【最新】北师大版七年级数学上册第二章《有理数及其运算》水平测试二
北师大七年级数学上册第2章有理数及其运算测试卷

《第二章有理数及其运算》章末测试卷一、选择题(本大题10小题,每小题3分,共30分)1.在1,0,2,﹣3这四个数中,最大的数是()A.1 B.0 C.2 D.﹣32.2的相反数是()A.B.C.﹣2 D.23.(3分)﹣5的绝对值是()A.5 B.﹣5 C.D.﹣4.﹣2的倒数是()A.2 B.﹣2 C.D.﹣5.下列说法正确的是()A.带正号的数是正数,带负号的数是负数B.一个数的相反数,不是正数,就是负数C.倒数等于本身的数有2个D.零除以任何数等于零6.在有理数中,绝对值等于它本身的数有()A.1个 B.2个 C.3个 D.无穷多个7.比﹣2大3的数是()A.1 B.﹣1 C.﹣5 D.﹣68.下列算式正确的是()A.3﹣(﹣3)=6 B.﹣(﹣3)=﹣|﹣3|C.(﹣3)2=﹣6 D.﹣32=99.据报道,2014年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为()A.0.136×1012元B.1.36×1012元C.1.36×1011元D.13.6×1011元10.近似数2.7×103是精确到()A.十分位B.个位C.百位D.千位二、填空题(本大题6小题,每小题4分,共24分)11.如果温度上升3℃记作+3℃,那么下降3℃记作.12.已知|a|=4,那么a=.13.在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是.14.比较大小:3223.15.若(a﹣1)2+|b+2|=0,那么a+b=﹣1.16.观察下列依次排列的一列数:﹣2,4,﹣6,8,﹣10…按它的排列规律,则第10个数为20.三、解答题(一)(本大题3小题,每小题6分,共18分)17.把下列各数在数轴上表示出来,并用“>“号连结起来.﹣3,﹣1.5,﹣1,2.5,4.18.计算:﹣8﹣6+22﹣9.19.计算:﹣8÷(﹣2)+4×(﹣5).四、解答题(二)(本大题3小题,每小题7分,共21分)20.小强有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?21.计算:(﹣+﹣)×(﹣12).22.计算:﹣22+3×(﹣1)4﹣(﹣4)×2.五、解答题(三)(本大题3小题,每小题9分,共27分)23.若|a|=5,|b|=3,求a+b的值.24.某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10.(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.25.一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向(如:+7表示汽车向北行驶7千米),当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.(单位:千米)问:(1)B地在A地的何方,相距多少千米?(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?参考答案一、选择题(本大题10小题,每小题3分,共30分)1.在1,0,2,﹣3这四个数中,最大的数是()A.1 B.0 C.2 D.﹣3【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣3<0<1<2,故选:C.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.2的相反数是()A.B.C.﹣2 D.2【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:2的相反数是﹣2,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.﹣5的绝对值是()A.5 B.﹣5 C.D.﹣【考点】绝对值.【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.【点评】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.4.﹣2的倒数是()A.2 B.﹣2 C.D.﹣【考点】倒数.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.5.下列说法正确的是()A.带正号的数是正数,带负号的数是负数B.一个数的相反数,不是正数,就是负数C.倒数等于本身的数有2个D.零除以任何数等于零【考点】有理数.【分析】利用有理数的定义判断即可得到结果.【解答】解:A、带正号的数不一定为正数,例如+(﹣2);带负号的数不一定为负数,例如﹣(﹣2),故错误;B、一个数的相反数,不是正数,就是负数,例如0的相反数是0,故错误;C、倒数等于本身的数有2个,是1和﹣1,正确;D、零除以任何数(0除外)等于零,故错误;故选:C.【点评】此题考查了有理数,熟练掌握有理数的定义是解本题的关键.6.在有理数中,绝对值等于它本身的数有()A.1个 B.2个 C.3个 D.无穷多个【考点】绝对值.【分析】根据绝对值的意义求解.【解答】解:在有理数中,绝对值等于它本身的数有0和所有正数.故选D.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.7.比﹣2大3的数是()A.1 B.﹣1 C.﹣5 D.﹣6【考点】有理数的加法.【分析】先根据题意列出算式,然后利用加法法则计算即可.【解答】解:﹣2+3=1.故选:A.【点评】本题主要考查的是有理数的加法法则,掌握有理数的加法法则是解题的关键.8.下列算式正确的是()A.3﹣(﹣3)=6 B.﹣(﹣3)=﹣|﹣3|C.(﹣3)2=﹣6 D.﹣32=9【考点】有理数的乘方;相反数;有理数的减法.【分析】根据有理数的减法和有理数的乘方,即可解答.【解答】解:A、3﹣(﹣3)=6,正确;B、﹣(﹣3)=3,﹣|﹣3|=﹣3,故本选项错误;C、(﹣3)2=9,故本选项错误;D、﹣32=﹣9,故本选项错误;故选:A.【点评】本题考查了有理数的减法和有理数的乘方,解决本题的关键是熟记有理数的乘方和有理数的减法.9.据报道,2014年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为()A.0.136×1012元B.1.36×1012元C.1.36×1011元D.13.6×1011元【考点】科学记数法—表示较大的数.【分析】根据科学记数法的表示方法:a×10n,可得答案.【解答】解:1.36万亿元,用科学记数法表示为1.36×1012元,故选:B.【点评】本题考查了科学记数法,科学记数法中确定n的值是解题关键,指数n 是整数数位减1.10.近似数2.7×103是精确到()A.十分位B.个位C.百位D.千位【考点】近似数和有效数字.【分析】由于2.7×103=2700,而7在百位上,则近似数2.7×103精确到百位.【解答】解:∵2.7×103=2700,∴近似数2.7×103精确到百位.故选C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起,到这个数完为止,所有这些数字叫这个数的有效数字.二、填空题(本大题6小题,每小题4分,共24分)11.如果温度上升3℃记作+3℃,那么下降3℃记作﹣3℃.【考点】正数和负数.【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负.【解答】解:∵温度上升3℃记作+3℃,∴下降3℃记作﹣3℃.故答案为:﹣3℃.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.12.已知|a|=4,那么a=±4.【考点】绝对值.【分析】∵|+4|=4,|﹣4|=4,∴绝对值等于4的数有2个,即+4和﹣4,另外,此类题也可借助数轴加深理解.在数轴上,到原点距离等于4的数有2个,分别位于原点两边,关于原点对称.【解答】解:∵绝对值等于4的数有2个,即+4和﹣4,∴a=±4.【点评】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.本题是绝对值性质的逆向运用,此类题要注意答案一般有2个,除非绝对值为0的数才有一个为0.13.在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是﹣5或﹣1.【考点】数轴.【专题】探究型.【分析】由于所求点在﹣3的哪侧不能确定,所以应分在﹣3的左侧和在﹣3的右侧两种情况讨论.【解答】解:当所求点在﹣3的左侧时,则距离2个单位长度的点表示的数是﹣3﹣2=﹣5;当所求点在﹣3的右侧时,则距离2个单位长度的点表示的数是﹣3+2=﹣1.故答案为:﹣5或﹣1.【点评】本题考查的是数轴的特点,即数轴上右边的点表示的数总比左边的大.14.比较大小:32>23.【考点】有理数的乘方;有理数大小比较.【专题】计算题.【分析】分别计算32和23,再比较大小即可.【解答】解:∵32=9,23=8,∴9>8,即32>23.故答案为:>.【点评】本题考查了有理数的乘方以及有理数的大小比较,是基础知识要熟练掌握.15.若(a﹣1)2+|b+2|=0,那么a+b=﹣1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b,然后相加即可得解.【解答】解:根据题意得,a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,a+b=1+(﹣2)=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.观察下列依次排列的一列数:﹣2,4,﹣6,8,﹣10…按它的排列规律,则第10个数为20.【考点】规律型:数字的变化类.【分析】观察不难发现,这列数的绝对值是从2开始的连续偶数,并且第偶数个数是正数,第奇数个数是负数,然后写出第10个数即可.【解答】解:∵﹣2,4,﹣6,8,﹣10…,∴第10个数是正数数,且绝对值为2×10=20,∴第10个数是20,故答案为:20.【点评】本题是对数字变化规律的考查,比较简单,难点在于从绝对值和符号两个部分考虑求解.三、解答题(一)(本大题3小题,每小题6分,共18分)17.把下列各数在数轴上表示出来,并用“>“号连结起来.﹣3,﹣1.5,﹣1,2.5,4.【考点】有理数大小比较;数轴.【分析】先在数轴上表示各个数,再比较即可.【解答】解:4>2.5>﹣1>﹣1.5>﹣3.【点评】本题考查了有理数的大小比较,数轴的应用,能正确在数轴上表示各个数是解此题的关键,注意:在数轴上表示各个数,右边的数总比左边的数大.18.计算:﹣8﹣6+22﹣9.【考点】有理数的加减混合运算.【分析】直接进行有理数的加减运算.【解答】解:原式=﹣23+22=﹣1.【点评】本题考查有理数的运算,属于基础题,注意运算的顺序是关键.19.计算:﹣8÷(﹣2)+4×(﹣5).【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘除运算,再计算加减运算即可得到结果.【解答】解:原式=4﹣20=﹣16,故答案为:﹣16【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题(二)(本大题3小题,每小题7分,共21分)20.小强有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?【考点】规律型:数字的变化类.【分析】分析几个数可知要使抽取的数最大,需同时抽两个最大正数或两个最小的负数,即可使乘积最大.【解答】解:抽取﹣3和﹣8.最大乘积为(﹣3)×(﹣8)=24.【点评】两个负数的乘积为正数,且这两个负数越小,其乘积越大.21.计算:(﹣+﹣)×(﹣12).【考点】有理数的混合运算.【专题】计算题.【分析】根据有理数的混合运算的运算方法,应用乘法分配律,求出算式的值是多少即可.【解答】解:(﹣+﹣)×(﹣12)=(﹣)×(﹣12)+×(﹣12)﹣×(﹣12)=2﹣9+5=﹣2【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意乘法运算定律的应用.22.计算:﹣22+3×(﹣1)4﹣(﹣4)×2.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣4+3+8=7.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.五、解答题(三)(本大题3小题,每小题9分,共27分)23.若|a|=5,|b|=3,求a+b的值.【考点】有理数的加法;绝对值.【分析】|a|=5,则a=±5,同理b=±3,则求a+b的值就应分几种情况讨论.【解答】解:∵|a|=5,∴a=±5,同理b=±3.当a=5,b=3时,a+b=8;当a=5,b=﹣3时,a+b=2;当a=﹣5,b=3时,a+b=﹣2;当a=﹣5,b=﹣3时,a+b=﹣8.【点评】正确地进行讨论是本题解决的关键.规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.24.某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.【考点】正数和负数.【分析】(1)根据正负数的意义解答即可;(2)求出所有记录的和的平均数,再加上基准分即可.【解答】解:(1)最高分为:80+12=92分,最低分为:80﹣10=70分;(2)8﹣3+12﹣7﹣10﹣3﹣8+1+0+10=8+12+1+10+0﹣3﹣7﹣10﹣3﹣8=31﹣31=0,所以,10名同学的平均成绩80+0=80分.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.25.一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向(如:+7表示汽车向北行驶7千米),当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.(单位:千米)问:(1)B地在A地的何方,相距多少千米?(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?【考点】正数和负数.【专题】应用题.【分析】(1)把当天记录相加,然后根据正数和负数的规定解答即可;(2)先求出行驶记录的绝对值的和,再乘以0.35计算即可得解.【解答】解:(1)18﹣9+7﹣14﹣6+12﹣6+8=45﹣35=10,所以,B地在A地北方10千米;(2)18+9+7+14+6+12+6+8=80千米80×0.35=28升.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.我爸爸告诉我,你现在翻的一页书都是将来要数的一张张钞票,所以不让你学习的人,就是在抢你的财富,不想要的都是傻子。
最新北师大版七年级数学上第二章《有理数及其运算》单元检测及答案解析

最新北师大版数学精品教学资料第二章 有理数及其运算检测题【本试卷满分100分,测试时间90分钟】一、选择题(每小题3分,共30分)1.(2014·福州中考)-5的相反数是( )A .-5B .5C .15D .- 152.(2014·成都中考) 在-2,-1、0、2这四个数中,最大的数是( ) A.-2 B.-1 C.0 D.2 3.下列运算正确的是 ( ) A.B.C.D.=84.计算的值是( )A.0B.532C.54D.54-5.如果a 的倒数是-1,那么a 2 014 等于( )A.1 B.-1 C.2 014 D.-2 014 6.下列说法中正确的有( ) ①同号两数相乘,符号不变; ②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值,等于这两个有理数的绝对值的积. A.1个 B.2个 C.3个 D.4个7.气象部门测定发现:高度每增加1 km ,气温约下降5 ℃.现在地面气温是15 ℃,那么4 km 高空的气温是( ) A.5 ℃B.0 ℃C.-5 ℃D.-15 ℃8.在有理数中,一个数的立方等于这个数本身,这种数的个数为( ) A.1B.2C.3D.无数个9.计算201320140254(.)()-⨯-等于( )A.-1B.1C.-4D.4 10.若规定“!”是一种数学运算符号,且则!98!100的值为( ) A.4950B.99!C.9 900D.2! 二、填空题(每小题3分,共24分)11.(2014·江西中考) 据相关报道,截止到今年四月,我国已完成5.78万个农村教学点的建设任务,5.78万可用科学记数法表示为 . 12.绝对值小于4的所有整数的和是 .13.(2013·乐山中考)如果规定向东为正,那么向西即为负.汽车向东行驶3 km 记作3 km ,向西行驶2 km 应记作 .14.测得某乒乓球厂生产的五个乒乓球的质量误差(g )如下表.检验时,通常把比标准质量大的克数记为正,比标准质量小的克数记为负.请你选出最接近标准质量的球,是 号.15.某次数学测验共20道选择题,规则是:选对一道得5分,选错一道得-1分,不选得零分,王明同学的卷面成绩是:选对16道题,选错2道题,有2道题未做,他的得分是 .16.(2013·贵港中考)若超出标准质量0.05克记作+0.05克,则低于标准质量0.03克记作 .17.某年级举办足球循环赛,规则是:胜一场得3分,平一场得1分,输一场得-1分,某班比赛结果是胜3场平2场输4场,则该班得 分.18.如图是一个数值转换机的示意图,若输入x 的值为3, 的值为-2,则输出的结果为 . 第18题图三、解答题(共46分)19.(5分)把下列各数填在相应的大括号里:1,45,8.9,-7,56,-3.2,+1 008,-0.06,28,-9. 正整数集合:{ …}; 负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …}. 20.(12分)计算: (1);(2);(3)211;(4).21.(5分)已知:,,且,求的值.22.(6分)某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数):(1)本周三生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加还是减少? (3)产量最多的一天比产量最少的一天多生产了多少辆?23.(6分)为节约用水,某市对居民用水规定如下:大户(家庭人口4人及4人以上者)每月用水15 m 3以内的,小户(家庭人口3人及3人以下者)每月用水10 m 3以内的,按每立方米收取0.8元的水费;超过上述用量的,超过部分每立方米水费加倍收取.某用户5口人,本月实际用水25 m 3,则这户本月应交水费多少元?24.(6分)李强靠勤工俭学的收入维持上大学费用,表中是李强某一周的收支情况表,记收入为正,支出为负(单位:元):(1)到这个周末,李强有多少节余?(2)照这个情况估计,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?25.(6分)观察下列各式:….猜想:(1);(2)如果为正整数,那么.第二章 有理数及其运算检测题参考答案一、选择题1.B 解析:根据相反数的定义知,-5的相反数是5.2.D 解析:根据比较有理数的大小的法则,得-2<-1<0<2.3.B 解析:,所以A 项错误;,所以C 项错误;,所以D 项错误.只有B 是正确的. 4.B 解析:5.A 解析:a (a ≠0)的倒数是.由题意得=-1,解得a =-1, 所以a 2 014= 2 014(1)-=1.6.B 解析: ①错误,如,符号改变; ③错误,如0×0,积为0;②④正确. 7.C 解析:.8.C 解析:一个数的立方等于本身的数有1,,0,共3个.9.C 解析: 2 0132 0142 0132 013(0.25)(4)(0.25)(4)(4)4-⨯-=-⨯-⨯-=-.10.C 解析:根据题意可得:100!=100×99×98×97×…×1,98!=98×97×…×1, ∴1××97×981××98×99×100!98!100 ==100×99=9 900,故选C . 二、填空题11. 45.7810⨯ 解析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a ×10n 的形式时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n 是正整数;当原数的绝对值小于1时,n 是负整数.所以5.78万=57800=45.7810⨯. 12.0 解析:绝对值小于4的所有整数是,其和为.13. -2 km 解析:本题考查了正负数的意义,汽车向东行驶3km 记作3km ,向西行驶2km 应记作-2km .14.1 解析:误差的绝对值越小的越接近标准质量. 15.78分 解析:(分).16. -0.03 g 解析:本题考查了正负数的意义,超出标准质量0.05 g 记作+0.05 g ,则低于标准质量0.03 g 记作-0.03 g . 17.7 解析:(分).18.5 解析:将代入中,得.三、解答题19.解:正整数集合:{1,+1 008,28,…};负整数集合:{-7,-9,…}; 正分数集合:58.9,,6⎧⎫⋯⎨⎬⎩⎭;负分数集合:4, 3.2,0.06,5⎧⎫---⋯⎨⎬⎩⎭.20.解:(1).(2).(3)211.(4).21.解:因为,所以.因为,所以.又因为,所以.所以或.22.分析:(1)明确增加的车辆数为正数,减少的车辆数为负数,依题意列式,再根据有理数的加减法法则计算;(2)首先求出总生产量,然后和计划生产量比较即可得到结论;(3)根据表格可以知道产量最多的一天和产量最少的一天各自的产量,然后相减即可得到结论.解:(1)本周三生产的摩托车为:(辆).(2)本周总生产量为计划生产量为:300×7=2 100(辆),2 100-2 079=21(辆),所以本周总生产量与计划生产量相比减少21辆.或者由,可知本周总生产量与计划生产量相比减少21辆.(3)产量最多的一天比产量最少的一天多生产了(辆),即产量最多的一天比产量最少的一天多生产了35辆.23.解:因为该用户是大户,所以应交水费(元). 答:这户本月应交水费28元.24.分析:(1)七天的收入总和减去支出总和即可;(2)首先计算出平均一天的节余,然后乘30即可;(3)计算出这7天支出的平均数,即可作为一个月中每天的支出,乘30即可求得.解:(1)由题意可得:(元).(2)由题意得:14÷7×30=60(元).(3)根据题意得:10+14+13+8+10+14+15=84,84÷7×30=360(元).答:(1)到这个周末,李强有14元节余.(2)照这个情况估计,李强一个月(按30天计算)能有60元节余.(3)按以上的支出水平,李强一个月(按30天计算)至少有360元收入才能维持正常开支.25.解:(1).(2).。
北师大版七年级数学上第二章《有理数及其运算》水平测试

初中数学试卷第二章《有理数及其运算》水平测试一、选一选,看完四个选项后再做决定呀!(每小题3分,共30分)1.下列四个数中,在-2到0之间的数是()A.-1 B. 1 C.-3 D.3 2.下列各数中互为相反数的是()A.12-与0.2 B.13与-0.33 C.-2.25与124D.5与-(-5)3.对于(-2)4与-24,下列说法正确的是()A.它们的意义相同B.它的结果相等C.它的意义不同,结果相等D.它的意义不同,结果不等4.下表是我国几个城市某年一月份的平均气温,其中气温最低的城市是()城市北京武汉广州哈尔滨平均气温(单位:℃)-4.63.813.1-19.4 A.哈尔滨 B.广州 C.武汉 D.北京5.下列计算错误的是()A.0.14=0.0001 B.3÷9×(-19)=-3C.8÷(-14)=-32 D.3×23=246.在数轴上与-3的距离等于4的点表示的数是 ( )A.1 B.-7 C.1或-7 D.无数个7.若x是有理数,则x2+1一定是()A.等于1B.大于1C.不小于1D.不大于18.两个有理数的积是负数,和也是负数,那么这两个数()A. 都是负数B. 其中绝对值大的数是正数,另一个是负数C. 互为相反数D. 其中绝对值大的数是负数,另一个是正数9.一个有理数的绝对值等于其本身,这个数是()A、正数B、非负数C、零D、负数10.四个互不相等整数的积为9,则和为()A.9 B.6 C.0 D.3-二、填一填,要相信自己的能力!(每小题3分,共30分)1.若a 与-5互为相反数,则a =_________;若b 的绝对值是21-,则b =_________. 2.用“<”“=”或“>”号填空:-2_____0 98- _____109- -(+5) _____-(-|-5|) 3.计算:737()()848-÷-= ;232(1)---= . 4.一天早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是________.5.从数-6,1,-3,5,-2中任取二个数相乘,其积最小的是___________.6.若a ,b 互为相反数,c ,d 互为倒数,m =2,则(a +b )·dc +3cd -m 2= . 7.如果n >0,那么n n= ,如果n n =-1,则n 0。
北师大版数学七年级(上)第二章有理数及其运算单元测试卷

锦州骐骥教育七年级(上)第二章《有理数及其运算》测试题 一、选择题(每小题3分,共24分,请将答案填写在下面的表格中)1、在3-,5-,)4(--, 0 中,负数有( )A. 1个B. 2个C. 3个D. 4个 2、下列式子中,正确的是( )A. 223)4(->-B. 214.0-<- C. 7654-<- D. 9889->- 3、若0<<b a ,那么下列式子成立的是( )A. ba11> B. 1<ab C. 1>ba D. 1<ba 4、一个有理数的相反数与自身的绝对值的和( )A. 可能是负数B. 必为正数C. 必为非负数D. 必为0 5、下列计算正确的是( )A. 276)32(3-=-B. 94)32(2=-- C. 278)32(3=-D. 12527)53(3-=-6、如果一个数的绝对值等于它的平方,那么这个数是( )A. 1B. 0C. 1,1-D. 1-,0,17、下列语句:①一个数的平方是正数,那么这个数一定是正数 ②求n 个因数的积的运算叫乘方 ③两个数的积为1,则这两个数互为倒数 ④所有的有理数都有倒数. 其中正确的有( )A. 0个B. 1个C. 2个D. 3个8、若a 与b2互为相反数,那么a 的倒数可以写成( )A. b 2B. b 2-C. 2bD. 2b - 二、填空题:(每题3分,共24分)9、计算:)2()3(---= ;223)2(--= .10、已知0>a ,0<b ,则a 、b a -、b a +的大小顺序是 . 11、大于10-而小于100的整数有 个,其中最小的整数是 ,绝对值最小的是 .12、a 为最小的正整数,b 为a 的相反数的倒数,c 为相反数等于它本身的数,则)(5b a ++4c = . 13、如果22)4(-=a ,则a = . 14、52-的倒数与310-的相反数的差是 . 15、数轴上表示与表示2-的点距离为3个单位的点表示的数为 . 16、已知021=-+-a ,则b a 5100-= . 三、解答题:(52分)17、计算:(每小题5分,共20分)(1) )3(28)4(---+--- (2))25.0()43()32(42-÷-+-⨯(3) 3)32(223--÷ (4))8.0()10()1.0(223-+-⨯⨯-18、(6分)已知点A在数轴上对应的有理数是a,将点A向左移动4个单位,再向右移动一个单位与点B重合,点B对应的有理数是25-,求a.19、(5分)已知4=a,3b,求b=a-的值.20、(6分)某检修工人检修电话线路,乘车时设定前进为正,后退为负,某天自A的出发到收工时,所行路程为(单位:千米):4+,+,3-,2-,12+,5-,7+,问收工时距-,22+,8-,2-,173A地多远?若每千米耗油4升,问从A地出发到收工共耗油多少升?21、(7分)已知223214111⨯⨯==22333241921⨯⨯==+ 22333434136321⨯⨯==++22333354411004321⨯⨯==+++(1) 猜想:333321+++…+2233) ()(41)1(⨯⨯=+-n n ; (2) 计算:333321+++…+3310099+的结果.22、(8分)若a 与b 互为相反数,x ,y 互为倒数,m 的绝对值和倒数均是它本身,n 的相反数是它本身,求下列代数式的值.()()20122013201520151951n m xy b a --+⎪⎪⎭⎫ ⎝⎛-+。
北师大版(2024版)七年级上册数学 第2章 有理数及其运算单元测试卷 ( 含答案)

北师大版(2024版)七年级(上)数学单元测试卷第2章《有理数及其运算》满分120分时间100分钟题号得分一、选择题(共10题;共30分)1.−110的绝对值是( )A.110B.10C.−110D.−102.如果“亏损5%”记作−5%,那么+3%表示( )A.多赚3%B.盈利−3%C.盈利3%D.亏损3%3.如图,数轴上点P表示的数是( )A.-1B.0C.1D.24.2023年3月13日,十四届全国人大一次会议闭幕后,国务院总理李强在答记者问时表示,我们国家现在适合劳动年龄人口已经有近9亿人,每年新增劳动力是1500万人,人力资源丰富仍然是中国一个巨大优势或者说显著优势.其中1500万用科学记数法表示为( )A.1.5×103B.1500×104C.1.5×106D.1.5×1075.如图,数轴上的点A,B,C,D表示的数与−13互为相反数的是( )A.A B.B C.C D.D6.下列各式中,计算结果最大的是( )A.3+(−2)B.3−(−2)C.3×(−2)D.3÷(−2)7.式子−2−1+6−9有下面两种读法;读法一:负2,负1,正6与负9的和;读法二:负2减1加6减9.则关于这两种读法,下列说法正确的是( )A.只有读法一正确B.只有读法二正确C .两种读法都不正确D .两种读法都正确8.用“▲”定义一种新运算:对于任何有理数a 和b ,规定a▲b =ab +b 2,如2▲3=2×3+32=15,则(−4)▲2的值为( )A .−4B .4C .−8D .89.已知两个有理数a ,b ,如果ab <0且a +b >0,那么( )A .a >0,b >0B .a >0,b <0C .a ,b 同号D .a ,b 异号,且正数的绝对值较大10.已知有理数a ,b ,c 在数轴上的位置如图所示,则a 2|a 2|−|b |b−c |c |=( )A .−1B .1C .2D .3二、填空题(共6题;共18分)11.既不是正数也不是负数的数是 . 12.−25 的倒数是 .13.某天最高气温为6℃,最低气温为−3℃.这天的温差是 ℃.14.一个整数8150…0用科学记数法表示为8.15×1010,则原数中“0”的个数为 个.15.比较大小:−|−8| −42.(填“>”“ <”或“=”)16.数轴上的A 点与表示−3的点距离4个单位长度,则A 点表示的数为 .三、解答题(共9题;共72分)17.(6分) 把下列数填在相应的集合内.−56,0,-3.5,1.2,6.(1)负分数集合:{}.(2)非负数集合:{ }.18.(8分)计算:(1)(−7)+13−5;(2)(−14)−(−34)−|12−1|.19.(6分)阅读下面的解题过程,并解决问题.计算:53.27−(−18)+(−21)+46.73−(+15)+21.解:原式=53.27+18−21+46.73−15+21…①=(53.27+46.73)+(21−21)+(18−15)…②=100+0+3…③=103(1)第①步经历了哪些转变:_____,体现了数学中的转化思想,为了计算简便,第②步应用了哪些运算律:_______.(2)根据以上解题技巧进行计算:−2123+314−(−23)−(+14).20.(8分)已知算式“(−2)×4−8”.(1)请你计算上式结果;(2)嘉嘉将数字“8”抄错了,所得结果为−11,求嘉嘉把“8”错写成了哪个数;(3)淇淇把运算符号“×”错看成了“+”,求淇淇的计算结果比原题的正确结果大多少?21.(8分)如图的数轴上,每小格的宽度相等.(1)填空:数轴上点A表示的数是 ,点B表示的数是 .(2)点C表示的数是−13,点D表示的数是−1,请在数轴上分别画出点C和点D的位置.(3)将A,B,C,D四个点所表示的数按从大到小的顺序排列,用“>”连接.22.(8分)一辆出租车从A 站出发,先向东行驶12km ,接着向西行驶8km ,然后又向东行驶4km .(1)画一条数轴,以原点表示A 站,向东为正方向,在数轴上表示出租车每次行驶的终点位置.(2)求各次路程的绝对值的和.这个数据的实际意义是什么?23.(8分)如图,一只甲虫在5×5的方格(每一格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右为正,向下向左为负.例如:从A 到B 记为:A→B(+1,+3);从C 到D 记为:C→D(+1,−2)(其中第一个数表示左右方向,第二个数表示上下方向).(1)填空:A→C ( , );C→B ( , ).(2)若甲虫的行走路线为:A→B→C→D→A ,请计算甲虫走过的路程.24.(8分)(1)如果a ,b 互为相反数(a ,b 均不为0),c ,d 互为倒数,|m |=4,则b a =______,求a +b 2024−cd +b a ×m 的值;(2)若实数a ,b 满足|a |=3,|b |=5,且a <b ,求a +13b 的值.25.(12分) 学习了绝对值的概念后,我们知道一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,即当a ≥0时,|a|=a ;当a <0时,|a|=−a .请完成下面的问题:(1)因为3<π,所以3−π<0,|3−π|=−(3−π)= ;(2)若有理数a <b ,则|a−b|= ;(3)(6分)计算:|13−12|+|14−13|+|15−14|+⋯+|12022−12021|+|12023−12022|参考答案一、选择题1.A 2.C 3.A 4.D 5.D 6.B 7.D 8.A 9.D 10.B二、填空题11.0 12.- 52 13.9 14.8 15.> 16.−7或1三、解答题17.(1)解:负分数集合:{−56,−3.5⋅⋅⋅}.(2)解:非负数集合:{0,1.2,6⋅⋅⋅}18.(1)解:(−7)+13−5=6−5=1(2)解:(−14)−(−34)−|12−1|=(−14)+34−|−12|=12−12=0.19.(1)去括号,省略加号;加法交换律、结合律(2)−1820.(1)−16(2)嘉嘉把“8”错写成了3(3)淇淇的计算结果比原题的正确结果大1021.(1)23;213(2)解:如图.(3)解:由数轴可知,213>22>−13−122.(1)解:如图所示,(2)解:|12|+|−8|+|4|=24km ,这个数据的实际意义是出租车行驶的总路程为24km.23.(1)+3;+4;-2;-1(2)如图所示,∵A→B =3+1=4,B→C =1+2=3,C→D =1+2=3,D→A =2+4=6.∴AB +BC +CD +DA =4+3+3+6=16.∴甲虫走过的路程为16.24.(1)−1,−5或3;(2)a +13b 的值是143或−4325.(1)π−3(2)b−a(3)解:原式=12−13+13−14+14−15+⋯+12021−12022+12022−12023=12−12023=20214046。
北师大版(2024)七年级上册数学第2章 有理数及其运算 达标测试卷(含答案)

北师大版(2024)七年级上册数学第2章有理数及其运算达标测试卷(时间:45分钟。
满分:100分)一、选择题(本大题共8小题,每小题3分,共24分。
每小题只有一个正确选项)1.计算(-7)-(-5)的结果是()。
A.-12B.12C.-2D.22.中国是最早采用正负数表示相反意义的量并进行负数运算的国家。
若收入500元记作+500元,则支出237元记作()。
A.+237元B.-237元C.0元D.-474元3.在3,-7,0,1四个数中,最大的数是()。
9A.3B.-7C.0D.194.近似数5.0×102精确到()。
A.十分位B.个位C.十位D.百位5.“绿水青山就是金山银山”,多年来,某湿地保护区针对过度放牧问题,投入资金实施湿地生态效益补偿,完成季节性限牧还湿29.47万亩(1亩≈666.67 m2),使得湿地生态环境状况持续向好。
其中数据29.47万用科学记数法表示为()。
A.0.294 7×106B.2.947×104C.2.947×105D.29.47×1046.下列说法,正确的是()。
A.23表示2×3B.-110读作“-1的10次幂”C.(-5)2中-5是底数,2是指数D.2×32的底数是2×37.(2023内蒙古中考)定义新运算“⊗”,规定:a⊗b=a2-|b|。
则(-2)⊗(-1)的运算结果为()。
A.-5B.-3C.5D.3<0。
则其中正8.如图,数轴上点A,B,C分别表示数a,b,c,有下列结论:①a+b>0;②abc<0;③a-c<0;④-1<ab确结论的个数是()。
A.1B.2C.3D.4二、填空题(本大题共5小题,每小题4分,共20分)9.(2024重庆奉节期末)若a是最小的正整数,b是最大的负整数,则a+b=。
10.(2023重庆渝中区校级月考)计算:-|-335|-(-225)+45=。
七年级数学上册 第二章 有理数及其运算 单元测试卷(北师版 2024年秋)

七年级数学上册第二章有理数及其运算单元测试卷(北师版2024年秋)七年级数学上(BS版)时间:90分钟满分:120分一、选择题(每题3分,共30分)1.若零下2摄氏度记为-2℃,则零上2摄氏度记为()A.-2℃B.0℃C.+2℃D.+4℃2.[2023淄博]-|-3|的运算结果等于()A.3B.-3C.13D.-13 3.[2023遂宁]已知算式5□-5的值为0,则“□”内应填入的运算符号为() A.+B.-C.×D.÷4.[真实情境题航天科技]2024年5月3日,在文昌航天发射场,我国用长征五号遥八运载火箭成功发射了嫦娥六号探测器.已知月球与地球之间的平均距离约为384400km,数据384400用科学记数法表示为()A.3.844×106B.3.844×105C.3.844×105D.3.844×1065.[2024天津一中模拟]计算314+-534+-5()A.314+-534+-B.314+--C.314+--+D.以上都不对6.在数轴上,位于-2.9和2.1之间的点表示的整数有()A.5个B.4个C.3个D.无数个7.下列说法正确的是()A.近似数4.0精确到十分位B.近似数2.68×105精确到百分位C.近似数3.1万精确到十分位D.近似数7900精确到百位8.[新视角新定义题]a为有理数,定义运算符号“※”:当a>-2时,※a=-a;当a<-2时,※a=a;当a=-2时,※a=0,根据这种运算,则※[4+※(2-5)]的值为() A.1B.-1C.7D.-79.[新趋势跨学科2024济宁期末]计算机利用的是二进制数,它共有两个数码0,1.将一个十进制数转化为二进制,只需把该数写成若干个2n数的和,依次写出1或0即可.如19(10)=16+2+1=1×24+0×23+0×22+1×21+1=10011(2)为二进制下的5位数,则十进制数1025是二进制下的()A.10位数B.11位数C.12位数D.13位数10.[新视角规律探究题教材P62习题T8变式]一根100m长的绳子,第一次截去一半,第二次截去剩下的13,第三次截去剩下的14,…如此下去,直到截去剩下的1100,则剩下的绳子长为()A.12m B.1m C.2m D.4m二、填空题(每题3分,共24分)11.把(-1)-(-3)+(-5)-(+6)改写成省略括号和加号的形式为.12.[2023永州]-0.5,3,-2三个数中,最小的数为.13.[新视角结论开放题]“24点”的游戏规则是:任抽四个数,用加、减、乘、除四则运算列一个算式,使得计算结果为24.小明抽到的四个数分别是3,4,5,-8,请列出符合要求的算式:.14.[教材P29例4变式]如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B 表示的数是.15.[2024苏州吴中区二模]若x的相反数是-3,|y|=5,则x+y的值为.16.[新考法程序计算法]如图是一个简单的数值运算程序图,当输入x的值为-1时,输出的数值为.17.[新视角新定义题]定义:如果2m=n(m,n为正数),那么我们把m叫作n的D数,记作m=D(n).根据所学知识,试计算:D(16)=.18.[情境题生活应用]若一杯拿铁成本是7元,卖17元,某顾客买了一杯拿铁,给了售货员一张50元纸币,售货员没零钱,于是找邻居换了50元零钱.事后邻居发现那50元纸币是假的,最后售货员又赔了邻居50元,则售货员一共亏了元.三、解答题(19,24题每题12分,20题16分,21题8分,其余每题9分,共66分) 19.(1)[教材P25随堂练习T2变式]把下列各数填入相应的集合中:-(-2.5),(-1)2,-|-2|,-22,0,-12.整数集合:{…};分数集合:{…};正有理数集合:{…};负有理数集合:{…}.(2)[教材P30随堂练习T1变式]把表示上面各数的点标在数轴上,再按从小到大的顺序,用“<”把这些数连接起来.20.计算(能简算的要简算):(1)-6+10-3+|-9|;(2)-49----59;(3)23×1-141.5;(4)-42÷(-2)3-(-1)2025-49÷23.21.[2024宁波东海实验学校模拟]为了参加校级航模比赛,某班航模兴趣小组周末在学校操场进行训练,其中一次飞机模型离地面高度达到0.5米后,记录了连续四次升降情况如下表:高度变化上升5.5米下降2.8米上升1.5米下降1.7米记作+5.5米-2.8米米米(1)完成上表.(2)飞机模型连续完成上述四个升降动作后,离地面的高度是多少米?22.如图,数轴上点A,B到表示-2的点的距离都为6,C,D两点分别从原点、B点同时向A点移动,且点C移动速度为每秒2个单位长度,点D移动速度为每秒3个单位长度.(1)直接写出点A,B表示的数;(2)当移动1秒时,求点C与点D之间的距离.23.[情境题生产监督教材P46习题T16变式]某市质量技术监督局从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差/g-6-20134袋数143453(1)若标准质量为450g,则抽样检测的20袋食品的总质量为多少克?(2)若该食品的合格标准为450g±5g,求该食品抽样检测的合格率.24.[新视角动点探究题]如图,已知数轴上有A,B,C三个点,分别表示有理数-24,-10,10,动点P从A出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.若用PA,PB,PC分别表示点P与点A、点B、点C之间的距离,试回答以下问题.(1)当点P运动10秒时,PA=,PB=,PC=;(2)当点P运动了t秒时,PA=,PB=,PC=;(用含t的代数式表示)(3)经过几秒后,点P到点A、点C的距离相等?此时点P表示的数是多少?(4)当点P运动到点B时,点Q从点A出发,以每秒3个单位长度的速度向点C运动,点Q到达点C后,再立即以同样速度返回,运动到终点A.在点Q开始运动后,P,Q两点之间的距离能否为4个单位长度?如果能,请写出点P表示的数;如果不能,请说明理由.参考答案一、1.C2.B3.A4.B5.B6.A7.A8.B9.B10.B二、11.-1+3-5-612.-213.(3+5)×4-8=24(答案不唯一)14.315.8或-216.-217.418.40三、19.解:(1)整数集合:{(-1)2,-|-2|,-22,0,…};分数集合:{-(-2.5),-12,…};正有理数集合:{-(-2.5),(-1)2,…};负有理数集合:{-|-2|,-22,-12,…}.(2)在数轴上标数略.-22<-|-2|<-12<0<(-1)2<-(-2.5).20.(1)10(2)0(3)7(4)7321.解:(1)+1.5;-1.7(2)0.5+5.5-2.8+1.5-1.7=3(米).所以飞机模型连续完成上述四个升降动作后,离地面的高度是3米.22.解:(1)点A表示的数为-8,点B表示的数为4.(2)当移动1秒时,点C运动到表示-2的点处,点D运动到表示1的点处,此时点C与点D之间的距离为3.23.解:(1)450×20+(-6)+(-2)×4+1×4+3×5+4×3=9017(g).所以抽样检测的20袋食品的总质量为9017g.(2)4+3+4+5+320×100%=95%.所以该食品抽样检测的合格率为95%.24.解:(1)10;4;24(2)t;|-14+t|;|-34+t|(3)由题易得t=|-34+t|,解得t=17,此时-24+17=-7.所以经过17秒后,点P到点A,点C的距离相等,此时点P表示的数为-7.(4)能.设经过x秒后P,Q两点之间的距离为4个单位长度,点P运动到点C需要[10-(-10)]÷1=20(秒).①当点Q未到达点C时,如图.此时AQ=3x,BP=x,则点Q表示的数为-24+3x,点P表示的数为-10+x,则PQ=|-10+x-(-24+3x)|=|14-2x|=4,即14-2x=4或14-2x=-4,解得x=5或x=9,所以点P表示的数为-5或-1.②当点Q从点C返回时,如图.此时AQ=AC-QC=|34-(3x-34)|=|68-3x|,BP=x,则点Q表示的数为-24+68-3x=-3x+44,点P表示的数为-10+x,则PQ=|-10+x-(-3x+44)|=|4x-54|=4,即4x-54=4或4x-54=-4,解得x=14.5或x=12.5,所以点P表示的数为4.5或12.5.综上所述,点P表示的数为-5,-1,2.5或4.5.。
新北师版初中数学七年级上册第二章有理数及其运算检测题2(2.1-2.6)和解析答案

第二章 有理数及其运算检测卷一、选择题1.计算:|-13|=( )A .3B .-3 C.13 D .-132.下列各数中,最小的数是( ) A .0 B.13C .-13 D .-33.计算(-2)+3的结果是( )A .1B .-1C .-5D .-6 4.下面说法正确的是( )A .两数之和不可能小于其中的一个加数B .两数相加就是它们的绝对值相加C .两个负数相加,和取负号,绝对值相减D .不是互为相反数的两个数,相加不能得零5.哈市某天的最高气温为28 ℃,最低气温为21 ℃,则这一天的最高气温与最低气温的差为( )A .5 ℃B .6 ℃C .7 ℃D .8 ℃ 6.下列各式中,其和等于4的是( ) A .(-114)+(-214)B .312-558-|-734|C .(-12)-(-34)+2D .(-34)+0.125-(-458)7.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图.则这4筐杨梅的总质量是( )A .19.7千克B .19.9千克C .20.1千克D .20.3千克8.已知有理数a ,b ,c 在数轴上的位置如图,则下列结论错误的是( )A .c -a <0B .b +c <0C .a +b -c <0D .|a +b |=a +b 二、填空题9.如果将低于警戒线水位0.27 m 记作-0.27 m ,那么+0.42 m 表示________________________. 10.按规定,食品包装袋上都应标明袋内装有食品多少克,下表是几种饼干的检验结果,“+”“-”号分别表示比标准重量多和少,用绝对值判断最符合标准的一种食品是________.11.从-5中减去-1,-3,2的和,所得的差是________.12.如果a 的相反数是最小的正整数,b 是绝对值最小的数,那么a +b =________,b -a =________.13.一只小虫从数轴上表示-1的点出发,先向左爬行2个单位长度,再向右爬行5个单位长度到点C ,则点C 表示的数是________.14.现有一列数:2,34,49,516,…,则第7个数为________.15.已知01=-x ,2=y ,则x -y =________.16.已知33+=+x x ,猜猜看x 是什么数?________.三、解答题17.将下列各数填在相应的集合里:+6,-2,-0.9,-15,1,35,0,314,0.63,-4.92.18.在数轴上表示下列各数:-12,|-2|,-(-3),0,52,-(+32),并用“<”将它们连接起来.19.计算: (1)(-10)+(+7);(2)(+52)-(-13);(3)12-(-18)+(-7)-15;(4)12+(-23)-(-45)+(-12)-(+13).20.一个水利勘察队,第一天沿江向上游走了7千米,第二天沿江向下游走了5.3千米,第三天沿江向下游走了6.5千米,第四天沿江向上游走了10千米,第四天勘察队在出发点的上游还是下游?距出发点多少千米?21.某自行车厂本周计划每天生产100辆自行车,由于工人实行轮休,每天上班人数不一定相等,实际每天产量与计划产量对比如下表:(超出的辆数为正数,不足的辆数为负数)五(1)本周总产量与计划产量相比,增加(或减少)了多少辆?(2)日平均产量与计划产量相比,增加(或减少)了多少辆?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新北师大版七年级数学上册第二章《有理数及其运算》水平测试
一、选一选,看完四个选项后再做决定呀!(每小题3分,共30分)
1.下列四个数中,在-2到0之间的数是( )
A .-1
B . 1
C .-3
D .3
2.下列各数中互为相反数的是( )
A .12-与0.2
B .13与-0.33
C .-2.25与124
D .5与-(-5) 3.对于(-2)4与-24,下列说法正确的是
( ) A .它们的意义相同
B .它的结果相等
C .它的意义不同,结果相等
D .它的意义不同,结果不等 4
A .哈尔滨
B .广州
C .武汉
D .北京
5.下列计算错误的是( )
A .0.14=0.0001
B .3÷9×(-
19)=-3 C .8÷(-14
)=-32 D .3×23=24 6.在数轴上与-3的距离等于4的点表示的数是 ( )
A .1
B .-7
C .1或-7
D .无数个
7.若x 是有理数,则x 2+1一定是( )
A.等于1
B.大于1
C.不小于1
D.不大于1
8.两个有理数的积是负数,和也是负数,那么这两个数( )
A. 都是负数
B. 其中绝对值大的数是正数,另一个是负数
C. 互为相反数
D. 其中绝对值大的数是负数,另一个是正数
9.一个有理数的绝对值等于其本身,这个数是( )
A 、正数
B 、非负数
C 、零
D 、负数
10.四个互不相等整数的积为9,则和为( )
A .9
B .6
C .0
D .3-
二、填一填,要相信自己的能力!(每小题3分,共30分)
1.若a 与-5互为相反数,则a =_________;若b 的绝对值是21-
,则b =_________. 2.用“<”“=”或“>”号填空:
-2_____0 98- _____10
9- -(+5) _____-(-|-5|) 3.计算:7
37()()848
-÷-= ;232(1)---= . 4.一天早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是________.
5.从数-6,1,-3,5,-2中任取二个数相乘,其积最小的是___________.
6.若a ,b 互为相反数,c ,d 互为倒数,m =2,则(a +b )·d
c +3c
d -m 2= . 7.如果n >0,那么n n
= ,如果
n n =-1,则n 0。
8.若有理数a 、b 满足()23120a b -+-=,则b a 的值为 .
9.如果定义新运算“※”,满足a ※b =a ×b -a ÷b ,那么1※2= .
10.任取四个1至13之间的自然数,将这四个数(且每个数只能用一次)进行“+、-、
×、÷”四则运算,使其结果为24.现有四个有理数:3,4,-6,10,运用上述规则,写出一个运算: .
三、做一做,要注意认真审题呀!(本大题共38分)
1.(8分)计算:
(1)
)75.2()412(21152--+--- (2)(-73)×(12-0.5)÷(-829)
(3)( 12-13)÷(-16)+(-2)2×(-14) (4)—14—〔1—(1—0.5×31)〕×6
3.(10分)小明的家、学校、书店同在一条马路上,如图,请你用学过的数学知识标明它们三者间的距离。
小明步行速度是5千米/小时,小明中午11:30放学,下午1:30上课,吃饭要用30分钟,中午他要到书店买完书再到校上课,选书时间是5分钟,请你帮他设计一下什么时间出发,上课才能不迟到?
书店 · · · 学校 小明家
4.(10分)某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向北方向为正,当天行驶纪录如下(单位:千米)
+10,-9,+7,-15,+6,-14,+4,-2
(1)A在岗亭何方?距岗亭多远?
(2)若摩托车行驶1千米耗油0.05升,这一天共耗油多少升?
5.(10分)观察下列解题过程:
计算:1+5+52+53+…+524+525的值.
解:设S=1+5+52+53+…+524+525,(1)
则5S=5+52+53+…+525+526(2)
(2)-(1),得4S=526-1
S=
41
526
通过阅读,你一定学会了一种解决问题的方法,请用你学到的方法计算:
(1)1+3+32+33+…+39+310
(2)1+x+x2+x3+…+x99+x100
四、拓广探索!(本大题共22分)
1.(10分)王叔叔家的装修工程接近尾声,油漆工程结束了,经统计,油漆工共做50工时,
用了150升油漆,已知油漆每升128元,共粉刷120平方米,在结算工钱时,有以下几种结算方案:
(1)按工时算,每6工时300元。
(2)按油漆费用来算,油漆费用的15%为工钱;(3)按粉刷面积来算,每6平方米132元。
请你帮王叔叔算一下,用哪种方案最省钱?
2.(12分)探索规律:将连续的偶2,4,6,8,…,排成如下表:
2 4 6 8 10
12 14 16 18 20
22 24 26 28 30
32 34 36 38 40
……
(1)十字框中的五个数的和与中间的数和16有什么关系?
(2)设中间的数为x ,用代数式表示十字框中的五个数的和;
(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于2010吗?如能,写出这五位数,如不能,说明理由。
参考答案
一、1~10 A CDAB CCDBC
二、1.5,
21; 2.<,>,<; 3.17
-,-3; 4.-3℃; 5.-30; 6.-1; 7.1,<; 8.91; 9.23; 10.答案不惟一,如3×[4+10+(-6)]等.
三、1.(1)5
3-; (2)0; (3)-57; (4)=-2. 2.只要设计符合实际情况就可以,如小明家到学校为0.5千米,学校到书店0.25千米,按要求他用的时间应为:(0.5+0.25×2)÷5×60+5=17(分钟),小明应在一点十三分前出发就不会迟到.
3.(1)-13,故A 在岗亭的南方,距离岗亭13千米;
(2)67千米,故这一天共耗油67×0.05=3.35升.
4.(1)41311-;(2)1
1101--x x . 四、1. 按工时算为:300÷6×50=2500元,
按油漆费用算为:128×150×15%=2880元,
按粉刷面积算为:132÷6×120=2640元
因此,按工时算最省钱.
2. (1)十字框中的五个数的和为6+14+16+18+26=80=16×5,即是16的5倍;
(2)设中间的数为x ,则十字框中的五个数的和为:
(x-10)+(x+10)+(x-2)+(x+2)+x=5x ,所以五个数的和为 5 x ;
(3) 假设能够框出满足条件的五个数,设中间的数为x ,由(2)得
5 x =2010 ,所以x=402,但402位于第41行的第一个数,在这个数的左边没有数,所以不能框住五个数,使它们的和等于2010.。