD AGD ∠=∠,180ACD ACB ∠+∠=︒ ,180AGD DGF ∠+∠=︒,ACB DGF ∴∠=∠,2ACB B ∠=∠ ,2DGF B ∴∠=∠,DGF B BDG ∠=∠+∠ ,B BDG ∴∠=∠,BG DG ∴=,BA AG BG DG CD ∴+===,AB AC CD ∴+=;(3)①如图,在AB 上截取AH AD =,连接CH ,,AC 平分BAD ∠,HAC DAC ∴∠=∠,在CAH 和CAD 中,AH AD HAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩,()SAS CAH CAD ∴ ≌,D CHA ∴∠=∠,CD CH =,CB CD = ,CB CH ∴=,B CHB ∴∠=∠,180CHB CHA ∠+∠=︒ ,180B D ∴∠+∠=︒;②由①得180B D ∠+∠=︒,10BC CH ==,2D B ∠=∠ ,2180B B ∴∠+∠=︒,60B ∴∠=︒,10BC CH == ,BCH ∴ 为等边三角形,10BH ∴=,10818AB BH AH ∴=+=+=,故答案为:18.【点睛】本题主要考查了角平分线的定义、三角形全等的判定与性质、三角形外角的定义及性质、等边三角形的判定与性质、等腰三角形的判定与性质、折叠的性质等知识点,熟练掌握以上知识点,添加适当的辅助线是解此题的关键.26.已知等腰直角ABC 中,90ABC ∠=︒,AB BC =,点D E 、分别在边BC 、边AC 上,连接DE ,以D 为直角顶点在DE 右侧作等腰直角DEF 中,连接FC .(1)如图1,点D 与点B 重合时,猜想AE 和FC 的关系,并说明理由;(2)如图2,BD CD =时,点M N 、分别为EF 和AC 的中点,①探究AE FC 、和AC 三条线段之间的数量关系并证明;②若10BC =,直接写出MN 的最小值.【答案】(1)AE CF =,AE CF ⊥,理由见解析(2)①12AE CF AC +=,证明见解析;②MN 的最小值为52【解析】【分析】(1)由ABC 、DEF 为等腰直角三角形,点D 与点B 重合,可得90ABC EBF ∠=∠=︒,BE BF =,45BAC BCA ∠=∠=︒,证明ABE CBF △≌△得到AE CF =,45BAE BCF ∠=∠=︒,从而得出90ACF ∠=︒,即可得证;(2)①连接DN ,由三角形中位线定理可得DN AB ∥,1122DN AB CB ==,从而得到90CDN ABC ∠=∠=︒,DN DC =,证明()SAS DEN DCF ≌得到CF EN =,再由12AE EN AN AC +==即可得出结论;②连接DM 、CM ,作MG CD ⊥交CD 于点G ,交AC 于点H ,先证得90ECF ∠=︒,从而得到DM CM =,推出M 在CD 的垂直平分线上,当MN MG ⊥时,MN 最小,再利用等腰直角三角形的判定与性质及勾股定理进行计算即可得到答案.【小问1详解】解:AE CF =,AE CF ⊥,理由如下:ABC 、DEF 为等腰直角三角形,点D 与点B 重合,90ABC EBF ∴∠=∠=︒,BE BF =,45BAC BCA ∠=∠=︒,ABC EBC EBF EBC ∴∠-∠=∠-∠,即ABE CBF ∠=∠,在ABE 和CBF V 中,AB CB ABE CBF BE BF =⎧⎪∠=∠⎨⎪=⎩,()SAS ABE CBF ∴ ≌,AE CF ∴=,45BAE BCF ∠=∠=︒,454590ACF ACB BCF ∴∠=∠+∠=︒+︒=︒,CF AE ∴⊥;【小问2详解】解:①12AE CF AC +=,证明:如图,连接DN ,。

吉林省部分学校2024-2025学年高一上学期10月月考语文试题

吉林省部分学校2024-2025学年高一上学期10月月考语文试题

2024-2025学年度上学期第一次月考高一语文试题本试卷共24题,共150分,共5页。

考试时间为150分钟。

考试结束后,只交答题卡。

一、现代文阅读(35分)(一)信息类文本阅读(本题共5小题,19分)阅读下面的文字,完成下面小题。

赵艳(以下简称赵):很多读者对你的认识是从《哦,香雪》开始的,这是一篇意境和文字都非常优美的文章,可以说是当代文学中诗化小说的代表作之一。

这篇文章读起来很有青春的诗意和激情,一气呵成,像是从生命中活泼泼地流淌出来的东西,很感性,也很朴实。

你自己如何评价这篇作品在你所有创作中的地位和价值?铁凝(以下简称铁):它在我整个创作中不是以价值高或低,分量轻或重来衡量的,而是它本身具有一种不可替代性,我后来的小说在叙事上更成熟,更像一个自觉作家的写作,但《哦,香雪》焕发出来的对人生、对情感、对生活、对希望那种透明的激情是不可替代的。

一个年轻的作家,如果有本领,写出那样的作品并不难,但是岁月过去了,我们经历了很多,如果还保有那样的爱和希望,还拥有那种透明的心境,那就真是不容易的。

我想,《哦,香雪》对我的意义就在这里。

现在,香雪的时代好像已经过去了,我歌颂的也的确不是封闭的处于蒙昧状态的大山里的人和事。

生活在变,生活里的人也在变,但是我们依然需要香雪。

孙犁说过:“女孩子们心中,埋藏着人类原始的多种美德。

”我认为,发掘我们内心的多种原始美德是任何作家在任何时代都不应该放弃的,哪怕在经历了人生的苦难之后,外在的形式变了,内部那个坚硬的核应该还在。

赵:无论是美还是丑,无论外壳怎样变换,内在的核始终如一地朝向对人类美好的情感、珍贵的品性的追求。

铁:是的。

我的作品中前后的人物和故事都有鲜明的不同,中间还有一些起伏。

文学可以而且应该有多种途径,有时是这个故事触动了你,有时是那个人使你有倾诉的愿望,但最终我将这些人和事融合在一起,通过他们,我想要实现的是文学温暖世界的功能。

汪曾祺说过“人是孤儿”,人真的是很孤独的,所以人需要文学的世界、希望的世界,虽然也许那最美好的境界,我们永远到达不了,但愿望在那儿,我们就会有向前走的勇气,对生活有所期待,这就够了。

辽宁省大连市甘井子区育文中学2024-2025学年七年级 上学期10月月考数学试卷(含答案)

辽宁省大连市甘井子区育文中学2024-2025学年七年级 上学期10月月考数学试卷(含答案)

2024-2025学年度第一学期阶段性随堂练习七年级数学(本试卷共23道题 满分120分 考试时间共90分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果80m 表示向右走80m ,那么m 表示( )A .向上走60mB .向下走60mC .向左走60mD .向南走60m2.0的发现被称为人类伟大的发现之一.0在我国古代叫做金元数字,意思是极为珍贵的数字,下列关于0在生活中的应用的说法,错误的是( )A .0℃是一个确定的温度B .海拔0m 表示没有海拔C .24小时时制中,0点表示一天的开始时刻D .在二进制中,0是基本的数字表示3.我区某天的温差是11℃,最高气温是9℃,则最低气温是( )A .℃B .2℃C .20℃D .℃4.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是( )A .B .C .D .5.下列各式结果为负数的是( )A .B.C .D .6.下列比较两个数的大小,正确的是( )A .B .C .D .7.任何一个数加上一个正数,和与原来的数的大小关系是( )A .一定比原数大B .一定比原数小C .可能等于原数D .无法确定8.设,是正有理数,下列判断错误的是( )A .B .C .D .9.若有理数小于,在数轴上表示数及其相反数,正确的是( )A .B .C .D .60-2-20-()1--1--()()11-⨯-()()11---31->-21->1123->-2334->-a b ()()()a b a b +⨯-=-⨯()()()a b a b -⨯-=-⨯()()()a b a b ++-=--()()()a b a b -+-=-+m 1-m m -10.一架直升机从高度为450m 的位置开始,先以5m/s 的速度竖直上升60s ,然后以4m/s 的速度竖直下降120s ,这时直升机所在的高度是( )A .90mB .270mC .630mD .810m第二部分 非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11.2024的相反数是___________.12.若,则___________.13.写出一个绝对值小于5的负数___________.(写出一个即可)14.如图所示的图案是我国古代窗格的一部分,其中“”代表窗纸上所贴的剪纸,则第6个图中所贴剪纸“”的个数为___________.15.对于任意有理数,通常用表示不超过的最大整数,如.在数学史上,这一数学符号的首次出现,是在数学家高斯(C.F.Gauss.)的著作《算术研究》中.依据上述对的定义,计算的结果是___________.三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(本题满分10分)计算(1);(2).17.(本题满分10分)计算(1);(2).18.(本题满分10分)计算(1);(2).19.(本题满分8分)有8筐白菜,以每筐25kg 为质量标准,超过的千克数记为正数,不足的千克数记为负数,称后的记录(单位:kg )如下:1.5,,2,,1,,,2a =a =O O x []x x []2.92=[]x []x [][]3.1 3.9+-()()832---+-28635⎛⎫⨯-÷ ⎪⎝⎭8513794⎛⎫⎛⎫-⨯⨯-⨯- ⎪ ⎪⎝⎭⎝⎭()512656÷-7377184812⎛⎫⎛⎫-÷-- ⎪ ⎪⎝⎭⎝⎭()21211332334----⨯----3-0.5-2-2- 2.5-这8筐白菜一共多少千克?20.(本题满分9分)解答下列问题:(1)当时,的值是___________,当时,的值是___________.(2)若有理数不等于零,求的值.(3)若有理数,均不等于零,的值是___________.21.(本题满分9分)红、黄、蓝三支足球队进行单循环比赛,比赛结果是:红队胜黄队,比分4:2;黄队胜蓝队,比分为3:1;红队负蓝队,比分为2:3.如果胜一场积3分,负一场积0分.(1)求三个队的积分各是多少?(2)当球队积分相同时,净胜球总数多的队排名靠前.如果进球数记为+,失球数记为,净胜球数等于进球数与失球数的和.请通过计算各队的净胜球数,判断哪个队获得第一名.22.(本题满分7分)综合与实践【问题的发现与提出】巴黎时间2024年8月4日晚上,在巴黎奥运会男子4×100米混合泳接力决赛中,中国队夺得金牌,打破美国长达四十年的垄断.小明是在北京时间8月5日凌晨观看的现场直播,他知道两地存在时间上的差异,即时差.为了解时差的奥秘,小明查阅并整理了相关资料.【资料的查询与整理】时差产生的原因:地球可以看成一个球体,太阳光线不能同时照到地球的每一个角落.随着地球自西向东的自转,不同经度上的地方就会在不同的时间接收到太阳光,这就导致了各地时间的差异.显然,地球上相对东面的位置比西面的位置更早接收到太阳光,时间自然比西面要早.时区制度的设立:国际上规定,以英国格林尼治天文台所在的经线为零度经线,根据地球自转的方向,将地球表面按从东到西,每隔15°划分为1个区域,可以得到24个区域,即24个时区,并规定零度经线所在的时区(西经7.5°一东经7.5°的区域)称为中时区(零时区),中时区以东有12个时区,依次记为东一区至东十二区,以西也有十二个时区,依次记为西一区至西十二区,由于地球形状的影响,最终东十二区和西十二区合为一个时区.在同一时区内各地的时间相同,不同时区内各地有各自的时间,每相邻时区的时差为1小时.这样,当一个时区是中午12点时,相邻的时区可能是下午1点或早上11点.时区设立的意义:时区制度的设立是为了适应人类社会发展的需要,提供一个全球统一的时间框架,以便于跨地域的交流和活动.【问题的理解与应用】由于中时区又称为零时区,好比数轴上的原点,东区好比正半轴,西区好比负半轴.所有时区与中时区的时差都等于和中时区相比的那个时区的时区数.比如东八区就与中时区相差8小时,时区数是八.又由于所有相邻的时区时刻都相差1小时,这样东一区与西一区之间的中时区,就好比数轴上与之间的0一样.将数轴上的数与时区对应的点、经度对应起来,可以用下图来表示:5a =a a2a =-aa a a aa b ba a b+-O 1-1+其中7.5°E 表示东经7.5°,对应点;7.5°W 表示西经7.5°,对应点;15°E 表示东经15°,对应点;数字1表示东一区(从东经7.5°到东经22.5°之间的区域);0°对应点.法国巴黎和中国北京分别采用东经15°(东一区)和东经120°(东八区)的时间,因此北京时间比巴黎时间要早7个小时.例如,巴黎时间8月4日19:00,就是北京时间8月5日凌晨2:00.【问题的解决与实践】(1),,三地分别采用经度是东经15°,东经120°和西经120°的时间,将三地用背景材料中数轴上的数简明地表示,分别是____________;(2)下一届奥运会将于2028年在美国洛杉矶举行,洛杉矶采用西八区的时间.①若北京时间是2024年10月10日13:00,洛杉矶时间是____________;②若2028年洛杉矶奥运会的某一项游泳比赛于当地时间7月20日19:00进行,请你推算此时的北京时间.23.(本题满分12分)【阅读中思考】设是不为0和1的有理数,我们把1与的倒数的差,即称为的倒数差,如:2的倒数差是,的倒数差是.【探索中理解】若,是的倒数差,是的倒数差,是的倒数差,…,以此类推.(1)先写出计算,,的算式,在求出它们的值.(2)求的值为____________.(直接写出答案)【应用拓展】设,,都是不为0和1的有理数,将一个数组中的数分别按照材料中“倒数差”的定义作变换,第1次变换后得到数组,第2次变换后得数组,…,第次变换后得到数组.(3)若数组确定为.则的值为_____________.(直接写出答案)M N P O A B C a a 11a-a 11122-=1-()1121-=-3a =1a a 2a 1a 3a 2a 1a 2a 3a 456a a a ++a b c (),,a b c ()111,,a b c ()222,,a b c n (),,n n n a b c (),,a b c 11,,32⎛⎫-- ⎪⎝⎭111222999a b c a b c a b c +++++++++2024-2025学年第一学期阶段性随堂练习七年级数学(参考答案及评分标准仅供本次练习使用)一、选择题(本题共10小题,每小题3分,共30分)1.C 2.B 3.A 4.C 5.B 6.D 7.A 8.C 9.D 10.B 二、填空题(本题共5小题,每小题3分,共15分)11.12.13.等14.2015.14.2015.-1三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(每题5分,共10分)(1)原式 2分(2)原式 3分 3分4分5分5分17.(每题5分,共10分)(1)原式2分4分5分(2)原式 1分2分4分5分18.(每题5分,共10分)(1)因为2024-2±1-1-832=-+-25638=-⨯⨯52=--548=-⨯7=-52=-5813974⎛⎫⎛⎫=-⨯⨯⨯ ⎪⎪⎝⎭⎝⎭5237=-⨯1021=-5112665⎛⎫=-+⨯ ⎪⎝⎭51125165⎛⎫=-++⨯ ⎪⎝⎭112556⎛⎫=-++ ⎪⎝⎭112530=-3777148128⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭1分2分3分所以 5分(2).4分 5分19.(本题满分8分)根据题意得2分3分4分5分(kg )7分答:8筐白菜一共194.5千克. 8分20.(本题满分9分)(1) 1 ,_______;2分(2)若,,4分若,,6分所以的值为1或.(3)2或0或. 9分21.(本题满分9分)(1)红队胜一场,负一场,得3分;黄队胜一场,负一场,得3分;蓝队胜一场,负一场,得3分;777848127⎛⎫⎛⎫=--⨯- ⎪ ⎪⎝⎭⎝⎭2213=-++13=-73771384812⎛⎫⎛⎫-÷--=- ⎪ ⎪⎝⎭⎝⎭()21211332334----⨯----21133312=---+11112=()()()()()1.5320.5122 2.5+-++-++-+-+-()()()()()()1.52130.522 2.5=+++-+-+-+-+-⎡⎤⎣⎦()4.510=+-5.5=-258 5.5194.5⨯-=1-0a >a a =1a aa a==0a <a a =-1a a a a==--aa1-2-三个队各得3分. 3分(2)红队进球6个,失球5个,净胜球数,黄队进球5个,失球5个,净胜球数,蓝队进球4个,失球5个,净胜球数, 6分因为 7分所以红队获得第一名. 9分22.(本题满分7分)(1)1,8,3分(2)①2024年10月9日21:00; 5分②2028年7月21日11:00 7分23.(本题12分)(1);;.6分(2);8分(3).12分()651=+-=()550=+-=()451=+-=-101>>-8-11121133a a =-=-=2111111223a a =-=-=-321111312a a =-=-=-196194。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同步练习
第I卷(选择题)
一、选择题(本题共3道小题,每小题0分,共0分)
函数定义域为()
A.(0,2] B.(0,2)C.(0,1)∪(1,2] D.(﹣∞,2]
2.已知函数
⎪⎩



>
-

=
-
)1
(
)2
3(
log
)1
(
2
)
(
2
x
x
x
x
f
x
,若4
)
(=
a
f,则实数=
a()
A.2
-或6 B.2
-或
3
10
C.2
-或2 D.2

3
10
3.
已知y=f(x)是定义在
R上的奇函数,当x>0时,f(x)=x﹣2,那么不等式
的解集是()
A.B.
C.D.
第II 卷(非选择题)
二、填空题(题型注释)
三、解答题(本题共4道小题,第1题0分,第2题0分,第3题0分,第4题0分,共0分)
(1)设全集U=R ,集合A={x|﹣1≤x <3},B={x|2x ﹣4≥x ﹣2}.求A ∪B ,∁U (A ∩B );
(2)化简求值:
++0.027×(﹣)﹣2. 5.
求下列函数的定义域:
(1)
; (2)

6.
若函数y=lg (3﹣4x+x 2)的定义域为M .当x ∈M 时,求f (x )=2x+2﹣3×4x 的最值及相应的x 的值.
7.若二次函数2() (,,)f x ax bx c a b c R =++∈满足(1)()41f x f x x +-=+,且 (0)3f =.
(1)求()f x 的解析式;
(2)若在区间[1,1]-上,不等式()6f x x m >+恒成立,求实数m 的取值范围.
试卷答案
1.C
【考点】对数函数的值域与最值.
【分析】由函数的解析式可得,,即,解此不等式组,求得函数的定义域.
【解答】解:由函数的解析式可得,,即,
解得 0<x<1,1<x≤2,故函数的定义域为{x|0<x≤2,且x≠1},
故选C.
2.A

3.B
【考点】奇偶性与单调性的综合.
【分析】先求得当x>0时的x的范围,再利用奇函数的性质求得当x<0时,f(x)的解析式,求得不等式的解集,综合可得要求的不等式的解集.
【解答】解:当x>0时,f(x)=x﹣2,不等式,即x﹣2<,求得0<x<

当x=0时,f(x)=0,满足不等式成立,
当x<0时,﹣x>0,此时 f(﹣x)=﹣x﹣2=﹣f(x),f(x)=x+2,
不等式,即x+2<,求得x<﹣,
综上可得,不等式的解集是{x|0≤x<,或x<﹣},
故选:B.
4.
【考点】有理数指数幂的化简求值;交、并、补集的混合运算.
【分析】(1)先分别求出集合A,B,由此能求出A∪B,A∩B,∁U(A∩B).
(2)利用有理数指数幂性质及运算法则求解.
【解答】解:(1)全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}={x|x≥2}.
∴A∪B={x|x≥﹣1},A∩B={x|2≤x<3},
∁U(A∩B)={x|x<2或x≥3}.
(2)++0.027×(﹣)﹣2
=+4+×9
=.
5.
【考点】对数函数的定义域.
【专题】计算题.
【分析】(1)在中,
由,能求出f(x)的定义域.
(2)在中,由
,能推出f(x)的定义域.
【解答】解:(1)在
中,
∵,
∴,
解得﹣1<x≤4,
所以f(x)的定义域为{x|﹣1<x≤4}.
(2)在中,
∵,
∴,
解得

所以f (x )的定义域为.
【点评】本题考查函数的定义域的求法和应用,是基础题.解题时要认真审题,仔细解答,注意对数函数的性质的灵活运用.
6.
【考点】对数函数的定义域;函数的最值及其几何意义;二次函数的性质.
【分析】根据题意可得M={x|x 2﹣4x+3>0}={x|x >3,x <1},f (x )=2x+2﹣3×4x =﹣3•
(2x )2+4•2x
令t=2x ,则t >8,或0<t <2∴f (t )=﹣3t 2+4t 利用二次函数在区间(8,+∞)或(0,
2)上的最值及x 即可
【解答】解:y=lg (3﹣4x+x 2),
∴3﹣4x+x 2>0,
解得x <1或x >3,
∴M={x|x <1,或x >3},
f (x )=2x+2﹣3×4x =4×2x ﹣3×(2x )2.
令2x =t ,
∵x <1或x >3,
∴t >8或0<t <2.
∴f (t )=4t ﹣3t 2=﹣3t 2+4t (t >8或0<t <2).
由二次函数性质可知:
当0<t <2时,f (t )∈(﹣4,], 当t >8时,f (t )∈(﹣∞,﹣160),
当2x =t=,即x=log 2时,f (x )max =.
综上可知:当x=log 2时,f (x )取到最大值为
,无最小值. 7.(1)由(0)3f =得,3c =. ∴
2()3f x ax bx =++. 又(1)()41f x f x x +-=+,∴22(1)(1)3(3)41a x b x ax bx x ++++-++=+,
即241ax a b x ++=+,
∴241a a b =⎧⎨+=⎩,∴21
a b =⎧⎨=-⎩.∴2()23f x x x =-+. (2) ()6f x x m >+等价于2236x x x m -+>+,即2273x x m -+>在[1,1]-上恒成立,
令2()273g x x x =-+,则min ()(1)2g x g ==-,∴2m <-. 略。

相关文档
最新文档