质谱仪使用说明

质谱仪使用说明
质谱仪使用说明

质谱仪使用说明

一、开机:

1、打开氦气(0.5-0.6mpa)、氢气(0.4-0.6mpa)、空气(0.4mpa)开关。

2、打开电脑开关,选择Administrator用户。

3、打开气相和质谱开关,等待质谱信号灯由红灯变为黄灯在闪烁。

4、等待电脑右下角通讯图标变为黄在色三角叹号,打开软件(Tubomass)点击OK进入主页面。

5、点击左侧眼镜图标(Tune page)进入协调界面。选择option---pump on(抽真空),改传输线温度(Inlet line Temp)为290度,离子源温度(Souse Temp)为220度,保存设置。(真空度抽好的标志,Diagnostics中Tubospeed示数为100,或红黄绿圆环中指针在绿色区域示数为4.0*e-5左右。等待10-30min,仪器稳定后。)

6、仪器检漏;在协调界面中,改示数如表中所示点击右下角Press for standby变为绿色,查看H2O%>N2%>O2%,并改变Gain值,观察峰形,峰形应该对称显示。点击右下角Press for standby变为红色关闭。【如果漏气如氮气峰搞特别高,水和氧气低则可能是管路中富集氮气,要松动氮气与仪器连接螺丝,用氦气冲管路大约1min;或者氮气氧气峰比水峰高,则紧一下柱箱中的四个螺丝。】

7、设置气相触屏:A-cap 温度为300度;Oven初始温度设为300度(目的老化柱子使仪器稳定);A-FID 温度为350度,等A-FID温度大于100度时,在tools--配置中设置氢气流量为45ml/min。手动点火(点火成功后,仪器信号值在1.5mv左右,注意观察仪器Ready,炉温300度下,看FID信号值波动情况,等20-30min信号值稳定后。)等主界面左侧General status变为No Method表示气相正常。

二、样品处理

1、在固相萃取柱中加入0.5mL 正戊烷。

2. 待正戊烷被固定相完全吸附后,用0.25mL 注射器吸取约0.1mL 试样滴入固相萃取柱中的筛板上。

3. 在固相萃取柱的样品出口下端放置一25mL 锥形瓶,依次用2mL 正戊烷和0.5mL 二氯甲烷与乙醇体积比为5:1 的混合溶液冲洗固定相,洗脱出其中吸附的饱和烃馏分,饱和烃馏分的洗脱液收集于此25mL 锥形瓶中。待所加入的0.5mL 二氯甲烷与乙醇体积比为5:1 的混合溶液刚刚完全进入固定相时,更换另一25mL 锥形瓶,再用2mL 二氯甲烷与乙醇体积比为5:1 的混合溶液冲洗固定相,洗脱出所吸附的芳烃馏分,芳烃组分洗脱液收集于此25mL 锥形瓶中。洗脱速度控制在约为2mL/min。

*注意:

1)固相萃取柱上方需加适配器用于溶剂加入和加压;

2)用玻璃注射器吸取相应体积体积的溶液通过适配器注入固相萃取柱;

3)待上次所加入的溶剂刚刚完全进入固定相时再加入下一种溶剂

4)可在固相萃取柱上部用注射器抽空气加压,以提高溶剂流出速度,但应保证溶

剂成滴流出;

5)用2mL 二氯甲烷与乙醇体积比为5:1 的混合溶液冲洗固定相萃取芳烃时,在固相萃取柱上部用注射器加压使固相萃取柱中的溶剂完全流出。

6)整个样品处理过程,不能使用塑料器具,以免影响结果。

4. 用移液管分别向接收有饱和烃和芳烃冲洗液的25mL 锥形瓶中准确加入1.00mL 内标溶液,摇匀。

内标溶液的制备方法:称取约0.1g 内标物(色谱纯的正三十烷或正三十二烷)溶解在150mL 正己烷中。

三、数据处理

新建序列时Files--Save as--名称

保存后,选中要发送的样品行,点击Start run --OK(强制停止时分三步,先点击Stop run ;再左下角框中击右键DeleteQueun;然后标题栏中GC-Stop run)

一个未知样品,经过前处理分离后将得到饱和烃和芳香烃两套样品,分别装入各自的进样小瓶上机测试。每个进样小瓶得到两套数据,分别是FID数据和MS数据。将饱和烃和芳香烃的FID数据导入石科院的RIPPMS软件,得到饱和烃和芳香烃在样品中的含量。然后将饱和烃和芳香烃的MS数据导入RIPPMS软件,得到多环芳烃在样品中的最终含量。

1、主界面中选择种要处理的样品行,点击(View Chromatogram)望远镜图标,查看MS图。

2、出现MS图拖住鼠标右键,从出峰到峰结束(内标峰之前),积分群峰。出现质谱棒状图,点击复制按钮,将数据粘贴到TXT文件中,保存,名称加-ms后缀,方便以后调用数据查找文件。

3、在群峰图中Dispiy--GC Detector Trace,调出FID谱图,点击OK,点击自动积分按钮,将谱图积分(注意查看样品峰积分,为完全积分,填充颜色区域为积分区域),Edit--Copy Detected Peaks,将数据粘贴到TXT文件中,保存,名称加-fid后缀,方便以后调用数据查找文件。

4、相同方式处理芳烃及饱和烃数据。

5、在桌面打开RIPPMS软件,点击Cov 准备导入饱和烃和芳烃各自的FID数据,计算各自在样品中的含量。输入样品在FID谱图中的出峰起始和终止时间(输入时间保证在溶剂峰之后,内标峰之前,一般3.5-9.5)

6、点击file,先调入饱和烃的FID数据--OK;调入芳烃的FID数据--OK。自动生成样品的饱和烃和芳烃各自含量。

7、将cov界面挪至一旁,然后点击RIPPMS软件的diesel,准备开始计算多环芳烃含量。点击“file”的“saturate”,调入饱和烃的MS数据,选中相应的样品饱和烃的MS txt文件,点击open,自动生成饱和烃中各个组分的含量(烷基苯Alkylbenzenes在饱和烃中的含量要求小于5%),然后点击“file”的“Aromatic”, 调入芳香烃的MS txt文件。自动生成芳烃中各个组分的含量。核对显示的数据与Cov界面中芳烃饱和烃数据相同。双环芳烃(Diaromatics)和三环芳烃(Tricyclic aromatics)的含量加和,即为最终的多环芳烃含量。

四、关机

1、降质谱协调界面参数,,改传输线温度(Inlet line Temp)为50度,离子源温度(Souse Temp)为50度,等实际温度降至100度以下,选择option---vent off(卸真空)。真空度Diagnostics 中Tubospeed示数为0,或红黄绿圆环中指针在红色区域最低端。

2、关FID 在主界面软件GC--release control--Yes。操作FID显示屏A-cap中加热器关闭;Oven中初始温度设为40(实际值降至100以内);A-FiD中TOOls--配制--A-FID吧氢气流量设为0---确定--关闭。点击A-FID中加热器关闭,等待温度降至100度以下。

3、关闭电脑软件,关闭仪器开关,关闭气源。

注意事项:

1、在自动进样器表盘内圈Wash1、2号位放置洗针液(二氯甲烷),在外圈1号位也放洗针液(二氯甲烷)。

2、序列顺序(长时间不用时)一般为2-3针空白(二氯甲烷),1针标品,1针空白,排样品,空白,标品,3-4针空白。

3、进样垫使用200次左右后要更换。

4、真空泵泵油半年左右更换一次。

5、长时间使用后要维护离子源。

6、先关电脑主机再关闭仪器

7、做完样后点击GC-relese control

8、点击开始后仪器没有开始运行点击GC-retry injection

气相色谱质谱联用仪期间核查操作规程

气相色谱质谱联用仪期间核查操作规程 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

气相色谱-质谱联用仪期间核查 操作规程 1 目的 为了确保气相色谱-质谱联用仪在仪器两次检定期间内处于正常状态,对仪器设备进行期间核查,以确保检测结果的准确性和有效性。 2 范围 适用于气相色谱-质谱联用仪的期间核查。 3 核查项目 分辨力、信噪比、质量准确性和测量重复性。 4 核查依据 JJF 1164-2006台式气相色谱-质谱联用仪校准规范。 5 核查方法 测定环境 环境温度:15℃~27℃;环境相对湿度:≤75%。 测定条件 色谱参数(参考条件) 色谱柱:DB-5MS 30m××,或其他类似色谱柱; 进样口温度:250℃; 传输线温度:250℃; 程序升温:八氟萘和苯甲酮,70℃(2min)10℃/min 220℃(5min);

六氯苯和硬脂酸甲酯,150℃ 10℃/min 250℃(5min); 进样方式:不分流进样; 进样量:; 载气:高纯氦; 流速:min,恒流或恒压。 注:当色谱柱不同时,柱箱温度可作相应改变。 质谱参数 离子化能量:70eV; 扫描范围:信噪比测试,m/z=200~300;质量准确性测试,m/z=20~350;重复性测试,m/z=200~300; 溶剂延迟:3min(或视具体情况而定); 离子源和四级杆温度根据厂家推荐值设定; 其他参数,如电子倍增器或光电倍增器工作电压,均以自动或手动调谐时确定的值作为校准参数。 6 期间核查项目 分辨力 仪器稳定后,执行Autotune命令进行自动调谐,直到调谐通过,打印调谐报告,得到半峰宽W 。 1/2 注: 1 调谐通常使用的样品为全氟三丁胺(FC-43); 2 也可以采用手动调谐; 。 3 对于不能打印调谐报告的仪器,可以根据调谐结果测量并计算半峰宽W 1/2 信噪比

(仅供参考)液相质谱联用仪 岛津LCMSMS-8040 简单操作流程 、

LCMS-8040 简单操作流程 版本:Version-LCMS001 1. 启动液质联用装置 接通电源: 确保质谱主机、液相色谱各单元和电脑已经接通电源(请务必确定电源的稳定和不会出现突然断电的情况!!),依次打开质谱主机、液相色谱各单元和电脑的电源开关(质谱主机电源键位于仪器背后的红色按钮,液相色谱各单元的电源开关位于各单元正面的左下方),此时,可观察到各单元的绿色指示灯依次亮起。 【注:若有某个单元的红色指示灯亮起,请及时联系岛津工程师进行处理】 质谱主机的开启: 1.1启动真空系统: 1.1.1 电脑开机完毕后,请确认电脑右下方的相关图标为绿色。 【注:如果该图标为黄色,说明系统正在启动,请稍等片刻。如果该图标为红色,表示有错误产生,请重启电脑。】 1.1. 2. 双击电脑桌面上的图标,等待,直到出现下面的界面: 1.1.3. 点击“OK”,启动分析程序。在新出现的窗口中点击左侧的“Instrument”,再双击右侧的对应的仪器型号图标。 1.1.4. 然后点击新窗口的左侧按钮“Data Acquisition”,再点击“main”按钮,然后再点击窗口 左侧最下方的按钮,此时,会出现“System Control”窗口:点击“Auto Startup”按钮,抽真空约10 分钟后可以开始进行分析实验。此时,质谱主机上的“STATUS”指示灯亮起,为绿色。如果需要得稳定测试结果,至少需要抽真空半天以上(最好抽真空过夜,16h以上)再进行测试。 1.1.5. 点击“Advanced”按钮,将CID GAS 右侧的“Open”按钮按下,以便打开碰撞气。

1.2日常开机: 【该操作是针对日常使用中,已经启动了真空系统的状态下启动仪器进行分析实验的操作】 1.2.1. 先接通液相色谱各单元的电源,开启液氮罐上的阀门和氩气钢瓶的总阀。检查液氮罐和氩气钢瓶的气体输出压力【氮气减压阀表头压力读数在690-800kPa,氩气减压阀表头压力读数在500kPa,即如钢瓶的表头黑色记号笔标记所示】,确认无误后。 1.2.2 将液相部分的A泵和B泵的旋转阀向左逆时针方向旋转90度,阀门于地面平行。点击A 泵、B泵及自动进样器上的purge键(A流动相为超纯水,B流动相为色谱级甲醇)。3 min后,A泵和B泵purge结束,将液相A泵和B泵的旋转阀向右顺时针方向旋转90度。 1.2.3. 等待自动进样器purge结束。 2.平衡色谱柱,准备分析实验 10%甲醇冲系统: 2.1. 更换A泵瓶中的10%的异丙醇。 2.2. 打开电脑电源,启动windows 系统,双击电脑桌面上的图标,等待,直到出现下面的界面: 2.3. 点击“OK”,启动分析程序。在新出现的窗口中点击左侧的“Instrument”,再双击左侧的控制液相部分的图标,如下图。 2. 4. 设置B相(甲醇)浓度为10%,流速设为0.1 mL/min。 2.5. 启动液相色谱各单元,并如下图所示点击LabSolutions 的各按钮,让仪器各部件开始工作。

浅谈质谱技术及其应用word精品

浅谈质谱技术及其应用 摘要:质谱分析灵敏度高,分析速度快,被广泛应用于化学,化工,环境,能源,医药,运动医学,刑事科学技术,生命科学,材料科学等各个领域。本文对质谱仪原理进行了介绍,并叙述了质谱仪的发展过程,对质谱仪技术在各个领域的应用进行了综述,并对其发展提出了展望。 关键词:质谱仪应用发展 1质谱技术 质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱法在一次分析中可提供丰富的结构信息,将分离技术与质谱法相结合是分离科学方法中的一项突破性进展。在众多的分析测试方法中,质谱学方法被认为是一种同时具备高特异性和高灵敏度且得到了广泛应用的普适性方法。 1.1质谱原理 质谱分析是一种测量离子质荷比(质量-电荷比)的分析方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。 1.2质谱技术的发展 1910年,英国剑桥卡文迪许实验室的汤姆逊研制出第一台现代意义上的质谱仪器。这台质谱仪的诞生,标志着科学研究的一个新领域一质谱学的开创。第一台质谱仪是英国科学家弗朗西斯阿斯顿于1919年制成的。阿斯顿用这台装置发现了多种元素同位素,研究了53个非放射性元素,发现了天然存在的287种核素中的212种,第一次证明原子质量亏损。他为此荣获1922年诺贝尔化学奖。1934年诞生的双聚焦质谱仪是质谱学发展的又一个里程碑。在此期间创立的离子光学理论为仪器的研制提供了理论依据。双聚焦仪器大大提高了仪器的分辨率,为精确原子量测定奠定了基础 1.3质谱技术的分类

气相色谱-串联质谱仪操作规程

气相色谱-串联质谱仪操作规程 一、概述 本规程对使用SCION 456 GC-TQ三重四级杆气相色谱质谱联用仪必须遵循的规则做了具体规定,以确保仪器的检测准确度和使用的稳定性。 二、使用要求 1、确保氦气表和氩气表压力正常。 2、确保电、气路正常连接。 三、操作程序 1、开机: 1)打开气源。将He和Ar气体气源,压力调节表数值(He:80 psi,Ar:40 psi)。2)开启GC及SCION TQ电源。 3)开启计算机,双击打开MS Workstation 8。待仪器与计算机完成联机后,于SCION TQ控制画面下,点选MS Setup。 4)双击桌面GC portal图标,点击Add Connection,输入IP address和Description,点OK。 5)点击Manifold,点击Evacuate,待Turbo Speed 达100%,且于MS Workstation Instrument Status下显示456及Scion TQ处于Ready状态,即完成开机步骤。2、调谐 1)待抽真空10min后,点击EI,根据实验要求设置Source Temp源温度和Transfer Temp传输线温度。 2)在调谐前首先检查点击MS Setup,在弹出界面下进行Air and water report,确认系统无漏气后进行调谐。 3)在MS Setup界面下点击Autotune,选择Q1 and Q3,点击Start开始调谐。4)当调谐完成后在下方Out栏里显示AutoTune is finished。 3、样品分析 1)在Method Editor 界面下进入实验方法编辑参数对话框,分别编辑GC和MS 的参数。

气质色谱-质谱联用仪GC-MS技术方案流程

气质色谱-质谱联用仪GC-MS 5977A高聚物分析仪 技术方案 中国石油集团西部钻探工程公司井下作业公司 2014年10月

一、概述 1、说明 本技术方案书规定了西部钻探井下公司研究所,购买的气质色谱-质谱联用仪GC-MS 5977A在硬件、软件、培训、售后技术支持等方面的最低技术要求,供货商所提供的产品必须全部达到这些技术指标。 2、气质色谱-质谱联用仪总体要求 2.1整体设计科学合理,安全可靠,技术在国际上处于领先水平,并且在国内外各领域应用广泛。 2.2测量精准度高,密封性能好;材质优良、耐腐蚀;气质联用仪、多功能裂解仪、GPC色谱以及各种仪表阀件等安装合理,便于操作;漆面光洁、无划痕;标牌位置合理,文字准确清晰。 2.3数据处理系统科学准确,便于升级。 2.4适用于油气田易燃易爆环境。 2.5气质色谱-质谱联用仪要求可准确完成对高分子聚合物的特征鉴别分析实验,为油田开发生产提供科学的检测依据。 二、工艺条件及选型 1.气相质谱联用仪:主机,质谱检测器,辅助EPC,分流/不分流进样口,裂解器,GPC液相色谱和化学工作站。 2.工作条件 电源:220V,50Hz 温度:操作环境15?C-35?C 湿度:操作状态25-50%,非操作状态10-90% 3. 技术性能 3.1 气相色谱 3.1.1 主机 3.1.1.1 电子流量控制(EPC):所有流量、压力均可以电子控制, 以提高重现性,13路电子流量控制 3.1.1.2 压力调节:0.001psi 3.1.1.3 保留时间重现性:<0.0008min,峰面积的重现性:<1% RSD 3.1.1.3 大气压力传感器补偿高度或环境变化 3.1.1.4 程序升压/升流:5阶 具有4种EPC操作模式:恒温,恒压,程序升压,程序升流 3.1.2 炉箱 3.1.2.1 操作温度:室温以上4?C至450?C

有机质谱仪及MS的发展与应用

有机质谱仪及MS的发展与应用 ……专业聂荣健学号:………指导老师:…… 摘要:质谱方法是一种有效的分离、分析方法。质谱仪器和光谱仪、色谱仪、核磁共振波谱仪等仪器,都是能用一台仪器分析多种物质的谱仪,都是不可缺少的近代分析仪器。有机质谱仪的应用是非常广泛的,特别是在化学及生物领域。本文介绍了质谱仪的主要组成离子进样系统及质量分析器,以及MS的发展与应用。 关键词:有机质谱离子进样系统质量分析器应用

Development and application of organic mass spectrometry and MS Name Nie Rongjian Abstract: Mass spectrometry method is an effective separation of analysis method. Mass spectrometer、 Optical measuring equipment、Chromatographic instrument、Nuclear magnetic resonance spectral instrument and so on are all the equipments that indispensability. Organic mass spectrometry has a very wide range of applications, especially in chemical and biological field. This article introduced the major composition of Mass spectrometry about Ion Injection system and Mass Analyzer and the development of MS. Key words:Organic Mass SpectrometryIon Injection System Mass Analyzer Application

气相色谱质谱联用仪仪器操作规程.doc

色谱-质谱联用仪 Gas Chromatography-Mass Spectrometer 一.型号:Trace DSQ高性能色/质联用仪 二.制造厂商:美国热电公司 三.主要技术指标: 质量范围:1-1050 amu 质量轴稳定度:0.1am u/12hrs 质量最快扫描速度:10,000amu/sec 柱箱最高使用温度:450℃ 灵敏度高:1pg/ul 升温速率:0.1℃到120℃/分钟 离子源的温度:100 ℃to 300℃,分度为0.1℃ 四.仪器特点和应用范围: Trace DSQ 高性能色/质联用仪,250L/sec分子涡轮泵,配备Trace气相色谱仪,Trace 气相色谱具有七阶八段温度程序控制柱箱。单四极杆质量分析器配备有预四极杆,质量数范围1-1050amu.最快扫描速度为10,000amu/sec,质量轴稳定度为0.1amu/12hrs,扫描模式包括全扫描、选择离子扫描(SIM)和全扫描、选择离子扫描(SIM)交替进行,每个采集段可最多有10次扫描。SIM模式每组可有24个质量数或质量数范围,最多可有100个SIM组。离子源是独立加热和控制以保证在任何模式下均最为优化的条件 色-质联机集高效分离、多组分同时定性和定量为一体,是分析混合物(主要是有机物)最为有效的工具。除了色-质联机共有的特点,本仪器还配置了顶空直接进样器和吹扫捕集装置,可不经预处理直接分析液态和固态样品中的挥发性有机物,简化的分析程序,节省了分析时间,提高了分析数据的可靠性。直接进样器可用于分析普通色质联机所不能分析的高沸点的有机物。

五.GC/MS 操作规程 开机步骤: 1.打开断电保护电源,开稳压电源,保持3-5分钟(在开稳压电源前保证其它仪器处于 关闭状态); 2.开载气(氦气),松开小阀,打开总阀,紧小阀为0.5mpa; 3.开气相色谱电源; 4.气相色谱自检; 5.将测试方法传到气相; 6.开质谱电源; 7.待Turbo pump RPM, Vaccum为OK, Fore pressure 为100 mttor以下后将离子源温度设为 250℃(instrument/set temperature); 8.待离子源温度达到250℃,Fore pressure 为50 mttor以下时可做样品; 9.experiment / full scan 选择质量数10-50 ,看水,氧气,氮气的比例,检测真空是否漏; 10.experiment / full scan 选择质量数50-650,看有机本底。 11.cal gas (全氟三丁胺,69,131,219,264,414,502,614),质量数在正负0.3内,则 可以; 12.tune/autotune(平常选择mass calibration 和maintenance; 初始调选择RF, DETECTOR,POSITIVE,FULL\OPTIMAL, LEAK)。 样品序列建立及样品分析 1. 在Xcalibur Roadmap 主页上, 点击Sequence Setup按钮, 建立样品序列; 2. 序列建立: A. 选择样品类型Sample Type: Unknown, QC, Blank, Std Bracket. B. 输入文件名称File Name: 可以手动输入, 也可点击鼠标右键浏览, 选择已经存在的文件的文件名; C. 设定文件保存路径Path: 双击鼠标左键(或者点击鼠标右键, 选择,设定文件保存路径; D. 选择分析方法Inst Meth: 双击鼠标左键(或者点击鼠标右键, 选择, 打开

液相色谱-质谱联用技术的发展与应用

液相色谱-质谱联用技术的发展与应用 摘要:本文主要介绍了液相色谱-质谱联用技术在药物分析、食品安全检测以及临床疾病诊断等方面的研究进展。 关键词:液相色谱—质谱联用;分析 液相色谱-质谱联用技术(LC-MS)是以质谱仪为检测手段,集HPLC高分离能力与MS高灵敏度和高选择性于一体的强有力分离分析方法[1]。特别是近年来,随着电喷雾、大气压化学电离等软电离技术的成熟,使得其定性定量分析结果更加可靠,同时,由于液相色谱-质谱联用技术对高沸点、难挥发和热不稳定化合物的分离和鉴定具有独特的优势,因此,它已成为中药制剂分析、药代动力学、食品安全检测和临床医药学研究等不可缺少的手段。 1 液相色谱-质谱联用技术的发展 1977年,LC-MS开始投放市场;1978年,LC-MS首次用于生物样品中的药物分析;1989年,LC-MS-MS取得成功;1991年,API LC-Ms用于药物开发;1997年,LC-MS用于药物动力学筛选;1999年,API Q-TOFLC-MS-MS投放市场,大气压离子化接口的应用,彻底改变了面貌,使其迅速成为制药工业中应用最广的分析仪器[2]。 2 液相色谱-质谱联用技术的应用 2.1在食品安全检测中的应用 随着人们的生活水平日益提高,对食品的营养性、保健性和安全性的关注均趋于理性化、科学化。国家对食品的监管也愈加重视起来,因此食品监督部门在食品检测中应用了一种准确的分析手段—高效液相色谱法(HPLC)。近几年发展起来的高效液相色谱-质谱联用技术(HPLC-MS),集液相色谱对复杂基体化合物的高分离能力和质谱独特的选择性、灵敏度、相对分子质量及结构信息于一体而广泛应用于食品检测方面,为食品工业中原材料筛选、生产过程中质量控制、成品质量检测等提供了有效的分析检测手段[3]。目前,LC-MS主要检测食品中农兽药的残留、食品中违禁物质和有害添加剂的检测、保健品中功效成分的检测等。该技术在食品分析检验方面具有十分广阔的前景。 2.1.1食品中农兽药残留的检测 食品及农产品的残留分析对灵敏度、重现性与选择性的要求非常高,常常需

气相色谱质谱联用仪操作规程(精)

气相色谱质谱联用仪操作规程(定性部分) 1.开机 ①打开高纯氦气钢瓶的阀门,调节出口压力为7kgf/cm2左右,然后依次打开GC 电源和MS 电源,点击软件[GCMS Real Time Analysis],选择用户名,登录后进入。②点击设定系统的配置。 ③点击 [Vacuum Control] 真空系统。 2. 调谐,在随即出现的对话框中点击 [Auto Startup],启动 ①点击[GCMS Real Time Analysis]辅助栏中的[Turing],打开调谐窗口。②真空稳定后,点击[Peak Monitor View],进行泄漏检验。 确认m/z18、m/z28、m/z32、m/z69的关系及确认是否漏气:通常 m/z18>m/z28,表示不漏气;如果m/z28的强度同时大于m/z18,m/z69的两倍,表明漏气。③点击[Auto Tuning Condition],设置调谐条件。 通常使用默认的条件。 ④点击[Start Auto Tuning],进行自动调谐。 ⑤结束后,输出调谐报告。

在调谐报告中确认峰形、半峰宽、基峰、检测器电压和m/z502的丰度等。一般的要求如下: 峰形:没有明显的分叉,峰形对称 半峰宽:m/z69、m/z219、m/z502的半峰宽与设定值相差0.1 基峰:在质谱图中,m/z28的强度在m/z69的50%以下 检测器电压:要求小于1.5Kv m/z502的丰度:大于2% 质量数准确性:质谱图中的测量值与标准值之间相差在0.1以内 ⑥点击[File],选择[Save Tuning File As],保存调谐文件。 ⑦关闭调谐画面。 ******************************************************************** **** 注:检查漏气的方法如 1. 点击Tuning 之中的Peak Monitor View 2. 在 Monitor Group 菜单里选择[water,air],同时确认检测器的电压是 0.7Kv 。 3. 打开灯丝,观察m/z18、m/z28和m/z32的强度。如果需要比较m/z69的强度,请先关闭灯丝,选择打开PFTBA ,等待10秒钟以上,再打开灯丝。将m/z32改成m/z69。如果发现有漏气的情况,将m/z69改成m/z43。 4. 使用石油醚,在怀疑有漏气的部位检查,如果有漏气,则m/z43的峰会非常大。 5. 确认漏气的部位,进行相应的处理。

质谱发展前景分析

质谱仪的应用范围非常广,涉及食品、环境、人类健康、药物、国家安全、和其他与分析测试相关的领域。现已成为最具发展前景的分析仪器之一,近几年全球市场需求增长率超过10%,中国市场的需求增长远甚至还要大于这个比例,质谱仪其在分析检测过程中准确的定性和定量能力而受到格外青睐。随着社会的发展,质谱仪已经成为了我们生活中常用的一种仪器产品了,我们的生活中却时常出现全质谱仪的身影。比如我们日常生活当中用过的很多东西都是经过质谱仪才能完成的,可以说质谱仪的出现改变了我们生活当中很多的东西,在无形当中给我们带来了生活当中的保护,也就是因为这个因素才促使了质谱仪在市场当中有着更稳定的客户。 有了这个因素之后那么就一定会出现各式各样的问题,其中最大也是最明显都就要数竞争了,竞争在每个行业当中都会出现,同样在质谱仪当中也会出现的,如果将它处理好的话,产品在未来的发展将会是一帆风顺,如果相反的话那么结果一定是被淘汰掉的,所以质谱仪想要有好的发展就一定要将这个问题处理好才能有更为好的发展,也会使质谱仪企业获胜的得到更好的发展。质谱仪则是在市场当中最为优秀的企业当中成长起来的,这也为其的发展奠定了良好的基础,质谱仪的质量更是企业发展的保证,只要我们将质谱仪的提升上去,相信其一定可以在众多的品牌当中脱引而出,最终成为最大的赢家。 以质量求生存以质量谋发展,一直以来都是质谱仪坚持的底线,我们一定要将此项做好,勇于创新制作出更多精良的产品,让市场接受我们,当然还是要得到消费者的喜爱才是最为重要的,质谱仪也会朝着这个目标不断的前进,让自己成为市场当中最为出色的产品。

基于质谱仪发展的质谱分析技术 席琳蒂娜(WSL) (天津师范大学物电学院,天津西青30038) 摘要:质谱分析法(Mass Spectroscopy)是利用电磁学原理,将化合物电离成具有不同质量的离子,然后按照其质荷比(m/z)的大小为序,依次排列成谱收集记录下来,然后利用收集的质谱进行定性定量分析及研究分子结构的方法。随着科学技术的发展质谱分析技术也在不断的发展 关键词:发展史质谱仪原理特点应用前景 引言:人类从很早以前就对物质的结构感兴趣,我们很想知道物质结构的特点它的成分, 因此一直在不断努力发明创造能够检测和观察物质结构分析物质结构的仪器。质谱分析技术是一种很重要的分析技术,它可以对样品中的有机化合物和无机化合物进行定性定量分析,同时它也是唯一能直接获得分子量及分子式的谱学方法。基于质朴分技术的特性它在化学生物学的很多领域都这广泛的应用。随着近代物理学、真空技术、材料科学、计算机及精密械等方面的进展,使质谱分析技术的应用领域不断地扩展。 正文: 一、发展史 质谱分析技术的发展里程要从质谱仪的发展开始。质谱仪器是一类将物质粒子(原子、分子)电离成离子,通过适当的稳定或变化的电磁场将他们按空间位置、时间先后等方式实现荷质比分离,并检测其强度来作定性定量分析的分析仪器。 1885年W.Wien在电场和磁场中实现了正粒子束的偏转。1912年J.J.Thompson使用磁偏仪证明氖有相对质量20和22的两种同位素。世界上第一台质谱仪是由J.Dempster和F.W.Aston于1919年制作的,用于测量某些同位素的相对丰度。 20世纪30年代,离子光学理论的发展,使得仪器性能在很大程度上得到改善,为精确测定相对原子质量奠定了基础。其中,Mattauch和R.Herzog在1935年首先阐述了双聚焦理论,然后根据这一理论制成了双聚焦质谱仪。在30年代末,由于石油工业的发展,需要测定油的成份。 40年代初开始将MS用于石油工业中烃的分析,并大缩短了分析时间。50年代初,质谱仪器开始商品化,并被广泛用于各类有机物的结构分析。同时质谱方法与NMR、IR等方法结合成为分子结构分析的最有效的手段。1960年对离子在磁场和电场中的运动轨迹,已发展到二级近似计算方法。1972年,T.Mastuo和H.Wollnik等合作完成了考虑边缘场的三级轨迹计算法。这些为质谱仪器的设计提供了强有力的计算手段。80年代新的质谱技术出现:快原子轰击电离子源,基质辅助激光解吸电离源,电喷雾电离源,大气压化学电离源;LC-MS联用仪,感应耦合等离子体质谱仪,富立叶变换质谱仪等。非挥发性或热不稳定分子的分析进一步促进了MS的发展;90年代,由于生物分析的需要,一些新的离子化方法得到快速发展;目前一些仪器联用技术如GC-MS,HPLC-MS,GC-MS-MS,ICP-MS等正大行其道。 我国解放前质谱技术处于空白。1969年,中国科学院上海冶金所、上海电子光学技术研究所、中国科学院科学仪器厂、北京分析仪器厂先后研制成功了双聚焦火花离子质谱仪。1975年,上海新跃仪表厂制成采用二次离子质谱技术的ZLF-300型直接成象离子分析

安捷伦气质联用仪操作规程

Agilent 7890 A/ 5975C气相色谱质谱联用仪操作规程1. 开机 1)打开载气钢瓶控制阀,设置分压阀压力至0.5Mpa 。 2) 打开计算机,登录进入Windows XP系统,初次开机时使用5975C的小键盘LCP输入IP地址和子网掩码,并使用新地址重起,否则安装并运行Bootp Service 。 3)依次打开7890AGC、5975MSD电源(若MSD真空腔内已无负压则应在打开MSD电源的同时用手向右侧推真空腔的侧板直至侧面板被紧固地吸牢),等待仪器自检完毕。 4)桌面双击GC-MS图标,进入MSD化学工作站 5)在上图仪器控制界面下,单击视图菜单,选择调谐及真空控制进入调谐与真空控制界面, 在真空菜单中选择真空状态,观察真空泵运行状态,此仪器真空泵配置为分子涡轮泵,状态显示涡轮泵转速涡轮泵转速应很快达到100 %,否则,说明系统有漏气,

应检查侧板是否压正、放空阀是否拧紧、柱子是否接好。 2. 调谐 调谐应在仪器至少开机2个小时后方可进行,若仪器长时间未开机为得到好的调谐结果将时间延长至4小时。 1)首先确认打印机已连好并处于联机状态。 2) 在操作系统桌面双击GC-MS图标进入工作站系统。 3)在上图仪器控制界面下,单击视图菜单,选择调谐及真空控制进入调谐与真空控制界面。 4) 单击调谐菜单,选择自动调谐调谐MSD,进行自动调谐,调谐结果自动打印。 5) 如果要手动保存或另存调谐参数,将调谐文件保存到atune.u中。 6) 然后点击视图然后选择仪器控制返回到仪器控制界面。 注意: 自动调谐文件名为ATUNE.U 标准谱图调谐文件名为STUNE.U 其余调谐方式有各自的文件名. 3. 样品测定 3.1 方法建立 1)7890A配置编辑 点击仪器菜单,选择编辑GC配置进入画面。在连接画面下,输入GC Name:GC 7890A;可在Notes处输入7890A的配置,写7890A GC with 5975C MSD。点击获得GC配置按钮获取7890A的配置。

液相-串联质谱仪操作规程

TSQ Quantum液相-串联质谱仪操作规程 1.目的:建立TSQ Quantum液相-串联质谱仪的操作规程,确保规范的使用。 2.依据:TSQ Quantum液相-串联质谱仪操作规程。 3.范围:适用于TSQ Quantum液相-串联质谱仪的操作管理。 4.责任:仪器使用人对本规程的实施负责,检验室主任负责监督本规程的正确 执行。 5.正文: 5.1开机方法 5.1.1打开质谱电源开关至ON状态,打开真空开关电源至ON状态; 5.1.2用放电针堵上离子传输毛细管; 5.1.3真空开关开启约一小时后,打开电子开关电源; 5.1.4打开数据处理系统,即打开计算机; 5.1.5计算机与仪器通讯正常后,双击桌面QuantumTune图标,打开调谐界面,点击心形图标,选择Vacuum项,检查仪器真空状态,当真空度低于5×10-6Mpa 时,进行参数的优化; 5.1.6质谱仪信号稳定以后,打开液相色谱泵、自动进样器开关; 5.1.7待各模块指示灯显示正常后,双击桌面LC-quan图标,进入仪器分析界面,5.1.8平衡系统后,设定色谱参数和质谱参数,设定样品序列表进行分析。 5.2化合物ESI/MS/MS质谱条件优化建立 5.2.1双击桌面图标,打开Quantum Tune Master 界面; 5.2.2在Tune Master 中界面上,选择菜单Workspace, 选择Compound Optimization Workspace 按钮,显示Compound Optimization 工作界面; 5.2.3设置优化参数:

5.2.3.1 选择Optimization Modes (优化模式): MS Only按钮; 5.2.3.2 选择Optimization Modes (优化模式):MS+MS/MS按钮; 5.2.3.3优化结束后, 选择Accept;并选择Save tune as , 保存质谱方法。 5.3化合物LC/MS/MS方法建立 在LC-quan分析系统主界面,选择Instruments,对仪器各模块(Accela As,TSQ quantum,Accela pump)条件按标准进行设置。 5.4样品序列建立及样品分析 在LC-quan分析系统主界面,选择Acquisition,进入界面后选择Setup,设置样品分析批顺序,点击Acquire运行批顺序。 5.5定量数据处理 5.5.1在LC-quan分析系统主界面,选择Quantitate,进入界面后选择Method,进行单个标准品的定性定量条件设置分析。选择sequence,进入界面,选择create按钮,把原始数据拖到相应的位置,进行survey观察批顺序分析结果。 5.6报告生成 5.6.1双击桌面Xcalibur图标,选择并打开所需的报告模板。 5.6.2点击Select Samples,选择要生成报告的数据文件,点击Add All按钮,点击OK即可。 5.7关机方法 5.7.1双击桌面TSQ图标,打开Quantum Tune Master界面,将质谱设置为待机Standby状态; 5.7.2先关闭电子开关、再关闭真空开关; 5.7.3大约3分钟后关闭质谱主电源开关, 5.7.4关闭液相各部分模块电源。

过程质谱仪的技术及应用

过程质谱仪技术及应用
上海舜宇恒平科学仪器有限公司

基本背景
z
在线分析:通过仪器对过程变化进行在线实时监控,检测特定化学物质或物理 状态,得到过程信息(如反应状态、速率、均匀性和浓度等) 传统气体成分在线分析:工业色谱、红外和其它单一的气体检测单元(紫外, 热导 磁氧) 存在分析速度慢 准确度差 系统集成化和自动化程度不高 热导,磁氧),存在分析速度慢、准确度差、系统集成化和自动化程度不高, 不能及时地反映过程的快速变化等问题 过程质谱:原理同实验室质谱。在过程检测中,由于质谱仪能够进行实时、多 过程质谱 原 同实验 质谱 在过程检测中 由 质谱仪能够进行实时 多 点、多组分检测,提供定性定量信息,具有灵敏度高、检测快速等优势,因此 越来越受到在线过程监控应用领域的重视。 应用领域:石油化工、半导体、冶金、环境、食品、催化和地质勘探等气相工 应用领域 石油化工 半导体 冶金 环境 食品 催化和地质勘探等气相工 业反应的监测。
z
z
z

主要内容
1 2 3 4 在线质谱技术 在线质谱应用 在线质谱仪系统 舜宇恒平在线质谱仪

在线质谱技术

质谱分析法
z
质谱,即质量的谱图,物质的分子在高真空下,经各种途径形成带电粒子(即 质谱 即质量的谱图 物质的分子在高真空下 经各种途径形成带电粒子(即 离子),某些带电粒子可进一步断裂。 每 离子的质量与所带电荷的比称为质荷比(m/z) 每一离子的质量与所带电荷的比称为质荷比 ( / )。 不同质荷比的离子经质量分离器分离后,由检测器测定每一离子的质荷比及强 度 由此得出的谱图称为质谱 度,由此得出的谱图称为质谱。
85
9500 9000 8500 8000 7500 7000 6500 6000 5500 5000 4500 4000 3500 3000 2500 2000 1500 1000 500 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105
z
z
O
CH3
41 56
27
67
100

质谱仪的历史与发展

质谱仪的历史与发展 质谱的发展与核物理的早期发展紧密相连,而核物理的早期发展又是建立在真空管气体放电的技术上。克鲁克斯管是从早期用的盖斯勒管改良而来的,它是一个内部抽成较低气压的玻璃管,两端装有电极,阴极和阳极之间可以产生10 -100千伏的高压。克鲁克斯管运行时的真空比0.1帕斯卡要低得多,这是射线管实验——特别是阳极射线研究的必备条件。许多基于克鲁克斯管的实验带来了原子和核物理方面开创性的研究成果。最著名的是在1895年由威廉·康拉德·伦琴发现x射线。不到年之后J.J.汤姆森通过对阴极射线在电场中的偏转分析和测量了电子的质荷比m / e。他发现了一种质量只有氢原子(当时已知的最轻的原子)的1/1800却带有一个单位负电荷的粒子,这是电子的发现。维恩在1898年通过对阳极射线的分析测量了氢原子核的质量,这是首次对质子的测量。 维恩和汤姆森正是质谱法的开创者 如图是1898年由维恩制造的第一台质谱实验装置。在一个气压很低的玻璃管中设置了阴极A和阳极 a用来产生阳极射线,然后射线会经过平行的电极缝, 同时b区域的真空管外也覆盖了电极用来屏蔽磁场。 在真空管c区域内,除了磁极间的平行磁场外在垂直 射线和磁场方向设置了平行电场来分析离子束。在电 场和磁场的作用下,只有特定速度(v=E/B)的离子 可以到达真空管末端,这就是我们现在所说的速度选

择器。这个装置的长度只有5厘米。维恩利用它从阳极射线中选出特定速度的离子进行研究,测量了氢原子核(当时维恩并不知道这是氢原子核)的荷质比,并研究了其他一些更重的离子。但直到1919年卢瑟福的系列工作之后才正式宣判了质子的发现。 尽管如此,正如J.J.汤姆森所说,维恩是第一个是用磁场偏转来分析离子束性质的科学家。不过真正意义上的质谱法的诞生还要归功于1907年汤姆森本人的实验。 上图是汤姆森在剑桥搭建的第一台质谱仪的实物和原理。他同样采用阳极C把放电区和测量区分开,放电区冲入少量的某种气体,阳极和阴极之间加有30-50千伏的电压。同样为了屏蔽磁场的干扰,在放电区的外面放置了金属的隔离罩W。放电区电极C中间是一个6cm 长,内径从0.5mm到0.1mm的准直孔,用一个非常精巧的毛细玻璃管F和测量区相连。气体在放电区电离出离子,并且在高电场下获得很快的速度,最后沿着毛细玻璃管以很窄的一束射入抽真空的测量区。测量区内安装了两块平行的电极A,并且外部有一组磁极P提供磁场。与维恩的实验不同,这里磁场和电场的方向是平行的。经过偏转的离

质谱操作规程及维护

质谱操作规程及维护

LC/MS/MS操作规程及维护 一、3Q 仪器开关机步骤 (一)开机顺序: 1.打开机械泵上的电源开关。 2.机械泵继续工作至少15分钟。 3.打开仪器电源主开关。 4.等系统真空到达1-2 x 10-5 Torr 后才可以正常操作仪器扫描。API-150/165 2-4 x 10-5. Q-Trap 检查低/中/高设定在2/3/4 x 10-5。 5、打开电脑开关,进入Windows 桌面,双击Analyst ,进入Analyst分析界面。(二)关机顺序 1.关掉仪器电源主开关停止真空泵系统。 2.机械泵继续工作至少15分钟。 3.关掉机械泵上的电源开关。 4.等至少10分钟让仪器“自然”卸真空。 5.通过仪器后部真空管的接口卸掉全部真空。 API-2000/3200 & Q-Trap经放气口卸真空。 注意: 以上操作程序适用于停机时间少于24-48小时的仪器或配置TW700分子泵的API4000在仪器安装或TW700分子泵更换后的首次开机操作。对于API3000及配置TV801分子泵的API4000在仪器安装或TV801 或V550plus / V551分子泵更换后的首次开机操作,必须首先进行相应的分子泵软启动操作程序。 I. PPG质量校准 1手动质量校准 1-1 开软件,连机,进入手动调谐状态,调用己有的质量校准方法 1-2 进质量校准溶液,调离子源喷雾针位置 1-3 采集PPG标准品质谱数据 1-4 质量校准数据计算 1-5 手动调整分辨率 1-6 质量校准 2自动质量校准 2-1 自动质量校准的设定 2-2 自动优化结果 II A.针泵进样ESI源MS-MS 方法手动优化 1. 先确定母离子: Q1 单级质谱实验(Q1全扫描) 2.Product Ion Scan(碎片离子扫描) 3. 碎片离子扫描之CE单参数寻优 4. Precursor Ion Scan(母离子扫描) 5. Neutral Loss Experiment(中性丢失扫描) II B. 针泵进样ESI源MRM定量方法手动优化

质谱仪原理

王俊朋6 我的主页帐号设置退出儒生一级|消息私信通知|我的百科我的贡献草稿箱我的任务为我推荐|百度首页新闻网页贴吧知道音乐图片视频地图百科文库 帮助首页自然文化地理历史生活社会艺术人物经济科技体育图片数字博物馆核心用户百科商城秦始皇兵马俑博物馆 质谱仪 求助编辑百科名片 CHY-2质谱仪质谱仪又称质谱计。分离和检测不同同位素的仪器。即根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。 目录 质谱仪原理 质谱仪简介 用法 有机质谱仪 无机质谱仪 同位素质谱仪 离子探针 编辑本段质谱仪原理质谱仪能用高能电子流等轰击样品分子,使该分子失去电子变为带正电荷的分子离子和碎片离子。这些不同离子具有不同的质量,质量不同的离子在磁场的作用下到达检测器的时间不同,其结果为质谱图。 原理公式:q/m=2v/B2r2 编辑本段质谱仪简介 质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/e大小分离的装置。分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。离子源、质量分析器和离子检测器都各有多种类型。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪;按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。 编辑本段用法分离和检测不同同位素的仪器。仪器的主要装置放在真空中。将物质气化、电离成离子束,经电压加速和聚焦,然后通过磁场电场区,不同质量的离子受到磁场电场的偏转不同,聚焦在不同的位置,从而获得不同同位素的质量谱。质谱方法最早于1913年由J.J.汤姆孙确定,以后经 F.W.阿斯顿等人改进完善。现代质谱仪经过不断改进,仍然利用电磁学原理,使离子束按荷质比分离。质谱仪的性能指标是它的分辨率,如果质谱仪恰能分辨质量m和m+Δm,分辨率定义为m/Δm。现代质谱仪的分辨率达105 ~106 量级,可测量原子质量精确到小数点后7位数字。 质谱仪最重要的应用是分离同位素并测定它们的原子质量及相对丰度。测定原子质量的精度超过化学测量方法,大约2/3以上的原子的精确质量是用质谱方法测定的。由于质量和能量的当量关系,由此可得到有关核结构与核结合能的知识。对于可通过矿石中提取的放射性衰变产物元素的分析测量,可确定矿石的地质年代。质谱方法还可用于有机化学分析,特别是微量杂质分析,测量分子的分子量,为确定化合物的分子式和分子结构提供可靠的依据。由

NexION350X-电感耦合等离子质谱仪操作规程

NexION350X电感耦合等离子体质谱仪操作规程(SOP) 1. 目的:规范NexION350X型电感耦合等离子体质谱仪的操作,确保检测设备安全稳定的运行。 2. 范围:适用于NexION350X型电感耦合等离子体质谱仪的操作使用。 3. 职责:检验员负责本规程的执行。 4. 操作步骤 4.1 开机前检查与准备 4.1.1确认仪器供电系统正常。 4.1.2 打开排风系统,确认排风系统正常(风速9~11米/秒)。 4.1.3确认仪器气路系统(氩气)正常,打开氩气。 纯度(Ar > 99.996%),准备充足的工作气体(氩气:一个40L钢瓶气的使用时间大约为4~5小时),检查次级气体压力(氩气95~100 psi ),总压<2Mpa时需更换气瓶。 注:当采用碰撞模式时,氦气减压表流量调节(红表调至120~130 psi,小开关打开,黑表18 psi)4.2 开机 4.2.1 开电脑主机、显示器。 4.2.2 开NexION 仪器开关。主机电源Instrument,RF电源RGF。仪器左侧面板包括三个开关,分别是主机电源(Instrument)开关,RF电源(RGF)开关以及真空(V acuum)开关。打开真空泵电源开关。 4.2.3 开启真空:通过NexION软件。双击进入NexION软件,单击单击“Main”菜单下的“V acuum”的“start”,仪器开始抽真空。当工作站主界面的真空压力达到9×10-7时,且仪器真空达到绿色“ready”状态后,仪器准备就绪(当真空度达到后,而仪器待机不进样,可暂时关闭氩气)。 4.2.4 确认蠕动泵管完好、并且连接正常 如果出现明显的磨损,或者破裂则需要更换泵管。更换泵管后注意蠕动泵的转动方向。可通过单击“peristaltic” “Fast”,观察连接管路,确定进液和排液正确。 4.2.5 打开炬箱,确认炬管、线圈、锥、垫圈等完好正常 打开ICP-MS顶盖,支起支架;在ICP-MS左侧面板上按下Cone Access按钮或点击

离子阱质谱仪使用流程

液质联用离子阱质谱仪使用流程 1. 使用质谱须知 在使用质谱仪前请确认并检查以下条件: ● 仪器已经正确安装并且经过厂商工程师的检测; ● 质谱仪属于精密贵重仪器,未经专门培训人员不得擅自开启使用,更不 得随意“调校”氮气和氦气压力或更改仪器参数等; ● 检查液氮罐和氦气钢瓶是否有一定压力,以便为测试样品提供符合流速 和压力要求的氮气(喷雾气体和干燥气体)和氦气(碰撞气体); ● 常规ESI源已安装完毕 ● 样品溶液必须澄清透明,不含有固体微粒,不得将粗提物直接用于测定, 以免堵塞喷雾针或者污染毛细管。测试用的液相溶剂体系不得含有不挥 发性的酸、碱、盐。 2. 测样前仪器准备 2.1 启动trapcontrol软件 2.1.1. 单击桌面图标或者通过程序目录启动trapcontrol软件; Start – Programs – Bruker Daltonics – esquireControl 软件可能要求输入操作人员的姓名。

2.1.2. 选择软件中质谱仪处于操作状态 2.1. 3. 调用方法: Method -> Open -> DEFAULT.ms 3. 测样方式——直接进样测定部分 对于标准品或相对较纯或混合组分较少并且不含盐的药物样品,如果仅需要进行鉴定,可以采用直接进样方法测定。 3.1 样品用标准溶剂(50%H2O,50%乙腈或甲醇,0.1%甲酸)溶解或稀

释 3.2 将配好的样品或标准品吸入进样器(针),将进样器(针)放置于进样 泵中。注意:进样器(针)内不能有气泡 3.3 将进样器(针)直接与离子源连接(如图) 注意毛细管与注射器之间需紧密连接。进样器内不能有气泡 3.4 设置进样泵的流速为120~180微升/小时 3.5 参数调节,初学者建议采用Tune -> Smart 模式,调节下图蓝色标识部 分。 A 雾化气、干燥气流量和温度,建议以下列值为基准调节: Nebulizer 5 psi – 15 psi Dry Gas 5 l/min Dry Temp 300 °C B 设置正负离子模式,或者正负离子交替模式。

相关文档
最新文档