2-2007-2015年新课标全国卷理——函数与导数

合集下载

2015年全国统一高考数学试卷(理科)(新课标ii)答案与解析

2015年全国统一高考数学试卷(理科)(新课标ii)答案与解析

2015年全国统一高考数学试卷(理科)(新课标II)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()∴=35.(5分)设函数f(x)=,则f(﹣2)+f(log212)=(),=12×=66.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()B正方体切掉部分的体积为1==.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|= 2,则2.8.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()9.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥=10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f (x)的图象大致为()B时,AP==,+tanx≤≤≤≠时,PA+PB=2≤﹣x=对称,)>)时的解析式是解决本11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶B在双曲线﹣,a在双曲线=1﹣=1,==.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′=,则=====0或,二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.λ+与+2,不平行,向量λ+与+2λ++2),解得;故答案为:.,使得14.(5分)若x,y满足约束条件,则z=x+y的最大值为.);故答案为:.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=3.16.(5分)设S n是数列{a n}的前n项和,且a1=﹣1,a n+1=S n S n+1,则S n=﹣.{∴﹣=,即={∴,.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.B=C=从而得解∵=2=,∴B==,∴C=;∴=.×.∴=2由余弦定理可得:=的长为18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的频率,求C的概率.,发生的频率为,,,,,=,=×+×=0.4819.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.,根据即可求出法向量,坐标可以求出,可设直线即可求得直线∴∴,则=所成角的正弦值为20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.==+b==过点(,即,b=,=2×,﹣,或时,四边形21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.DM=MN=,∴AB=的面积为×××=选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.cos=2.可得直角坐标方程:,,.:(B选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.++++)由于()=a+b+2+=c+d+2>+)+++若>+,则()>()a+b+2c+d+2,+)+综上可得,++。

2007全国高考全国卷2理科数学及答案(WORD版)

2007全国高考全国卷2理科数学及答案(WORD版)

2007年普通高等学校招生全国统一考试试题卷理科数学(必修+选修II)注意事项:1. 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.共4页,总分150分考试时间120分钟.2. 答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上。

3. 选择题的每小题选出答案后,用2B 铅笔把答题卡上的对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上。

4. 非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚。

5. 非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答,超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效。

6. 考试结束后,将本试卷和答题卡一并交回。

第I 卷(选择题)本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题意要求的。

参考公式:如果事件A 、B 互斥,那么 P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么 P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率 P n (k)=C kn P k (1-P)n-k一.选择题1. sin2100=(A)23(B) -23(C)21(D) -212.函数f(x)=|sinx|的一个单调递增区间是(A)(-4π,4π) (B) (4π,43π)(C) (π,23π) (D) (23π,2π)3.设复数z 满足z i21+=i ,则z =(A) -2+i (B) -2-i (C) 2-i (D) 2+i 4.以下四个数中的最大者是 (A) (ln2)2(B) ln(ln2)(C) ln 2(D) ln25.在∆ABC 中,已知D 是AB 边上一点,若=2,=λ+31,则λ=(A)32 (B) 31 (C) -31 (D) -32球的表面积公式S=42R π 其中R 表示球的半径,球的体积公式 V=334R π,其中R 表示球的半径6.不等式:412--x x >0的解集为(A)( -2, 1) (B) ( 2, +∞) (C) ( -2, 1)∪ ( 2, +∞) (D) ( -∞, -2)∪ ( 1, +∞)7.已知正三棱柱ABC-A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦等于(A) 4(B)4 (C)2(D) 28.已知曲线23ln 4x y x=-的一条切线的斜率为,则切点的横坐标为(A)3 (B) 2 (C) 1 (D) 9.把函数y =e x的图象按向量a =(2,3)平移,得到y =f (x )的图象,则f (x )= (A) e x -3+2 (B) e x +3-2 (C) e x -2+3 (D) e x +2-310.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有 (A)40种 (B) 60种 (C) 100种 (D) 120种11.设F 1,F 2分别是双曲线22221x y a b -=的左、右焦点。

2007年高考理科数学试题及答案(全国卷2)

2007年高考理科数学试题及答案(全国卷2)

2007年普通高等学校招生全国统一考试试题卷(全国卷Ⅱ)理科数学(必修+选修Ⅱ)注意事项:1. 本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,总分150分,考试时间120分钟. 2. 答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上.3. 选择题的每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.4. 非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚5. 非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答.超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效. 6. 考试结束,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…, 一、选择题1.sin 210=( )AB .C .12D .12-2.函数sin y x =的一个单调增区间是( ) A .ππ⎛⎫- ⎪44⎝⎭, B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π⎪2⎝⎭, 3.设复数z 满足12ii z+=,则z =( ) A .2i -+B .2i --C .2i -D .2i +4.下列四个数中最大的是( )A .2(ln 2)B .ln(ln 2)C .D .ln 25.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( )A .23B .13C .13-D .23-6.不等式2104x x ->-的解集是( ) A .(21)-,B .(2)+∞,C .(21)(2)-+∞ ,, D .(2)(1)-∞-+∞ ,, 7.已知正三棱柱111ABC A B C -的侧棱长与底面边长相等,则1AB 与侧面11ACC A 所成角的正弦值等于( )A .4B .4C .2D .28.已知曲线23ln 4x y x =-的一条切线的斜率为12,则切点的横坐标为( ) A .3B .2C .1D .129.把函数e x y =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( ) A .3e2x -+ B .3e2x +- C .2e3x -+ D .2e3x +-10.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A .40种 B .60种 C .100种 D .120种11.设12F F ,分别是双曲线2222x y a b-的左、右焦点,若双曲线上存在点A ,使1290F AF ∠= 且123AF AF =,则双曲线的离心率为( )A B CD 12.设F 为抛物线24y x =的焦点,A B C ,,为该抛物线上三点,若FA FB FC ++=0 ,则FA FB FC ++=( )A .9B .6C .4D .3第Ⅱ卷(非选择题)本卷共10题,共90分 二、填空题:本大题共4小题,每小题5分,共20分.13.821(12)x x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 .(用数字作答)14.在某项测量中,测量结果ξ服从正态分布2(1)(0)N σσ>,.若ξ在(01),内取值的概率为0.4,则ξ在(02),内取值的概率为 .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.已知数列的通项52n a n =-+,其前n 项和为n S ,则2limnn S n ∞=→ .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,已知内角A π=3,边BC =B x =,周长为y . (1)求函数()y f x =的解析式和定义域; (2)求y 的最大值.18.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =.(1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,ξ表示取出的2件产品中二等品的件数,求ξ的分布列. 19.(本小题满分12分)如图,在四棱锥S ABCD -中,底面ABCD 为正方形, 侧棱SD ⊥底面ABCD E F ,,分别为AB SC ,的中点. (1)证明EF ∥平面SAD ;(2)设2SD DC =,求二面角A EF D --的大小. 20.(本小题满分12分) 在直角坐标系xOy 中,以O为圆心的圆与直线4x =相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求PA PB 的取值范围.21.(本小题满分12分)设数列{}n a 的首项113(01)2342n n a a a n --∈==,,,,,,…. (1)求{}n a 的通项公式;(2)设n b a =1n n b b +<,其中n 为正整数. 22.(本小题满分12分) 已知函数3()f x x x =-.(1)求曲线()y f x =在点(())M t f t ,处的切线方程;(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<<.A EBCFSD2007年普通高等学校招生全国统一考试理科数学试题(必修+选修Ⅱ)参考答案评分说明:1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度.可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3. 解答右侧所注分数,表示考生正确做到这一步应得的累加分数. 4. 只给整数分数.选择题和填空题不给中间分. 一、选择题 1.D 2.C 3.C 4.D 5.A 6.C 7.A 8.A 9.C 10.B 11.B 12.B 二、填空题 13.42- 14.0.815.2+16.52-三、解答题17.解:(1)ABC △的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3. 应用正弦定理,知sin sin 4sin sin sin BC AC B x x A ===π3,2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭.因为y AB BC AC =++,所以224sin 4sin 03y x x x ππ⎛⎫⎫=+-+<<⎪⎪3⎝⎭⎭,(2)因为14sin sin 2y x x x ⎛⎫=+++ ⎪ ⎪⎝⎭5s i n 3x x ππππ⎛⎫⎫=++<+< ⎪⎪6666⎝⎭⎭,所以,当x ππ+=62,即x π=3时,y取得最大值 18.解:(1)记0A 表示事件“取出的2件产品中无二等品”, 1A 表示事件“取出的2件产品中恰有1件二等品”.则01A A ,互斥,且01A A A =+,故01()()P A P A A =+012122()()(1)C (1)1P A P A p p p p =+=-+-=-于是20.961p =-.解得120.20.2p p ==-,(舍去).(2)ξ的可能取值为012,,. 若该批产品共100件,由(1)知其二等品有1000.220⨯=件,故2802100C 316(0)C 495P ξ===.1180202100C C 160(1)C 495P ξ===.2202100C 19(2)C 495P ξ===. 所以ξ的分布列为19.解法一:(1)作FG DC ∥交SD 于点G ,则G 为SD 的中点.连结12AG FG CD∥,,又CD AB∥, 故FG AE AEFG∥,为平行四边形. EF AG ∥,又AG ⊂平面SAD EF ⊄,平面SAD . 所以EF ∥平面SAD .(2)不妨设2DC =,则42SD DG ADG ==,,△为等 腰直角三角形.取AG 中点H ,连结DH ,则DH AG ⊥.又AB ⊥平面SAD ,所以AB DH ⊥,而AB AG A = , 所以DH ⊥面AEF .取EF 中点M ,连结MH ,则HM EF ⊥. 连结DM ,则DM EF ⊥.故DMH ∠为二面角A EF D --的平面角tan DH DMH HM ∠===. AEBCFSD H G M所以二面角A EF D --的大小为. 解法二:(1)如图,建立空间直角坐标系D xyz -.设(00)(00)A a S b ,,,,,,则(0)(00)B a a C a ,,,,,, 00222a a b E a F ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,,,,, 02b EF a ⎛⎫=- ⎪⎝⎭ ,,.取SD 的中点002b G ⎛⎫ ⎪⎝⎭,,,则02b AG a ⎛⎫=- ⎪⎝⎭ ,,.EF AG EF AG AG =⊂,∥,平面SAD EF ⊄,平面SAD ,所以EF ∥平面SAD .(2)不妨设(100)A ,,,则11(110)(010)(002)100122B C S E F ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,.EF 中点111111(101)0222222M MD EF MD EF MD EF ⎛⎫⎛⎫=---=-= ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,⊥又1002EA ⎛⎫=- ⎪⎝⎭,,,0EA EF EA EF =,⊥,所以向量MD 和EA的夹角等于二面角A EF D --的平面角.cos MD EA MD EA MD EA<>==, 所以二面角A EF D --的大小为. 20.解:(1)依题设,圆O 的半径r 等于原点O到直线4x =的距离,即2r ==.得圆O 的方程为224x y +=.(2)不妨设1212(0)(0)A x B x x x <,,,,.由24x =即得(20)(20)A B -,,,.设()P x y ,,由PA PO PB ,,成等比数列,得22x y =+,即 222x y -=. (2)(2)PA PB x y x y =-----,,22242(1).x y y =-+=-由于点P 在圆O 内,故222242.x y x y ⎧+<⎪⎨-=⎪⎩,由此得21y <.所以PA PB的取值范围为[20)-,. 21.解:(1)由132342n n a a n --==,,,,…, 整理得 111(1)2n n a a --=--.又110a -≠,所以{1}n a -是首项为11a -,公比为12-的等比数列,得1111(1)2n n a a -⎛⎫=--- ⎪⎝⎭(2)方法一: 由(1)可知302n a <<,故0n b >.那么,221n n b b +-2211222(32)(32)3332(32)229(1).4n n n n n n n n n n a a a a a a a a aa ++=-----⎛⎫⎛⎫=-⨯-- ⎪ ⎪⎝⎭⎝⎭=-又由(1)知0n a >且1n a ≠,故2210n n b b +->,因此1n n b b n +<,为正整数.方法二:由(1)可知3012n n a a <<≠,, 因为132nn a a +-=, 所以1n n b a ++==.由1n a ≠可得33(32)2n n n a a a -⎛⎫-< ⎪⎝⎭,即 223(32)2n n n n a a a a -⎛⎫-< ⎪⎝⎭两边开平方得32na a -<即 1n n b b n +<,为正整数.22.解:(1)求函数()f x 的导数;2()31x x f '=-. 曲线()y f x =在点(())M t f t ,处的切线方程为:()()()y f t f t x t '-=-, 即 23(31)2y t x t =--.(2)如果有一条切线过点()a b ,,则存在t ,使23(31)2b t a t =--.于是,若过点()a b ,可作曲线()y f x =的三条切线,则方程32230t at a b -++=有三个相异的实数根.记 32()23g t t at a b =-++,则2()66g t t at '=- 6()t t a =-.当t 变化时,()()g t g t ',变化情况如下表:由()g t 的单调性,当极大值0a b +<或极小值()0b f a ->时,方程()0g t =最多有一个实数根; 当0a b +=时,解方程()0g t =得302at t ==,,即方程()0g t =只有两个相异的实数根; 当()0b f a -=时,解方程()0g t =得2a t t a =-=,,即方程()0g t =只有两个相异的实数根. 综上,如果过()ab ,可作曲线()y f x =三条切线,即()0g t =有三个相异的实数根,则0()0.a b b f a +>⎧⎨-<⎩,即 ()a b f a -<<.。

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套)函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数$f(x)=x\ln(x+a+x^2)$为偶函数,则$a=$解析】由题知$y=\ln(x+a+x^2)$是奇函数,所以$\ln(x+a+x^2)+\ln(-x+a+x^2)=\ln(a+x-x)=\ln a$,解得$a=1$。

考点:函数的奇偶性。

2.(2018年2卷11)已知$$f(x)=\begin{cases}\frac{x+1}{x},x<0\\ax^2,x\geq0\end{cases}$$ 是定义域为$(-\infty,0)\cup[0,+\infty)$的奇函数,满足$f(\frac{1}{2})=1$。

若,$f'(-1)=-2$,则$a=$解:因为$f(x)$是奇函数,所以$f(-\frac{1}{2})=-1$,$f(0)=0$。

又因为$f'(-1)=-2$,所以$f'(-x)|_{x=1}=2$,$f'(0+)=0$,$f'(0-)=0$。

由此可得$$\begin{aligned}a&=\lim\limits_{x\to 0^+}\frac{f(x)-f(0)}{x-0}\\&=\lim\limits_{x\to 0^+}\frac{ax^2}{x}\\&=\lim\limits_{x\to0^+}ax\\&=\lim\limits_{x\to 0^-}ax\\&=-\frac{1}{2}\end{aligned}$$ 故选B。

3.(2016年2卷12)已知函数$f(x)(x\in R)$满足$f(-x)=2-f(x)$,若函数$y=\sum\limits_{i=1}^m(x_i+y_i)$的图像的交点为$(x_1,y_1),(x_2,y_2),\cdots,(x_m,y_m)$,则$\sum\limits_{i=1}^m(x_i+y_i)=( )$解析】由$f(x)$的奇偶性可得$f(0)=1$,又因为$f(x)$是偶函数,所以$f'(0)=0$。

2015年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

 2015年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

2015年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2}2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1B.0C.1D.23.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.845.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3B.6C.9D.126.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8C.4D.108.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.149.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC 体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2C.D.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f (x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.14.(5分)若x,y满足约束条件,则z=x+y的最大值为.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=.16.(5分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】解一元二次不等式,求出集合B,然后进行交集的运算即可.【解答】解:B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2};∴A∩B={﹣1,0}.故选:A.【点评】考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1B.0C.1D.2【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】首先将坐标展开,然后利用复数相等解之.【解答】解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,4a=0,并且a2﹣4=﹣4,所以a=0;故选:B.【点评】本题考查了复数的运算以及复数相等的条件,熟记运算法则以及复数相等的条件是关键.3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【考点】B8:频率分布直方图.【专题】5I:概率与统计.【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.84【考点】88:等比数列的通项公式.【专题】11:计算题;54:等差数列与等比数列.【分析】由已知,a1=3,a1+a3+a5=21,利用等比数列的通项公式可求q,然后在代入等比数列通项公式即可求.【解答】解:∵a1=3,a1+a3+a5=21,∴,∴q4+q2+1=7,∴q4+q2﹣6=0,∴q2=2,∴a3+a5+a7==3×(2+4+8)=42.故选:B.【点评】本题主要考查了等比数列通项公式的应用,属于基础试题.5.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3B.6C.9D.12【考点】3T:函数的值.【专题】11:计算题;51:函数的性质及应用.【分析】先求f(﹣2)=1+log2(2+2)=1+2=3,再由对数恒等式,求得f(log212)=6,进而得到所求和.【解答】解:函数f(x)=,即有f(﹣2)=1+log2(2+2)=1+2=3,f(log212)==2×=12×=6,则有f(﹣2)+f(log212)=3+6=9.故选:C.【点评】本题考查分段函数的求值,主要考查对数的运算性质,属于基础题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8C.4D.10【考点】IR:两点间的距离公式.【专题】11:计算题;5B:直线与圆.【分析】设圆的方程为x2+y2+Dx+Ey+F=0,代入点的坐标,求出D,E,F,令x=0,即可得出结论.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,∴D=﹣2,E=4,F=﹣20,∴x2+y2﹣2x+4y﹣20=0,令x=0,可得y2+4y﹣20=0,∴y=﹣2±2,∴|MN|=4.故选:C.【点评】本题考查圆的方程,考查学生的计算能力,确定圆的方程是关键.8.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【解答】解:由a=14,b=18,a<b,则b变为18﹣14=4,由a>b,则a变为14﹣4=10,由a>b,则a变为10﹣4=6,由a>b,则a变为6﹣4=2,由a<b,则b变为4﹣2=2,由a=b=2,则输出的a=2.故选:B.【点评】本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.9.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC 体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【考点】HC:正切函数的图象.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2C.D.【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设M在双曲线﹣=1的左支上,由题意可得M的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.【解答】解:设M在双曲线﹣=1的左支上,且MA=AB=2a,∠MAB=120°,则M的坐标为(﹣2a,a),代入双曲线方程可得,﹣=1,可得a=b,c==a,即有e==.故选:D.【点评】本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,运用任意角的三角函数的定义求得M的坐标是解题的关键.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f (x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)【考点】6B:利用导数研究函数的单调性.【专题】2:创新题型;51:函数的性质及应用;53:导数的综合应用.【分析】由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g (x )的图象性质类似如图:数形结合可得,不等式f (x )>0⇔x•g (x )>0⇔或,⇔0<x <1或x <﹣1. 故选:A .【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.【考点】96:平行向量(共线).【专题】11:计算题;34:方程思想;4O :定义法;5A :平面向量及应用. 【分析】利用向量平行的条件直接求解.【解答】解:∵向量,不平行,向量λ+与+2平行, ∴λ+=t (+2)=,∴,解得实数λ=.故答案为:.【点评】本题考查实数值的解法,考查平面向量平行的条件及应用,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.14.(5分)若x ,y 满足约束条件,则z=x +y 的最大值为 .【考点】7C :简单线性规划.【专题】59:不等式的解法及应用.【分析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y 轴的截距最大值. 【解答】解:不等式组表示的平面区域如图阴影部分,当直线经过D 点时,z 最大,由得D (1,),所以z=x +y 的最大值为1+;故答案为:.【点评】本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=3.【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】给展开式中的x分别赋值1,﹣1,可得两个等式,两式相减,再除以2得到答案.【解答】解:设f(x)=(a+x)(1+x)4=a0+a1x+a2x2+…+a5x5,令x=1,则a0+a1+a2+…+a5=f(1)=16(a+1),①令x=﹣1,则a0﹣a1+a2﹣…﹣a5=f(﹣1)=0.②①﹣②得,2(a1+a3+a5)=16(a+1),所以2×32=16(a+1),所以a=3.故答案为:3.【点评】本题考查解决展开式的系数和问题时,一般先设出展开式,再用赋值法代入特殊值,相加或相减.16.(5分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n =﹣.【考点】8H :数列递推式.【专题】54:等差数列与等比数列.【分析】通过S n+1﹣S n=a n+1可知S n+1﹣S n=S n+1S n,两边同时除以S n+1S n可知﹣=1,进而可知数列{}是以首项、公差均为﹣1的等差数列,计算即得结论.【解答】解:∵a n+1=S n+1S n,∴S n+1﹣S n=S n+1S n,∴﹣=1,又∵a1=﹣1,即=﹣1,∴数列{}是以首项是﹣1、公差为﹣1的等差数列,∴=﹣n,∴S n=﹣,故答案为:﹣.【点评】本题考查数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【考点】HP:正弦定理;HT:三角形中的几何计算.【专题】58:解三角形.【分析】(1)如图,过A作AE⊥BC于E,由已知及面积公式可得BD=2DC,由AD平分∠BAC及正弦定理可得sin∠B=,sin∠C=,从而得解.(2)由(1)可求BD=.过D作DM⊥AB于M,作DN⊥AC于N,由AD平分∠BAC,可求AB=2AC,令AC=x,则AB=2x,利用余弦定理即可解得BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.【点评】本题主要考查了三角形面积公式,正弦定理,余弦定理等知识的应用,属于基本知识的考查.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.【考点】BA:茎叶图;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(1)根据茎叶图的画法,以及有关茎叶图的知识,比较即可;(2)根据概率的互斥和对立,以及概率的运算公式,计算即可.【解答】解:(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意评分的平均值高于B地区用户满意评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散;(2)记C A1表示事件“A地区用户满意度等级为满意或非常满意”,记C A2表示事件“A地区用户满意度等级为非常满意”,记C B1表示事件“B地区用户满意度等级为不满意”,记C B2表示事件“B地区用户满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,则C=C A1C B1∪C A2C B2,P(C)=P(C A1C B1)+P(C A2C B2)=P(C A1)P(C B1)+P(C A2)P(C B2),由所给的数据C A1,C A2,C B1,C B2,发生的频率为,,,,所以P(C A1)=,P(C A2)=,P(C B1)=,P(C B2)=,所以P(C)=×+×=0.48.【点评】本题考查了茎叶图,概率的互斥与对立,用频率来估计概率,属于中档题.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.【考点】MI:直线与平面所成的角.【专题】5G:空间角;5H:空间向量及应用.【分析】(1)容易知道所围成正方形的边长为10,再结合长方体各边的长度,即可找出正方形的位置,从而画出这个正方形;(2)分别以直线DA,DC,DD1为x,y,z轴,建立空间直角坐标系,考虑用空间向量解决本问,能够确定A,H,E,F几点的坐标.设平面EFGH的法向量为,根据即可求出法向量,坐标可以求出,可设直线AF与平面EFGH所成角为θ,由sinθ=即可求得直线AF与平面α所成角的正弦值.【解答】解:(1)交线围成的正方形EFGH如图:(2)作EM⊥AB,垂足为M,则:EH=EF=BC=10,EM=AA1=8;∴,∴AH=10;以边DA,DC,DD1所在直线为x,y,z轴,建立如图所示空间直角坐标系,则:A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8);∴;设为平面EFGH的法向量,则:,取z=3,则;若设直线AF和平面EFGH所成的角为θ,则:sinθ==;∴直线AF与平面α所成角的正弦值为.【点评】考查直角三角形边的关系,通过建立空间直角坐标系,利用空间向量解决线面角问题的方法,弄清直线和平面所成角与直线的方向向量和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.【考点】I3:直线的斜率;KH:直线与圆锥曲线的综合.【专题】2:创新题型;5E:圆锥曲线中的最值与范围问题.【分析】(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,建立方程关系即可得到结论.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2=,则x M==,y M=kx M+b=,于是直线OM的斜率k OM==,即k OM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m﹣m,∴k2m2>9(m﹣m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM的方程为y=x,设P的横坐标为x P,由得,即x P=,将点(,m)的坐标代入l的方程得b=,即l的方程为y=kx+,将y=x,代入y=kx+,得kx+=x解得x M=,四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,于是=2×,解得k1=4﹣或k2=4+,∵k i>0,k i≠3,i=1,2,∴当l的斜率为4﹣或4+时,四边形OAPB能为平行四边形.【点评】本题主要考查直线和圆锥曲线的相交问题,联立方程组转化为一元二次方程,利用根与系数之间的关系是解决本题的关键.综合性较强,难度较大.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】2:创新题型;52:导数的概念及应用.【分析】(1)利用f′(x)≥0说明函数为增函数,利用f′(x)≤0说明函数为减函数.注意参数m的讨论;(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,则恒成立问题转化为最大值和最小值问题.从而求得m的取值范围.【解答】解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0.当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是[﹣1,1]【点评】本题主要考查导数在求单调函数中的应用和恒成立在求参数中的应用.属于难题,高考压轴题.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【考点】N4:相似三角形的判定.【专题】26:开放型;5F:空间位置关系与距离.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC﹣S△AEF计算即可.【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【考点】29:充分条件、必要条件、充要条件;R6:不等式的证明.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.祝福语祝你考试成功!。

新课标全国卷函数导数积分

新课标全国卷函数导数积分

函数导数积分(10)(2007,海南、宁夏卷,10)曲线12e x y =在点2(4,e )处的切线与坐标轴所围三角形的面积为(A )29e 2(B )24e (C )22e (D )2e14)(2007海南、宁夏卷,14)设函数(1)()()x x a f x x++=为奇函数,则a = .6.(2008海南、宁夏卷,6)已知a 1>a 2>a 3>0,则使得2(1)1(123)i a x i -<=,,都成立的x 取值范围是( ) A .110a ⎛⎫⎪⎝⎭,B .120a ⎛⎫ ⎪⎝⎭,C .310a ⎛⎫ ⎪⎝⎭,D .320a ⎛⎫ ⎪⎝⎭,10.(2008海南、宁夏卷,10)由直线12x =,x =2,曲线1y x=及x 轴所围图形的面积为( ) A .154B .174C .1ln 22D .2ln 23. (2009海南、宁夏卷,3)对变量x, y 有观测数据理力争(1x ,1y )(i=1,2,…,10),得散点图1;对变量u ,v 有观测数据(1u ,1v )(i=1,2,…,10),得散点图2. 由这两个散点图可以判断。

A.变量x 与y 正相关,u 与v 正相关B.变量x 与y 正相关,u 与v 负相关C.变量x 与y 负相关,u 与v 正相关D.变量x 与y 负相关,u 与v 负相关 12. (2009海南、宁夏卷,12)用min{a,b,c}表示a,b,c 三个数中的最小值 设f (x )=min{, x+2,10-x} (x ≥ 0),则f (x )的最大值为 A.4 B.5 C.6 D.7(3)(2010课程标准卷,3)曲线2xy x =+在点()1,1--处的切线方程为(A )21y x =+ (B )21y x =-(C )23y x =--(D )22y x =--(5)(2010课程标准卷,5)已知命题1p :函数22x x y -=-在R 为增函数,2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p -∨和4q :()12p p ∧-中,真命题是(A )1q ,3q(B )2q ,3q(C )1q ,4q(D )2q ,4q(8)(2010课程标准卷,8)设偶函数()f x 满足()()380f x x x =-≥,则(){}20x f x -=>( )(A ){}2x x x <-或>4 (B ){}0x x x <或>4(C ){}0x x x <或>6 (D ){}2x x x <-或>2(11)(2010课程标准卷,11)已知函数()lg ,010,16,02x x f x x x ⎧≤⎪=⎨-+⎪⎩<>1若a ,b ,c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是(A )()1,10(B )()5,6(C )()10,12 (D )()20,24(13)(2010课程标准卷,13) 设y=f (x )为区间[0,1]上的连续函数,且恒有0≤f (x ) ≤1,可以用随机模拟方法近似计算积分1()f x dx ⎰,先产生两组(每组N 个)区间[0,1]上的均匀随机数1x ,2x …,N x 和1y ,2y …,N y ,由此得到N 个点(1x ,1y )(i=1,2,…,N ),在数出其中满足1y ≤1()f x ((i=1,2,…,N ))的点数1N ,那么由随机模拟方法可得积分1()f x dx ⎰的近似值为 .(2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是 (A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2xy -=(9)由曲线y ,直线2y x =-及y 轴所围成的图形的面积为(A )103 (B )4 (C )163(D )6 (12)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于(A )2 (B) 4 (C) 6 (D)89.设函数⎩⎨⎧>-≤=-1,log 11,2)(21x x x x f x ,则满足2)(≤x f 的x 的取值范围是A .1[-,2]B .[0,2]C .[1,+∞]D .[0,+∞]11.函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为A .(1-,1)B .(1-,+∞)C .(∞-,1-)D .(∞-,+∞)6.函数f (x )cosx 在[0,+∞)内A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点11.设若2lg ,0,()3,0,ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰((1))1f f =,则a = 12.设n N +∈,一元二次方程240x x n -+=有正数根的充要条件是n = 19.(2008海南、宁夏卷,19)(本小题满分12分)A B ,两个投资项目的利润率分别为随机变量X 1和X 2.根据市场分析,X和X 的分布列分别为(Ⅰ)在A B ,两个项目上各投资100万元,Y 1和Y 2分别表示投资项目A 和B 所获得的利润,求方差DY 1,DY 2;(Ⅱ)将(0100)x x ≤≤万元投资A 项目,100x -万元投资B 项目,()f x 表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求()f x 的最小值,并指出x 为何值时,()f x 取到最小值.(注:2()D aX b a DX +=)(21)(2007海南、宁夏卷,21)(本小题满分12分)设函数2()ln()f x x a x =++.(Ⅰ)若当1x =-时()f x 取得极值,求a 的值,并讨论()f x 的单调性;(Ⅱ)若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于eln 2.21.(2008海南、宁夏卷,21)(本小题满分12分) 设函数1()()f x ax a b x b=+∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式:(Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心;(Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值.21. (2009海南、宁夏卷,21)(本小题满分12分) 已知函数32()(3)x f x x x ax b e -=+++(I ) 如3a b ==-,求()f x 的单调区间;(II )若()f x 在(,),(2,)αβ-∞单调增加,在(,2),(,)αβ+∞单调减少,证明βα-<6(21)(2010课程标准卷,21)(本小题满分12分)设函数f (x )=21xe x ax ---. (Ⅰ)若a=0,求f (x )的单调区间;(Ⅱ)若当x ≥0时f (x )≥0,求a 的取值范围 (21)(本小题满分12分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。

2007年高考数学分类详解----函数与导数

2007年高考数学分类详解----函数与导数

2007年高考数学试题分类详解函数与导数1、(全国1文理8)设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为12,则a =A B .2 C . D .4 解.设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之分别为log 2,log 1a a a a =,它们的差为12,∴ 1log 22a =,a =4,选D 。

2、(全国1文理9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件解.()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,若“()f x ,()g x 均为偶函数”,则“()h x 为偶函数”,而反之若“()h x 为偶函数",则“()f x ,()g x 不一定均为偶函数”,所以“()f x ,()g x 均为偶函数”,是“()h x 为偶函数”是充分而不必要的条件,选B. 3、(山东文理6)给出下列三个等式:()()()()()()f xy f x f y f x y f x f y =++=,,()()()1()()f x f y f x y f x f y ++=-.下列函数中不满足其中任何一个等式的是( )A .()3xf x =B .()sin f x x =C .2()log f x x =D .()tan f x x =【答案】:B 【分析】:依据指、对数函数的性质可以发现A 满足()()()f x y f x f y +=,C 满足()()()f xy f x f y =+,而D 满足()()()1()()f x f y f x y f x f y ++=-,B 不满足其中任何一个等式.4、(山东文11)设函数3y x =与212x y -⎛⎫= ⎪⎝⎭的图象的交点为00()x y ,,则0x 所在的区间是( )A .(01),B .(12),C .(23),D .(34),【答案】B .【试题分析】令32()2xg x x -=-,可求得:(0)0,(1)0,(2)0,(3)0,g g g g <<>>(4)0g >.易知函数()g x 的零点所在区间为(12),.5、(广东理4文5)客车从甲地以60km/h 的速度行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h 的速度行驶1小时到达丙地,下列描述客车从甲地出发,经过乙地,最后到达丙地所经过的路程s 与时间t 之间的关系图象中,正确的是答案:C;解析:依题意的关键字眼“以80km /h 的速度匀速行驶l 小时到达丙地”选得答案(C)。

2-2007-2015年新课标全国卷理——函数与导数

2-2007-2015年新课标全国卷理——函数与导数
第(2)问考查极值点与导函数的关系.
解:(1)当a=b=-3时,f(x)=(x3+3x2-3x-3)e-x,故
f′(x)=-(x3+3x2-3x-3)e-x+(3x2+6x-3)e-x=-e-x(x3-9x)=-x(x-3)(x+3)e-x.
当x<-3或0<x<3时,f′(x)>0;当-3<x<0或x>3时,f′(x)<0.
(21)解:(Ⅰ)
由于直线 的斜率为 ,且过点 ,故 即
解得 , 。
(Ⅱ)由(Ⅰ)知 ,所以

考虑函数 ,则 。
(i)设 ,由 知,当 时, 。而 ,故
当 时, ,可得 ;
当x (1,+ )时,h(x)<0,可得 h(x)>0
从而当x>0,且x 1时,f(x)-( + )>0,即f(x)> + .
(ii)设0<k<1.由于当x (1, )时,(k-1)(x2+1)+2x>0,故 (xபைடு நூலகம்>0,而
答案:C解析:令2x=x+2 x1<0(舍)或x2=2,令2x=10-x即2x+x=10,则2<x<3.
则可知f(x)的大致图象如下图所示.
故f(x)≤6,即选C.
(21)(本小题满分12分)
已知函数
(I)如 ,求 的单调区间;
(II)若 在 单调增加,在 单调减少,证明
<6.
分析:第(1)问考查利用导数求单调区间,属容易题.
又f′(-1)<0,f′(0)>0,
故f′(x)=0在(-2,+∞)有唯一实根x0,且x0∈(-1,0).
当x∈(-2,x0)时,f′(x)<0;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知函数 = , = ,若曲线 和曲线 都过点P(0,2),且在点P处有相同的切线
(Ⅰ)求 , , , 的值
(Ⅱ)若 ≥-2时, ≤ ,求 的取值范围。
(2013课标全国II卷)
(8)设a=log36,b=log510,c=log714,则
(A)c>b>a(B)b>c>a(C)a>c>b(D)a>b>c
21.(本小题满分12分)
已知函数 满足满足 ;
(1)求 的解析式及单调区间;
(2)若 ,求 的最大值.
(2013课标全国I卷)
11、已知函数 = ,若| |≥ ,则 的取值范围是
. . .[-2,1] .[-2,0]
16、若函数 = 的图像关于直线 =-2对称,则 的最大值是______.
(21)(本小题满分共12分)
(2009宁夏卷)
(12)用min{a,b,c}表示a,b,c三个数中的最小值
设f(x)=min{ , x+2,10-x} (x 0),则f(x)的最大值为
(A)4(B)5(C)6(D)7
(21)(本小题满分12分)
已知函数
(I)如 ,求 的单调区间;
(II)若 在 单调增加,在 单调减少,证明
<6.
(2015课标全国Ⅰ卷)
12.设函数 ,其中 ,若存在唯一的整数 ,使得 ,则 的取值范围是()
A. B. C. D.
(13)若函数 为偶函数,则
(21)(本小题满分12分)
已知函数
(Ⅰ)当a为何值时,x轴为曲线 的切线;
(Ⅱ)用 表示m,n中的最小值,设函数 ,讨论h(x)零点的个数
(2015课标全国Ⅱ卷)
(5)设函数 , ( )
(A)3(B)6(C)9(D)12
(12)设函数f’(x)是奇函数 的导函数,f(-1)=0,当 时, ,则使得 成立的x的取值范围是
(A) (B)
(C) (D)
21.(本小题满分12分)
设函数 。
(1)证明: 在 单调递减,在 单调递增;
(2)若对于任意 ,都有 ,求m的取值范围。
(2008宁夏卷)
10、由直线 ,x=2,曲线 及x轴所围图形的面积为()
A. B. C. D.
21、(本小题满分12分)设函数 ,曲线 在点 处的切线方程为 。
(1)求 的解析式;
(2)证明:曲线 的图像是一个中心对称图形,并求其对称中心;
(3)证明:曲线 上任一点的切线与直线 和直线 所围三角形的面积为定值,并求出此定值。
12.设函数 .若存在 的极值点 满足 ,则m的取值范围是()
A. B. C. D.
15.已知偶函数 在 单调递减, .若 ,则 的取值范围是__________.
21.(本小题满分12分)
已知函数 =
(Ⅰ)讨论 的单调性;
(Ⅱ)设 ,当 时, ,求 的最大值;
(Ⅲ)已知 ,估计ln2的近似值(精确到0.001)
2007-2015年新课标全国卷理函数与导数题
(2007宁夏卷)
10.曲线 在点 处的切线与坐标轴所围三角形的面积为( )
A. B. C. D.
14.设函数 为奇函数,则 .
21.(本小题满分12分)
设函数
(I)若当 时, 取得极值,求 的值,并讨论 的单调性;
(II)若 存在极值,求 的取值范围,并证明所有极值之和大于 .
A.2B.4C.6D.8
21.(本小题满分12分)
已知函数 ,曲线 在点 处的切线方程为 .
(Ⅰ)求a,b的值;
(Ⅱ)如果当x>0,且 时, ,求k的取值范围.
(2012课标全国卷)
10.已知函数 ;则 的图像大致为( )
12.设点 在曲线 上,点 在曲线 上,则 最小值为( )
A. B. C. D.
(10)已知函数f(x) =x3+ax2+bx+c,下列结论中错误的是
(A)x0∈R,f(x0)=0
(B)函数y=f(x)的图像是中心对称图形
(C)若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减
(D)若x0是f(x)的极值点,则f'(x0) =0
(21)(本小题满分12分)
已知函数f(x) =ln(x+m)
(A) (B)
(C) (D)
11.已知函数 若 互不相等,且 则 的取值范围是
(A) (B) (C) (D)
13设 为区间 上的连续函数,且恒有 ,可以用随机模拟方法近似计算积分 ,先产生两组(每组N个)区间 上的均匀随机数 和 ,由此得到N个点 ,再数出其中满足 的点数 ,那么由随机模拟方案可得积分 的近似值为。
21.(本小题满分12分)
设函数 。
(I)若 ,求 的单调区间;
(II)若当 时 ,求 的取值范围
(2011课标全国卷)
2的函数是
A. B. C. D.
9.由曲线 ,直线 及 轴所围成的图形的面积为
A. B.4 C. D.6
12.函数 的图像与函数 的图像所有交点的横坐标之和等于
(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;
(Ⅱ)当m≤2时,证明f(x)>0.
(2014课标全国Ⅰ卷)
3.设函数 , 的定义域都为R,且 时奇函数, 是偶函数,则下列结论正确的是
. 是偶函数 .| | 是奇函数
. | |是奇函数 .| |是奇函数
11.已知函数 = ,若 存在唯一的零点 ,且 >0,则 的取值范围为
(2010课标全国卷)
3.曲线 在点(-1,-1)处的切线方程为
(A)y=2x+1 (B)y=2x-1(C)y=-2x-3(D)y=-2x-2
5.已知命题
:函数 在R为增函数,
:函数 在R为减函数,
则在命题 : , : , : 和 : 中,真命题是
(A) , (B) , (C) , (D) ,
8.设偶函数 满足 ,则
.(2,+∞) .(-∞,-2) .(1,+∞) .(-∞,-1)
21.(本小题满分12分)
设函数 ,曲线 在点(1, 处的切线为 .(Ⅰ)求 ;(Ⅱ)证明: .
(2014课标全国Ⅱ卷)
8.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=
A. 0 B.1 C. 2 D. 3
相关文档
最新文档