人教A版高中数学选修2-1第二章2.2.2椭圆的简单.
高中数学 椭圆的简单几何性质教案(2) 新人教A版选修2-1

§2.2.2 椭圆的简单几何性质(2)●教学目标1.熟悉椭圆的几何性质;2.利用椭圆几何性质求椭圆标准方程; 3.了解椭圆在科学研究中的应用. ●教学重点:椭圆的几何性质应用 ●教学过程:Ⅰ、复习回顾:利用椭圆的标准方程研究了椭圆的几何性质. Ⅱ、讲授新课:例6.点 ),(y x M 与定点 )0,4(F 的距离和它到定直线 425:=x l 的距离的比是常数54,求点的轨迹.解:设 是点 直线 的距离,根据题意,如图所求轨迹就是集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==54d MF M P 由此得54425)4(22=-+-x y x .将上式两边平方,并化简得 22525922=+y x即192522=+y x所以,点M 的轨迹是长轴、短轴分别是10、6的椭圆说明:椭圆的一个重要性质:椭圆上任意一点与焦点的距离和它到定直线的距离的比是常数(e 为椭圆的离心率)。
其中定直线叫做椭圆的准线。
对于椭圆 ,相应于焦点 的准线方程是 .根据椭圆的对称性,相应于焦点 的准线方程是,所以椭圆有两条准线.可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义.【典例剖析】 [例1]已知椭圆2222by a x +=1(a >b >0)的焦点坐标是F 1(-c ,0)和F 2(c ,0),P (x 0,y 0)是椭圆上的任一点,求证:|PF 1|=a +ex 0,|PF 2|=a -ex 0,其中e 是椭圆的离心率.[例2]已知点A (1,2)在椭圆121622y x +=1内,F 的坐标为(2,0),在椭圆上求一点P 使|PA |+2|PF |最小.[例3]在椭圆92522y x +=1上求一点P ,使它到左焦点的距离是它到右焦点距离的两倍. Ⅲ、课堂练习: 课本P52,练习 5 再练习:已知椭圆上一点 到其左、右焦点距离的比为1:3,求 点到两条准线的距离.(答案: 到左准线的距离为 ,到右准线的距离为.)思考: 已知椭圆 内有一点 ,是椭圆的右焦点,在椭圆上有一点 ,使的值最小,求的坐标.(如图)分析:若设,求出 ,再计算最小值是很繁的.由于 是椭圆上一点到焦点的距离,由此联想到椭圆的第二定义,它与到相应准线的距离有关.故有如下解法. 解:设在右准线 上的射影为.由椭圆方程可知,,.根据椭圆的第二定义,有 即.∴.显然,当 、、 三点共线时,有最小值.过 作准线的垂线.由方程组 解得 .即 的坐标为.【随堂训练】1.椭圆2222ay b x +=1(a >b >0)的准线方程是( )A .y =±222b a a + B.y =±222b a a -C.y =±222ba b - D.x =±222ba a -2.椭圆4922y x +=1的焦点到准线的距离是( )A .554和559 B .559和5514 C .554和5514 D .5514 3.已知椭圆2222by a x +=1(a >b >0)的两准线间的距离为3316,离心率为23,则椭圆方程为( ) A .3422y x +=1 B .31622y x +=1 C .121622y x +=1 D .41622y x +=14.两对称轴都与坐标轴重合,离心率e =0.8,焦点与相应准线的距离等于49的椭圆的方程是( )A .92522y x +=1或92522x y +=1B .92522y x +=1或162522y x +=1C .162x +92y =1 D .162522x y +=15.已知椭圆2222by a x +=1(a >b >0)的左焦点到右准线的距离为337,中心到准线的距离为334,则椭圆的方程为( ) A .42x +y 2=1 B .22x +y 2=1C .42x +22y =1D .82x +42y =16.椭圆22)2()2(-+-y x =25843++y x 的离心率为( )A .251 B .51 C .101 D .无法确定【强化训练】1.椭圆2222by a x +=1和2222by a x +=k (k >0)具有( )A .相同的离心率B .相同的焦点C .相同的顶点D .相同的长、短轴2.椭圆92522y x +=1上点P 到右焦点的最值为( )A .最大值为5,最小值为4B .最大值为10,最小值为8C .最大值为10,最小值为6D .最大值为9,最小值为13.椭圆的一个顶点与两个焦点构成等边三角形,则此椭圆的离心率是( )A .51 B .43 C .33 D .214.若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为( )A .41 B .22 C .42 D .215.椭圆m y m x 21322++=1的准线平行于x 轴,则m 的取值范围是( )A .m >0B .0<m <1C .m >1D .m >0且m ≠16.椭圆92522y x +=1上的点P 到左准线的距离是2.5,则P 到右焦点的距离是________.7.椭圆103334)1()1(22--=-++y x y x 的长轴长是______.8.AB是过椭圆4522y x +=1的一个焦点F 的弦,若AB 的倾斜角为3π,求弦AB 的长.9.已知椭圆的一个焦点是F (1,1),与它相对应的准线是x +y -4=0,离心率为22,求椭圆的方程.10.已知点P在椭圆2222bx a y +=1上(a >b >0),F 1、F 2为椭圆的两个焦点,求|PF 1|·|PF 2|的取值范围.【学后反思】椭圆的离心率是焦距与长轴的比,椭圆上任意一点到焦点的距离与这点到相应..准线的距离的比也是离心率,这也是离心率的一个几何性质.椭圆的离心率反映了椭圆的扁平程度,它也沟通了椭圆上的点的焦半径|PF|与到相应准线距离d之间的关系.左焦半径公式是|PF1|=a+ex0,右焦半径公式是|PF2|=a-ex0.焦半径公式除计算有关距离问题外还证明了椭圆上离焦点距离最远(近)点实a2,但必须注意这是椭圆的为长轴端点.椭圆的准线方程为x=±c中心在原点,焦点在x轴上时的结论.。
选修2-1教案22-2椭圆的简单几何性质【5】

选修2-1 第二章《圆锥曲线与方程》 2.2.2椭圆的简单几何性质第五课时:与椭圆相关的最值、范围问题有关椭圆的最值、范围问题,在近几年的高考试卷中频频出现,在各种题型中均有考查,其中以解答题为重,在平时的教学中需有所重视。
圆锥曲线最值问题具有综合性强、涉及知识面广而且常含有变量的一类难题,也是教学中的一个难点。
要解决这类问题往往利用函数与方程思想、数形结合思想、转化与化归等数学思想方法,将它转化为解不等式或求函数值域,以及利用函数单调性、各种平面几何中最值的思想来解决。
例1:在椭圆2288x y +=上求一点P ,使P 到直线l :40x y -+=的距离最小. 解:(法一:几何法)设与l 平行且与椭圆相切的直线l '方程为0x y m -+=,则由22880x y x y m ⎧+=⎨-+=⎩得229280y my m -+-=,22449(8)0m m ∆=-⨯⨯-=,∴3m =±,由图知,3m =时距离最小,此时P 点坐标为81(,)33-,此时,最短距离即为l 与l '间距离222d ==. (法二:三角换元)设点(22cos ,sin )P θθ,则有|22cos sin 4|22d θθ-+==,tan 22ϕ=, 当2πθϕ-=时,min 2d =,此时,22sin ϕ=,1cos 3θ=,∴22cos sin θϕ=-=-,1sin cos 3θϕ==,∴P 点坐标为81(,)33-.【练习】(1)把上例中距离“最小”改为“最大”;(2)求椭圆2212516x y +=的内接矩形的最大面积.例2.如图,点P 在圆22(6)2x y +-=上移动,点Q 在椭圆221010x y +=上移动,求||PQ 的最大值.xyOy x m =+xy OB A CD y x P o A M Q解:圆心M (0,6),设椭圆上的点为(,)Q x y ,则MQ ===当2[1,1]3y =-∈-时,max MQ =max PQ == 例3:如图,在直线09:=+-y x l 上任意取一点M ,经过M 点且以椭圆131222=+y x 的焦点作椭圆,问当M 在何处时,所作椭圆的长轴最短,并求出最短长轴为多少?分析:要使所作椭圆的长轴最短,当然想到椭圆的定义。
人教版数学高二数学选修2-1 2.2三种方法巧解一类椭圆轨迹变式问题

三种方法巧解一类椭圆轨迹变式问题椭圆的轨迹问题是圆锥曲线中一块重要内容,求解的方法较多,但常见的有三类轨迹问题,一般可用定义法、转移法、交轨法进行破解,下面就如何用这三种方法巧解三类相似的椭圆的轨迹问题进行举例分析:一、定义法破椭圆轨迹 所谓定义法,就是根据椭圆的定义设出椭圆的方程,若是标准型的椭圆则求出涉及到椭圆方程的二个参数,a b ;对于非标准型的椭圆则需要利用第一定义求解.例1、一个椭圆的焦点是()0,0和(4,0)F ,长半轴为3,求这个椭圆方程.分析:在所给的条件为非标准情况时,如适合椭圆定义,也可用椭圆的定义求它的方程.解:设(,)M x y 为椭圆上任意一点,根据椭圆的定义有6MO MF +=6=,移项,平方,整理可得:225920250x y x +--=,即22(2)195x y -+=为所求椭圆方程. 点评:此题中的椭圆为非标准型的,解题时主要是利用了第一定义求方程,但当已知椭圆是标准型时,求椭圆方程一般为以下三步:1、依题意设出方程22221x y a b +=或22221x y b a+=,或利用椭圆的定义;2、根据已知条件,建立关于,a b 的方程;3、解方程求出,a b ,然后代入所设方程.二、转移法破椭圆轨迹所谓转移法,就是指转移代入法,主要是利用动点M 和曲线上的点P 的关系(有相关性),通过求出点M 与点P 的坐标关系,用点M 的坐标表示点P 坐标,然后代入点P 坐标所满足方程的方法.例2、已知圆229x y +=,从这个圆上任意一点P 向x 轴作垂线段PP ',点M 在PP '上,并且2PM MP '=,求点M 的轨迹.分析:此题是一个已知P 点的轨迹求未知点M 的轨迹问题,需要通过建立已知点的坐标和未知点的坐标关系求解,即转移代入法.解:设(,)M x y ,P 的坐标为()00,x y ,则由题意如图,003x x y y=⎧⎨=⎩,因为点P 在圆229x y +=上,即满足22009x y +=,将003x x y y=⎧⎨=⎩代入得2299x y +=,即2219x y +=,所以点M 的轨迹是一个圆. 点评:此题是一个转移代入法求椭圆轨迹问题,解题的步骤是:1、先写出P 点与M 点的关系,2、用点M 的坐标表示点P 的坐标,3、代入点P 的坐标所满足的方程。
高二数学人教A版选修2-1课件:2.2.2 椭圆的简单几何性质 第1课时 椭圆的简单几何性质

F1 o
F2
x
说明椭圆的对称性不随位置的改变而改变.
3.顶点与长短轴: 椭圆与它的对称轴的四个 交点——椭圆的顶点. 椭圆顶点坐标为:
A1(-a,0),A2(a,0),
B1(0,-b),B2(0,b).
回顾: 焦点坐标(±c,0)
x2 a2
y2 b2
=1(a>b>0)
y
B2(0,b)
固化
模式
拓展
小思 考
TIP1:听懂看到≈认知获取;
TIP2:什么叫认知获取:知道一些概念、过程、信息、现象、方法,知道它们 大 概可以用来解决什么问题,而这些东西过去你都不知道;
TIP3:认知获取是学习的开始,而不是结束。
为啥总是听懂了, 但不会做,做不好?
高效学习模型-内外脑 模型
2
内脑- 思考内化
学习知识的能力 (学习新知识 速度、质量等)
长久坚持的能力 (自律性等)
什么是学习力-常见错误学 习方式
案例式
学习
顺序式 学习
冲刺式 学习
什么是学习力-高效学习必
备习惯
积极
以终
主动
为始
分清 主次
不断 更新
高效学习模型
高效学习模型-学习的完
整过程
方向
资料
筛选
认知
高效学习模型-学习的完
整过程
消化
思维导图& 超级记忆法& 费曼学习法
1
外脑- 体系优化
知识体系& 笔记体系
内外脑高效学习模型
超级记忆法
超级记忆法-记忆 规律
记忆前
选择记忆的黄金时段
前摄抑制:可以理解为先进入大脑的信息抑制了后进 入大脑的信息
人教A版高中数学选修2-1《2.2椭圆》复习教案

1. 一、知识要点: 椭圆、双曲线、抛物线的标准方程与椭圆、双曲线、抛物线的标准方程与几何几何性质 椭圆椭圆 双曲线双曲线 抛物线抛物线定义定义 1.到两定点F 1,F 2的距离之和为定值2a(2a>|F 1F 2|)的点的轨迹轨迹 1.到两定点F 1,F 2的距离之差的绝对值为定值2a(0<2a<|F 1F 2|)的点的轨迹的点的轨迹2.与定点和直线的距离之比为定值e 的点的轨迹.(0<e<1) 2.与定点和直线的距离之比为定值e 的点的轨迹.(e>1)与定点和直线的距离相等的点的轨迹. 图形图形方程 标准方程方程 12222=+b y a x (b a >>0) 12222=-by a x (a>0,b>0) y 2=2px 参数方程 为离心角)参数q q q (sin cos îíì==b y a x 为离心角)参数q q q (tan sec îíì==b y a x îíì=y pt x 22(t 为参数) 范围范围 ─a £x £a ,─b £y £b |x| ³ a,y ÎR x ³0 中心中心 原点O (0,0) 原点O (0,0) 顶点 (a,0), (─a,0), (0,b) , (0,─b) (a,0), (─a,0) (0,0) 对称轴x 轴,y 轴;轴; 长轴长2a,短轴长2b x 轴,y 轴; 实轴长2a, 虚轴长2b. x 轴 焦点焦点 F 1(c,0), F 2(─c,0) F 1(c,0), F 2(─c,0) )0,2(p F 焦距 2c (c=22b a -) 2c (c=22b a +)离心率 )10(<<=e a c e )1(>=e a c ee=1 准线准线x=c a 2± x=ca 2±2p x -=渐近线y=±abx 焦半径 ex a r ±= )(a ex r ±±=2px r += 通径通径a b 22 a b 22 2p 焦参数焦参数ca 2ca 2P (1))0(12222>>=+b a b y a x ,焦点:F 1(-c,0),F 2(c,0),其中c=22b a -. (2))0(12222>>=+b a a y b x ,焦点:F 1(0,-c),F 2(0,c),其中以标准方程)0(12222>>=+b a by a x 为例: ①范围:|x|≤a,|y|≤b;②对称性:对称轴x=0,y=0,对称中心为O(0,0);③顶点A(a,0),A′(A(a,0),A′(--a,0),B(0,b),B′(0,a,0),B(0,b),B′(0,-b);-b);长轴|AA′|=2a,短轴|BB′|=2b;④离心率:e=ac,0<e<1;⑤准线x=±ca 2;⑥焦半径:|PF 1|=a+ex,|PF 2|=a-ex,其中P(x,y)是椭圆上任意一点. 二、基本训练1.设一动点P 到直线3x =的距离与它到点A (1,0)的距离之比为3,则动点P的轨迹方程是的轨迹方程是 ( )()A 22132x y += ()B 22132x y -=()C 22(1)132x y ++=()D 22123x y +=2.与曲线)9(192522<=-+-k ky k x 之间具有的等量关系之间具有的等量关系( )()A 有相等的长、短轴有相等的长、短轴 ()B 有相等的焦距有相等的焦距()C 有相等的离心率有相等的离心率()D 有相同的准线有相同的准线3.已知椭圆的长轴长是短轴长的3倍,长、短轴都坐标上,且过点(3,0)A ,则椭圆的方程是圆的方程是 ,1.椭圆的定义: 第一种定义:平面内与两个定点F 1、F 2的距离之和等于的距离之和等于常数常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距焦距. 第二种定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线. 2.椭圆的标准椭圆的标准方程方程: c=22b a -. 3.椭圆的参数方程:îíì==q qsin cos b y a x ,(参数θ是椭圆上任意一点的是椭圆上任意一点的离心率离心率). 4.椭圆的几何性质:曲线192522=+y x .4.底面.底面直径直径为12cm 的圆柱被与底面成30的平面所截,的平面所截,截口是一个椭圆,这个椭圆的长截口是一个椭圆,这个椭圆的长y xOF 1F 2P αβyO x1lF 2 F 1 A 2 A 1 PMl短轴长短轴长 221(0)x y a b a b +,+=>>,P 为椭圆上除长轴端点外的任一点,12,F F 为椭圆的两个焦点,(1)若a =Ð21F PF ,21PF F b Ð=,求证:离心率2cos2cosb a ba -+=e ;(2)若q 221=ÐPF F ,求证:21PF F D 的面积为2t a n b q ×.例4设椭圆2211x y m +=+的两个焦点是12(,0),(,0)(0)F c F c c ->,且椭圆上存在点P ,使得直线1PF 与直线2PF 垂直.(1)求实数m 的取值范围;(2)设l 是相应于焦点2F 的准线,直线2PF 与l 相交于点Q ,若22||23||QF PF =-,求直线2PF 的方程.程.,离心率 .5.已知.已知椭圆椭圆22=>>的离心率为35,若将这个椭圆绕着它的右焦点按逆时针方向逆时针方向旋转旋转2p后,所得新椭圆的一条准线后,所得新椭圆的一条准线方程方程是163y =,则原来的椭,则原来的椭圆方程圆方程是 ;新椭圆方程是;新椭圆方程是 . 三、例题分析 例1(05浙江) .如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的轴的交点交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭求椭圆的方程圆的方程;(Ⅱ)若直线l 1:x =m (|m |>1),P 为l 1上的动点,使∠F 1PF 2最大的点P 记为Q ,求点Q 的坐标(用m 表示).例2设A B 是两个定点,且||2AB =,动点M 到A 点的距离是4,线段MB 的垂直平分线l 交MA 于点P ,求动点P 的轨迹方程.例3.已知椭圆22221(0)x y a b a bïîïíì³<<+)4(2)40(442b bbb ;(B) ïîïíì³<<+)2(2)20(442b bbb ;(C) 442+b ;(D) 2b2. P A 3316 ()B )32(4- ()C )32(16+ ()D 163.已知椭圆22221(0)x y a b a b+=>>的左焦点为的左焦点为 F ,(,0),(0,)A a B b -为椭圆的两个顶点,若F 到AB A 777- ()B 777+ ()C 12()D 454.(05天津卷)从集合{1,2,3…,11}例5(05上海)点A 、B 分别是分别是椭圆椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ^。
【高中数学说课稿】人教A版高中数学选修2-1第二章2.2.1椭圆及其标准方程 说课稿

《椭圆及其标准方程》说课稿---人教A版高中数学选修2-1第二章2.2.1一、教材分析(一) 教学内容"椭圆及其标准方程"是人教A版高中数学选修2-1第二章内容,分三课时完成. 第一课时讲解椭圆的定义及其标准方程;第二课时讲解运用椭圆的定义及其标准方程解题,巩固求曲线方程的两种基本方法,即待定系数法、定义法;第三课时讲解运用中间变量法求动点轨迹方程的基本思路. 现在说第一课时.(二) 教材的地位和作用本节内容是继学生学习了直线和圆的方程,对曲线的方程的概念有了一定了解,对用坐标法研究几何问题有了初步认识的基础上,进一步学习用坐标法研究曲线. 椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础. 因此这节课有承前启后的作用,是本章和本节的重点内容之一.(三) 教学目标[确定依据] 根据上述教学内容的地位和作用,结合大纲,确定了以下目标:1. 知识与技能目标:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导.2. 过程与方法目标:通过让学生积极参与、亲身经历椭圆定义和标准方程的获得过程,体验坐标法在处理几何问题中的优越性,从而进一步掌握求曲线方程的方法和数形结合的思想,提高运用坐标法解决几何问题的能力及运算能力.3. 情感态度与价值观目标:通过主动探究、合作学习,相互交流,感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,养成实事求是的科学态度和契而不舍的钻研精神,同时培养学生运动、变化和对立统一的观点. 以“神舟五号”飞船运动轨迹的演示,激发学生学习数学的兴趣,增强学生的数学应用意识、创新意识,扩展学生的数学视野,并让学生受到爱国主义思想的教育,使之逐步认识到数学的科学价值、应用价值和文化价值.(四) 教学的重点难点的确立和解决[确定依据] 教学大纲学生情况1. 教学重点:椭圆的定义及其标准方程[解决方法] 为了突出重点,让学生动手实践,自主探索,通过画图揭示椭圆上的点所要满足的条件,由此得出定义,推出方程.2. 教学难点:椭圆标准方程的推导[解决方法] 为了突破此难点,关键是抓住 "怎样建立坐标系" 并把实际问题数学化即建模和 "怎样简化方程" 两个环节来进行方程的推导.二、学情分析通过前面的学习,学生已具备一定的分析与归纳能力. 初步掌握了解析几何的基本思想与方法,但是学生对坐标法解决几何问题掌握不够,从研究圆到研究椭圆,跨度较大,学生思维上存在障碍. 在求椭圆标准方程时,会遇到比较复杂的根式化简问题,而这些在目前初中代数中都没有详细介绍,初中代数不能完全满足学习本节的需要,故本节采取缺什么补什么的办法来补充这些知识.三、教法和学法(一) 教法:根据以上的分析及本节课的内容和学生的认知水平,采用在教师指导下的学生探究发现教学法.通过这样的教法可以充分调动学生学习的主动性、积极性,使课堂气氛更加活跃. 同时培养了学生自主学习,动手探究的能力.(二) 学法:自主探究,合作交流"授人以鱼,不如授人以渔." 教给学生如何学习是教师的职责,因此在本节课的教学中,教会学生动手尝试、仔细观察、开动脑筋、分析讨论,最后抽象出概念,推出方程. 这样有利于学生发挥学习的主动性,使学生的学习过程成为在教师引导下的“再创造”过程.(三) 教学手段:多媒体辅助教学.通过动态演示,集声、文、图象于一体,有利于引起学生的学习兴趣,激发学生的学习热情,增大知识信息的容量,使内容充实、形象、直观,提高教学效率和教学质量. 四、教学过程及设计意图(一) 创设情景,提出课题本节课的开始由多媒体演示“神舟五号”飞船绕地球旋转运行的画面,并描绘出运行轨迹图.[问一] 2003年10月15日,中国“神舟五号”飞船试验成功,实现了中国人的千年飞天梦. 请问:“神舟五号”飞船绕地球旋转的轨迹是什么图形?[设置依据] 让学生形成椭圆的感性认识,感受数学的应用价值,明白生活实践中有很多数学问题,数学来源于实践,同时培养学生学会用数学眼光去观察周围事物的能力,并体现了爱国主义思想的渗透.此时老师可以指出,在天体运行的轨道中,除椭圆外,还有抛物线、双曲线等. 再运用多媒体演示一个平面截圆锥的各种情形,向学生介绍“"圆锥曲线”这个名称的来历,并让学生举出实际生产、生活中有关椭圆的例子.[设置依据] 使学生对圆锥曲线有初步的感性认识,同时对本章要学习的内容产生兴趣,培养学生对立统一的观点. 教师也可以很自然的引出课题.(二) 自主探究,形成概念[问二] 曲线可以看作适合某种条件的点的集合或轨迹. 椭圆是满足什么条件的点的轨迹呢?[设置依据] “思维从疑问开始”,由于学生熟知“到定点距离等于定长的点的轨迹是圆”,通过创设情景,激发了学生的求知欲,使学生急于想知道椭圆是满足什么条件的点的轨迹,但现有知识又无从回答,形成认知冲突,使学生进入愤悱状态.此时教师引导:要想知道椭圆是满足什么条件的点的轨迹,首先要知道椭圆的画法(几何特征). 于是让学生拿出课前准备好的一块纸板,一段细绳,两枚图钉,按课本上介绍的方法,同桌间相互磋商、动手绘图,教师巡视,并抽已完成的两位同学在黑板上用准备好的工具演示,使学生尝试到成功的喜悦. 教师进一步启发引导学生讨论,得出“到两个定点的距离的和等于常数的点的轨迹是椭圆”时,马上提出第三个问,让学生回答.[问三]1. 在纸板上作图说明了什么?2. 在绳长 (设为 2 a)不变的条件下,改变两个图钉之间的距离(设为2 c),画出的椭圆有何变化?3. 当两个图钉之间的距离等于绳长时,画出的图形是什么?4.当两图钉固定,能使绳长小于两图钉之间的距离吗?能画出图形吗?教师让学生再一次动手实践,相互讨论交流,然后抽学生代表发表意见,同时教师运用多媒体进行配合说明,可以得出:当 2 a > 2 c时,是椭圆,并且当两定点间的距离越小,椭圆越圆,特别地当两点重合时,是圆,两定点间的距离越大,椭圆越扁;当 2 a= 2 c时是线段;当 2 a < 2 c时,无轨迹.[设置依据] 按学生的认识规律与心理特征引导学生自己探索、分析,启发学生认识新的概念,这有利于学生对概念的全面理解,同时培养了学生从量变到质变的辨证思维.在上述基础上,定义的形成已是水到渠成了,于是教师让学生自己概括椭圆定义.定义平面内与两个定点F1、F2 的距离的和等于常数(大于 |F1F2| )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.在归纳定义时,再次强调定义要满足三个条件:①平面内(这是大前提);②任意一点到两个定点的距离的和等于常数;③常数大于 |F1F2 |.(三) 师生互动,导出方程给出椭圆的定义后,教师即可指出:由椭圆定义,知道了它的基本几何特征,这只是一种“定性”的描述,但是对于这种曲线还具有哪些性质,尚需进一步研究. 根据解析几何的基本思想方法,我们需要利用坐标法先建立椭圆的方程“定量”的描述,然后通过对椭圆的方程的讨论,来研究其几何性质.[问四]1. 求曲线方程的一般步骤是什么?2. 建立坐标系的一般原则有哪些?学生围绕两问,思考,讨论可得:求曲线方程的一般步骤——建系设点、写出点集、列出方程、化简方程、证明(可省略). 建系的一般原则为:使已知点的坐标和曲线的方程尽可能简单,即原点取在定点或定线段的中点,坐标轴取在定直线上或图形的对称轴上,充分利用图形的对称性.[设置依据] 让学生明确思维的目的,通过复习旧知,为下一步学习搭桥铺路.[问五] 怎样建立坐标系,才能使求出的椭圆方程最为简单?通过前面知识的回忆,学生思考、相互交流,很容易选定下列建立坐标系的方案.1. 建系设点:以两定点F1、F2的连线为x轴,以线段F1F2的垂直平分线为y轴,建立坐标系,如图1设M ( x, y) 为椭圆上任意一点,|F1F2 | = 2 c(c>0) ,则有F1(-c, 0)、F2(c,0). 又设M与F1和F2的距离的和等于常数 2 a ( a > 0 ) .[设置依据] 因为正确选取坐标系是解析几何解题的基本技巧之一,故设计目的是为了着重培养学生这方面的能力.2. 写出点集:让学生利用两点的距离公式,根据椭圆定义列出:P = { M | |MF| + |MF2 | = 2 a } .1到此为止,学生以为椭圆的方程已求出,此时教师可以指出:为了更进一步利用方程探讨椭圆的其他性质需要尽量简化方程形式,使数量关系更加明朗化.4. 化简方程:学生对含有两个根式之和的等式进行化简有一定困难,教师可采用以下方法突破难点:首先让学生明确,含根号的等式化简的目的就是要去掉根号,变无理式为有理式;其次复习含有一个根式的等式的化简方法——将根式放在等式的一边,其它项移到等式另一边,两边平方可去掉根号;有了这一基础,可启发学生,化简含两个根式之和的等式,只要将两个根式分别放在等号两边,其中一边只含一个根式,平方一次后即可转化为只含一个根式的化简问题.教师引导学生化简,得到 (a2-c2 ) x2 + a2y 2 = a2 (a2-c2 ) . 指出:此方程形式还不够简捷,还有变形的必要,5. 证明:证明以化简后的方程的解为坐标的点都是曲线上的点,一般情况下,化简前后方程的解集是相同的,此步可以省略. 如有特殊情况,应给出说明.另外步骤2也可省略,直接列出曲线的方程.[设置依据] 再一次体现解析几何的基本思想,即用代数方法研究几何问题.在解决解析几何问题中,熟练运用代数变形技巧是十分重要的,学生常因运算能力不强而功亏一篑,故在此,教师不失时机地加强了运算技能的训练.[问六] 如果焦点F1、F2在y轴上,并且点O 与线段F1F2 的中点重合,a、b、c的意义同上,椭圆的方程形式又如何呢?[设置依据] 该问的设置,一方面是为了得出焦点在y轴上的椭圆的标准方程;另一方面通过学生的猜想,充分发挥学生的直觉思维和数学悟性. 调动了学生学习的主动性和积极性,通过动手验证,培养了学生严谨的学习作风和类比的能力.为了让学生加深对椭圆的两种标准方程的理解,下面举例,巩固练习.1.指出在下列方程中,哪些是椭圆的标准方程?哪些是椭圆的方程?(让学生思考、抢答)2.比较椭圆的两种标准方程,填表. (学生讨论回答,教师板书)[设置依据] 使学生进一步理解方程,掌握方程的本质特征,揭示规律,充分展示数形结合的和谐美、统一美,同时为解决例题做铺垫.(四) 初步运用,强化理解例题1. 判定下列椭圆的焦点在哪个轴上,并指明a2,b2和焦点坐标.图3[设置依据] 数学概念是要在运用中得以巩固的,通过该例题使学生进一步理解椭圆的定义,掌握标准方程,使知识内化为智能,并在解题过程中感受"数形结合" 思想的优越性.(五) 自我评价,反馈调节[设置依据] 变换练习方式,可增强新异感,调动学生的积极性,同时使学生获得的知识信息及时得到巩固,纳入长时记忆系统.(六) 知识整理,形成系统(由学生归纳,教师完善)1. 椭圆的定义(注意定义中的三个条件)2. 椭圆的标准方程(注意焦点的位置与方程形式的关系)3. 解析几何的基本思想[设置依据]通过小结,使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养概括能力.(七) 布置作业,巩固提高(学有余力的学生全做,其余学生不做探究题)1. 课本习题 8. 1 第 1 (2)、4 题2. 课后探究题:[设置依据] 一方面为了巩固知识,形成技能,培养学生周密的思维能力,发现教学中的遗漏和不足;另一方面,分层要求,有利各种层次的学生获得最佳发展,充分培养了学生的自主学习能力和探究性学习习惯.(八) 板书设计(附后)[设置依据] 勾勒出全教材的主线,呈现完整的知识结构体系并突出重点,用彩色增加信息的强度,便于掌握.五、教学评价本节课围绕“层层设问自主探索发现规律归纳总结”这一主线展开,对教材内容进行了优化组合,在教学过程中,学生通过观看动画,动手实践,自己总结出椭圆定义,符合从感性上升为理性的认知规律,而且提升了抽象概括的能力. 同时在进行推导椭圆的标准方程的过程中,提高了利用坐标法解决几何问题的能力及运算能力. 在整节课中,教师作为引导者,利用“神舟五号”运行轨迹的演示,激发学生学习数学的兴趣,鼓励学生大胆探索,勇于创新,提高学生参与数学活动的兴趣和积极性,树立了学好数学的自信,养成独立思考习惯.但在本节课中,根据学生能力的高低因人施教尤为重要. 学生是否具有问题意识,是否善于发现和提出问题. 在解决问题中,能否既独立思考又与他人交流与合作,能否对解决问题的方案进行质疑、调整和完善. 鉴于此,在设计本教案时,应增加教案的弹性设计,设置不同层次的知识面,以适应不同学生的认知过程. 与此同时,教师应不失时机地鼓励、肯定和表扬学生,调动课堂学习氛围,真正做到将传授知识和培养能力融为一体,较好地体现“数学教学主要是数学活动的教学”这一教育思想,实践新的教育理念.教学设计说明1.教学指导思想以新课程的教学理念为指导,转变教的行为,做到“用教材教,而不是教教材”;改变学习方式,以学生发展为本,充分体现素质教育的重点:培养学生的创新精神和实践能力.2.教学过程的设计本节内容教学安排与一般设想不同. 如一般设想是“重结论,轻过程”,常常直接给出定义,尽快得出两种标准方程,举例示范,使学生课外能学会使用方程解答课本习题. 而本节课不仅重视结论,也重视知识的形成过程,围绕“层层设问自主探索发现规律归纳总结”这一主线展开,对教材内容进行了优化组合. 在教学过程中,教师作为引导者、参与者、合作者,努力引导学生动手、探索、分析,亲身经历知识形成的过程. 运用多媒体演示“神舟五号”飞船围绕地球的运行轨迹,形象地给出椭圆;通过让学生自己动手做图,“定性”地画出椭圆;再通过方程“定量”地描述出椭圆,使之从感性到理性抽象概括,形成概念,推出方程. 在整个教学过程中渗透了方程、转化、数形结合等数学思想.3.重视对能力的培养在教学过程中通过学生动手实践、自主探索,培养其分析、交流、抽象概括及数学表达的能力. 在推导椭圆的标准方程过程中,提高学生利用坐标法解决几何问题的能力及运算能力.4.重视辨证唯物主义和历史唯物主义观点的培养本节课通过“神舟五号”飞船运动轨迹的演示,通过介绍“圆锥曲线”名称的来历,通过问三的设置,培养了学生运动变化、量变到质变、相互联系、相互转化、对立统一的观点,并使学生受到了爱国主义思想的教育,增强了学生的数学素质.5.弹性化设计教案根据学情不同,学生能力的高低,以及学生的特点和兴趣,设置不同层次的知识面,以适应不同学生的认知过程.。
高中数学人教A版选修2-1第二章椭圆及其标准方程精讲讲义

当 PF1 PF 2 2a F1F 2 时, P 的轨迹为 以 F1、F2 为端点的线段
2.椭圆的方程与几何性质:
标准方程
x2 y 2 1(a b 0) a2 b2
参数关系
性
焦点
(c,0), (c,0)
质
焦距
范围
| x | a,| y | b
a2 b2 c2 2c
y2 a2
x2 b2
举一反三:【变式 1】两焦点的坐标分别为 0,4,0,- 4,且椭圆经过点(5,0)。
【变式 2】已知一椭圆的对称轴为坐标轴且与椭圆 x 2 y 2 1有相同的焦点,并且经过点(3, 94
-2),求此椭圆的方程。
2
类型三:求椭圆的离心率或离心率的取值范围 例 3.椭圆 x 2 y 2 1(a>b>0)的半焦距为 c,若直线 y=2x 与椭圆的一个交点的横坐标为 c,求 a2 b2
(Ⅰ)求以 A、B 为焦点,且过 C、D 两点的椭圆的标准方程;
5:直线与椭圆问题(韦达定理的运用)
弦长公式:若直线 l : y kx b 与圆锥曲线相交与 A 、 B 两点, A(x1, y1), B(x2 , y2 ) 则
弦长 AB (x1 x2 )2 ( y1 y2 )2 (x1 x2 )2 (kx1 kx2 )2 1 k 2 x1 x2
5
举一反三【变式 1】已知直线 l:y=2x+m 与椭圆 C: x2 y2 1 交于 A、B 两点 54
(1) 求 m 的取值范围
(2) 若|AB|= 5 15 ,求 m 的值 6
例 9、已知椭圆 C: x2 y2 1 ,直线 l:y=kx+1,与 C 交于 AB 两点,k 为何值时,OA⊥OB. 4
最新人教版高中数学选修2-1第二章《椭圆的简单几何性质》知识导引

2.2.2 椭圆的简单几何性质第一课时问题探究椭圆的扁平程度与哪些量有关系?思路分析:先从长、短轴方面思考.当a b 越小时,椭圆应越扁平,而a b =ac a 22- =2)(1a c -,于是,椭圆的扁平程度与a c 也有关系. a c 这个量在椭圆中比较重要,我们称之为离心率,记为e=ac . 自学导引1.椭圆22a x +22by =1(a>b>0)上的点中,横坐标x 的取值范围是,纵坐标y 的取值范围是. 2.椭圆关于都是对称的,椭圆的对称中心叫做.3.椭圆22a x +22by =1的四个顶点坐标是. 4.椭圆的焦距与长轴长的比ac 称为椭圆的. 5.在椭圆22a x +22by =1(a>b>0)中,A 1(-a,0)、A 2(a,0)、B 1(0,-b)、B 2(0,b),线段A 1A 2、B 1B 2分别叫做椭圆的,在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2,这就是的几何意义.△OB 2F 2叫做椭圆的特征三角形,并且cos ∠OF 2B 2是椭圆的.答案:1.-a≤x≤a -b≤y≤b2.x 轴、y 轴和原点 椭圆的中心3. (a,0),(-a,0),(0,b),(0,-b)4.离心率5.长轴、短轴 c 2=a 2-b 2 离心率疑难剖析1.椭圆的基本性质对于椭圆的性质,一般先把方程化成标准形式然后再求,理解a 、b 、c 的几何意义.【例1】 求椭圆25x 2+y 2=25的长轴和短轴的长及其焦点和顶点坐标.解析:把已知方程化成标准方程为252y +x 2=1, 这里a=5,b=1,所以c=125-=26.因此,椭圆的长轴和短轴的长分别是2a=10和2b=2,两个焦点分别是F 1(0,-26)、F 2(0,26),椭圆的四个顶点是A 1(0,-5)、A 2(0,5)、B 1(-1,0)和B 2(1,0).温馨提示:求椭圆的长轴、短轴长需要求a 、b ,求a 、b 一般是把椭圆方程化成标准形式.在求顶点坐标和焦点坐标时,应注意焦点所在的坐标轴.【例2】 椭圆9x 2+4y 2=36与252x +162y =1哪一个更扁? 解析:把椭圆9x 2+4y 2=36写成42x +92y =1,则它的长轴长为6, 焦距为25,∴它的离心率e 1=35. 椭圆252x +162y =1的长轴长为10,焦距为6, ∴它的离心率e 2=53. ∵e 1>e 2, ∴椭圆42x +92y =1比252x +162y =1更扁. 答:椭圆9x 2+4y 2=36比252x +162y =1更扁. 温馨提示:椭圆的扁平程度由离心率的大小确定,与椭圆的焦点所在的坐标轴无关.【类题演练1】 (1)椭圆6x 2+y 2=6的长轴的端点坐标是( )A. (-1, 0)、(1,0)B. (-6, 0)、 (6,0)C. (-6,0)、 (6,0)D. (0,-6)、 (0,6)(2)椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是( )A.5,3,0.8B.10, 6, 0.8C.5, 3, 0.6D.10, 6, 0.62.椭圆性质的简单应用【例3】 已知点P (3,6)在以两坐标轴为对称轴的椭圆上,你能根据P 点的坐标最多写出椭圆上几个点的坐标(P 点除外)?这些点的坐标是什么?解析:根据椭圆关于两坐标轴对称及P 点的坐标,最多可以写出椭圆上三个点的坐标,这三个点的坐标分别是(3,-6)、(-3,-6)、(-3,6).温馨提示:如果知道椭圆的两条对称轴,那么可以根据椭圆上一点的坐标,写出椭圆上另外三点的坐标.【例4】 已知椭圆的对称轴是坐标轴,O 为坐标原点,F 是一个焦点,A 是一个顶点,若椭圆的长轴长是6,且C os∠OFA=23,求椭圆的方程.解析:∵椭圆的长轴长是6,C os∠OFA=23,∴点A 不是长轴的端点(是短轴的端点).∴|OF |=C ,|AF |=a=3.∴C3=23.∴C=2,b 2=32-22=5.∴椭圆的方程是x 29+y 25=1或x 25+y 29=1.温馨提示:△OFA 是椭圆的特征三角形,它的两直角边长分别为b 、c ,斜边的长为a ,∠OFA 的余弦值是椭圆的离心率.【类题演练2】 (1)已知椭圆C:22a x +22by =1与椭圆42x +82y =1有相同的离心率,则椭圆C 的方程可能是( ) A. 82x +42y =m 2(m≠0) B. 162x +642y =1 C. 82x +22y =1 D.以上都不可能(2)已知椭圆22a x +22b y =1与椭圆252x +162y =1有相同的长轴,椭圆22a x +22by =1的短轴长与椭圆212y +92x =1的短轴长相等,求a 2与b 2. 答案:1.(1)答案:D(2)解析:把椭圆的方程写成标准方程为92x +252y =1,知a=5,b=3,c=4. ∴2a=10,2b=6,ac =0.8. 答案:B 2.(1)解析:把方程82x +42y =m 2写成228m x +224my =1,则a 2=8m 2,b 2=4m 2. ∴c 2=4m 2. ∴22a c =84=21,e=a c =22. 而椭圆42x +82y =1的离心率为22.答案:A(2)解析:∵椭圆252x +162y =1的长轴长为10,焦点在x 轴上,椭圆212y +92x =1的短轴长为6, ∴a 2=25,b 2=9.拓展迁移【拓展点】 已知椭圆82 k x +92y =1的离心率为e=21,求k 的值. 解析:当椭圆的焦点在x 轴上时,a 2=k+8,b 2=9.得c 2=k-1,由e=21,可得k=4. 当椭圆的焦点在y 轴上时,a 2=9,b 2=k+8.得c 2=1-k,由e=21,得=41,即k=-45. ∴满足条件的k=4或k=-45.。