人教版高中数学选修2-3离散型随机变量及其分布列教师版
人教课标版高中数学选修2-3《离散型随机变量的分布列》参考课件

1. 随机变量 如果随机试验的结果可以用一个变量来表示,(或
随着试验结果变化而变化的变量),那么这样的变量 叫做随机变量.
随机变量常用希腊字母X、Y、ξ、η等表示。
2. 离散型随机变量 所有取值可以一一列出的随机变量,称为离散型随
机变量。
如果随机变量可能取的值是某个区间的一切值,这 样的随机变量叫做连续型随机变量.
分布列的是( B )
A
0
1
P
0.6 0.3
B
0
1
2
P 0.9025 0.095 0.0025
C 0 1 2 …n D 0 1 2 … n
P 1 1 1 …1
2 48
2n1
P
1 3
12 33
1 3
2 3
2
…
1 3
2 3
n
2、设随机变量
的分布列为
P(
ቤተ መጻሕፍቲ ባይዱ
i)
a
1
i
,
i
1,2,3
则 a的值
27
ξ 2 3 4 5 6 7 8 9 10 11 12
p
1 36
2 36
34 36 36
5 36
6 36
5 36
4 36
32 36 36
1 36
例1:某一射手射击所得环数ξ 的分布列如下:
ξ 4 5 6 7 8 9 10 P 0.02 0.04 0.06 0.09 0.28 0.29 0.22
求此射手”射击一次命中环数≥7”的概率. 分析: ”射击一次命中环数≥7”是指互斥事
3
为
. 13
课堂练习:
3、设随机变量的分布列如下:
最新人教版高中数学选修2-3《离散型随机变量及其分布》示范教案

第二章随机变量及其分布本章概览课标要求1.离散型随机变量及其分布列(1)在对具体问题的分析中,理解取有限值的离散型随机变量及其分布列的概念,认识分布列对于刻画随机现象的重要性.(2)通过实例(如彩票抽奖),理解超几何分布及其导出过程,并能进行简单的应用.2.二项分布及其应用在具体情境中,了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.3.离散型随机变量的均值与方差通过实例,理解取有限值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.4.正态分布通过实际问题,借助直观(如实际问题的直观图),认识正态分布、正态密度曲线的特点及曲线所表示的意义.内容概述教学建议1.在教学过程中要交代引入随机变量的原因(章引言中);2.通过与函数的比较加深对随机变量的理解;3.在介绍有关随机变量的概念过程中,重点在于概念的理解及应用,不宜引入过于复杂的计算,以免喧宾夺主;4.注意产生超几何分布与二项分布的背景差别,以帮助学生更好地理解两个模型以及两个事件间独立性的概念.超几何分布:从a个红球和b个黑球中,不放回摸出m个球中的红球个数,结果导致“第i次摸出红球”与“第j次摸出红球”不相互独立(i≠j);二项分布:从a个红球和b个黑球中,有放回摸出m个球中的红球个数,结果导致“第i次摸出红球”与“第j次摸出红球”相互独立(i≠j).5.注意解释随机变量与样本均值(方差)的关系:两者都表示各自的平均位置(变化剧烈程度);样本均值(方差)是随机变量,具有随机性,而随机变量的均值(方差)是实数,没有随机性;样本均值(方差)的极限是总体均值(方差).6.在高尔顿钉板试验中,课文中说“随着试验次数的增加,这个频率直方图的形状会越来越像一条钟形曲线”的含义为:随着试验次数的增加,这个频率直方图的形状会越来越接近于钟形曲线的离散化.课时安排全章共安排了4个小节,教学约需9课时,具体内容和课时分配如下(仅供参考):2.1离散型随机变量及其分布列约2课时2.2二项分布及其应用约3课时2.3离散型随机变量的均值与方差约2课时2.4正态分布约1课时习题课约1课时2.1离散型随机变量及其分布列2.1.1离散型随机变量整体设计教材分析本章是在初中“统计初步”和高中必修课“概率”的基础上,学习随机变量和分布列的一些知识.学习这些知识后,学生将能解决类似引言中的一些实际问题.随机变量在概率统计研究中起着极其重要的作用,随机变量是用来描述随机现象的结果的一类特殊的变量,随机变量能够反映随机现象的共性,有关随机变量的结论可以应用到具有不同背景的实际问题中.随机变量就是建立了一个从随机试验结果的集合到实数集合的映射,这与函数概念在本质上(一种对应关系)是一致的.随机试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.离散型随机变量是最简单的随机变量,随机变量和离散型随机变量是上、下位概念的关系.本节课主要通过离散型随机变量展示用实数空间刻画随机现象的方法.重点是怎样用数学的方法来研究随机事件(即先把随机事件映射成随机变量,建立随机变量X与随机事件发生的概率P之间的函数关系,用研究函数的方法来研究随机变量),并在此过程中深刻体会和领悟随机变量在研究随机现象中的工具和桥梁作用.课时分配1课时教学目标知识与技能1.理解随机变量的意义;2.学会区分离散型与非离散型随机变量,并能举出离散型随机变量的例子;3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量.过程与方法发展抽象、概括能力,提高解决实际问题的能力.情感、态度与价值观使学生感悟数学与生活的和谐之美,体现数学的文化功能与人文价值.重点难点教学重点:随机变量、离散型随机变量、连续型随机变量的意义.教学难点:随机变量、离散型随机变量、连续型随机变量的意义.教学过程引入新课统计表明:商场内的促销活动可获得经济效益2万元;商场外的促销活动,如果不遇雨天则带来经济效益10万元,如果遇到雨天则带来经济损失4万元.假设国庆节有雨的概率是40%,请问商场应该选择哪种促销方式较好?为了解决类似问题,从今天开始学习本章内容——随机变量及其分布列.设计意图:设置悬念,营造一种神秘气氛,容易吸引学生注意力,调动学生学习兴趣,揭示随机变量的分布列的客观存在性和研究它的必要性,点出了本章内容.活动设计:复习回顾概率有关知识.概率是描述在一次随机试验中的某个随机事件发生可能性大小的度量.随机试验是指满足下列三个条件的试验:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.(本部分可由教师提示、学生完成)提出问题:同学们能举出一些随机试验的例子吗?并说明该随机试验的所有可能结果.学情预测:学生容易举出抛硬币、掷骰子等试验,然后教师可根据例子实施引导、启发.活动结果:(以下为可能出现的例子)掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示;某人射击一次,可能出现命中0环,命中1环,…,命中10环等结果,即可能出现的结果可以由0,1,…,10这11个数表示;从装有4个黑球,3个红球的篮子中任意拿出2个球,可能出现哪些情况?提出问题:这些随机试验,有哪些共同点?活动结果:随机试验中可能出现的每种结果都可以用一个数来表示.(由学生完成)探究新知提出问题:掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢?学情预测:此时有的学生会产生疑虑,不敢作答,教师根据学情引导.活动结果:抛一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和0分别表示正面向上和反面向上.(也可用另外两个数如1、2分别表示正面向上和反面向上,通过准确、恰当的抽象,可使问题简单化,这正是数学的魅力所在)教师指出:在前面掷骰子和抛硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.(给出定义)定义1:随着试验结果变化而变化的变量称为随机变量.随机变量常用字母X,Y,ξ,η,…表示.随机变量ξ或η的特点:(1)可以用数表示;(2)试验之前可以判断其可能出现的所有值;(3)在试验之前不可能确定取何值.提出问题:随机变量和高一学习的什么概念有类似的地方吗?(函数或映射)活动结果:随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.(学生为主,教师完善)教师:例如,从含有4个黑球3个红球的篮子中,任意抽取两个球,可能含有的红球数X将随着抽取结果的变化而变化,是一个随机变量,其取值范围是{0,1,2}.提出问题:利用随机变量可以表达一些事件.例如{X=0}表示“抽出两个黑球”,{X=2}表示“抽出2个红球”等.你能说出{X<1}在这里表示什么事件吗?“抽出1个以上黑球”又如何用X表示呢?(学生基本能顺利完成)教师指出:红球数X是一个随机变量,其取值是0、1、2,可以一一列举(给出定义).定义2:所有取值可以一一列出的随机变量,称为离散型随机变量.提出问题:离散型随机变量的例子很多.例如某人一分钟内眨眼次数X是一个离散型随机变量,它的所有可能取值为0,1,2…;同学们还能举出哪些例子?学情分析:有的学生在举例时会错举出一个连续型随机变量来,借机发问,例如:提出问题:灯泡的使用寿命X是离散型随机变量吗?活动结果:灯泡的使用寿命X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以X 不是离散型随机变量.定义3:连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.提出问题:同学们还能举出哪些例子?活动结果:如某林场树木最高达30米,则林场树木的高度是一个随机变量,它可以取(0,30]内的一切值(或者其他).教师指出:在研究随机现象时,有时可根据需要恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否不少于1 000小时,那么就可以定义如下的随机变量:Y =⎩⎪⎨⎪⎧0,寿命<1 000小时;1,寿命≥1 000小时. 与电灯泡的寿命X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易.提出问题:同学们还能举出哪些离散型或连续型随机变量的例子?你能否总结出二者的区别与联系?活动结果:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出(由学生完成).理解新知教师进一步指出:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达,如投掷一枚硬币,ξ=0,表示正面向上,ξ=1,表示反面向上.(2)若ξ是随机变量,η=aξ+b ,a ,b 是常数,则η也是随机变量.(可通过拓展练习来说明)运用新知例1一袋中装有5只同样大小的白球,编号为1,2,3,4,5.现从该袋内随机取出3只球,被取出的球的最大号码数ξ;写出随机变量ξ可能取的值,并说明随机变量所取的值表示的随机试验的结果.解:(1)ξ可取3,4,5.ξ=3,表示取出的3个球的编号为1,2,3;ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3,5或3,4,5.例2抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ>4”表示的试验结果是什么?解:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”.所以,“ξ>4”表示第一枚为6点,第二枚为1点.【变练演编】写出某用户的电话在单位时间内收到的呼叫次数η的可能值.解:η可取0,1,…,n ,….η=i ,表示被呼叫i 次,其中i =0,1,2,….变式:一用户在打电话时忘记了最后3个号码,只记得最后3个数两两不同,且都大于5.于是他随机拨最后3个数(两两不同),设他拨到正确号码的次数为X ,写出随机变量X 的可能值.解:X 可取1,2,3, (24)【达标检测】1.有下列问题:①某路口一天经过的车辆数为ξ;②某地半年内下雨的次数为ξ;③一天之内的温度为ξ;④某人一生中的身高为ξ;⑤射击运动员对某目标进行射击,击中目标得1分,未击中目标得0分,用ξ表示运动员在射击中的得分.上述问题中的ξ是离散型随机变量的是( )A .①②③⑤B .①②④C .①D .①②⑤2.随机变量ξ的所有可能取值为1,2,…,n ,若P(ξ<4)=0.3,则( )A .n =3B .n =4C .n =10D .不能确定3.抛掷两次骰子,两次点数的和不等于8的概率为( )A.1112B.3136C.536D.112答案:1.D 2.C 3.B课堂小结1.离散型随机变量、连续型随机变量的概念;2.随机变量ξ是关于试验结果的映射,即每一个试验结果对应着一个实数;3.随机变量ξ的线性组合η=aξ+b(其中a 、b 是常数)也是随机变量.补充练习【基础练习】1.写出下列各随机变量可能的取值:(1)从10张已编号的卡片(从1号到10号)中任取1张,被取出的卡片的号数X.解:X =1,2,3, (10)(2)某一自动装置无故障运转的时间ξ.解:ξ取(0,+∞)内的一切值.【拓展练习】某城市出租汽车的起步价为10元,行驶路程不超出4 km ,则按10元的标准收租车费.若行驶路程超出4 km ,则按每超出1 km 加收2元计费(超出不足1 km 的部分按1 km 计).从这个城市的民航机场到某宾馆的路程为15 km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按1 km 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费η也是一个随机变量.(1)求租车费η关于行车路程ξ的关系式;(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15 km ,问出租车在途中因故停车累计最多几分钟?解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2.(2)由38=2ξ+2,得ξ=18,5×(18-15)=15.所以,出租车在途中因故停车累计最多15分钟.设计说明本节主要采用教师提出问题引导,学生思考归纳的形式,让学生经历概念的形成过程,避免了以往由老师叙述概念条文,然后讲解例题的教学模式,以实际问题为向导,引导学生分析问题、归纳问题的共性,提炼出随机变量的概念.备课资料备选例题:1.把一枚硬币先后抛掷两次,如果出现两个正面得5分,出现两个反面得-3分,其他结果得0分,用X表示得分的分值,列表写出可能出现的结果与对应的X值.解:2.写出下列各随机变量可能取的值,并说明随机变量所取的值所表示的随机试验的结果:(1)从一个装有编号为1号到10号的10个球的袋中,任取1球,被取出的球的编号为X;解:ξ可取1,2, (10)(2)一个袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X;解:X可取0,1,2,3,4.(3)投掷两枚骰子,所得点数之和为X,所得点数之和是偶数为Y.解:X可取2,3,4,5,6,7,8,9,10,11,12.Y可取2,4,6,8,10,12.(设计者:王宏东李王梅)。
2019人教A版高中数学选修2-3 2.1.2离散型随机变量的分布列教学课件 (共21张PPT)教育精品.ppt

CNn
CNn
C C m nm M NM CNn
为 超 几 何 分 布 列.如果随机变量X的分布列为
超几何分布列 , 则称随机变量 X服 从 超 几 何 分
布
注:⑴超几何分布模型是不放回抽样 ⑵超几何分布中的参数 是M,N,n,变量是X
变式:从装有 3 个红球,2 个白球的袋中随机取出 3 个 球,设其中有X个红球,求X的分布列.
2.1.2离散型随机变量 的分布列
莱西市实验学校 吕淑丽
离散型随机变量的分布列是 高中阶段的重点内容,它作为概 率与统计的桥梁与纽带,是本章 的关键知识之一,也是第三节离 散型随机变量的均值和方差的基 础。从近几年的高考观察,这部 分内容有加强命题的趋势。2016、 2017年全国高考都考了分布列解 答题。
解:X的取值有1、2、3、4、5、6 则P(X=1)=1/6, P(X=2)=1/6,
P(X=3)=1/6, P(X=4)=1/6, P(X=5)=1/6, P(X=6)=1/6 列成表格形式为 表2 1
X
1
2
3
4
5
6
1
1
1
1
1
1
P
6
6
6
6
6
6
4、求离散型随机变量的分布列的步骤:
(1)找出随机变量ξ的所有可能的取值(明确随机变量的具体取
1、设某项试验的成功率是失败率的2倍,用随机变量 X描述一次该项试验的成功次数,则P(X=0)=( 1/3 )
2、由经验得知:在人民商场付款处排队等候付款的人数X及 其概率分布表如下:
X0
1
P 0.10 a
2
3
4
5
0.30 0.30 0.10 0.04
高中数学选修2-3 第二章随机变量及其分布 2-1-2离散型随机变量的分布列

所以随机变量ξ的分布列为:
ξ3
4
5
6
P
1 20
3 20
3 10
1 2
[规律方法] 1.确定离散型随机变量ξ的分布列的关键是 要搞清ξ取每一个值对应的随机事件,进一步利用排列、组 合知识求出ξ取每一个值的概率.对于随机变量ξ取值较多或 无穷多时,应由简单情况先导出一般的通式,从而简化过 程.
2.一般分布列的求法分三步:(1)首先确定随机变量ξ的 取值有哪些;(2)求出每种取值下的随机事件的概率;(3)列 表对应,即为分布列.
人教版高中数学选修2-3 第二章 随机变量及其分布
2.1.2 离散型随机变量的分布列
课前预习
1.抛掷一个骰子,用X表示骰子向上一面的点数. [问题1] X的可能取值是什么? [提示] X=1、2、3、4、5、6. [问题2] X取不同值时,其概率分别是多少? [提示] 都等于16.
2.一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3 只,以ξ表示取出的3只球中的最小号码.
特别提醒: 两点分布的试验结果只有两个可能性,且 其概率之和为1.
2.解决超几何分布问题的关注点 (1)超几何分布是概率分布的一种形式,一定要注意公 式中字母的范围及其意义,解决问题时可以直接利用公式求 解,但不能机械地记忆; (2)超几何分布中,只要知道M,N,n就可以利用公式 求出X取不同m的概率P(X=m),从而求出X的分布列.
课堂练习
1.下列表中能成为随机变量X的分布列的是( )
A. X -1
0
1
P -0.1 0.5 0.6
B. X -1
0
1
P 0.3 0.7 -0.1
C. X
-1
0
人教课标版高中数学选修2-3《离散型随机变量及其分布列(第2课时)》名师课件

知识回顾 问题探究 课堂小结 随堂检测
检测下预习效果:
点击“随堂训练” 选择“《离散型随机变量及其分布列(第2课时)》预习自测”
知识回顾 问题探究 课堂小结 随堂检测
探究一:两点分布的概念、分布列及其特征★ ●活动一 透过掷骰子看分布列 例:投掷一枚硬币,正面成功的概率为 ,反面成功的概率为 .写出其 概率分布列. 详解:选取正反面作为随机变量.根据制作分布列步骤给出分布列表. 典型的分布列 (1)概念:两点分布又称0-1分布,是一种有两种可能结果的分布, 是二项分布的特殊情况. (2)两点分布的概率函数
此次抽样合格率为: 由此可知该批产品合格度不高,而且检测合格产品的标准低,对此可以 给出修改标准的意见. 点拨:考察了互斥事件的概率问题;组合思想在概率中的应用.
知识回顾 问题探究 课堂小结 随堂检测
针对此类问题我们可对其进行数学建模,具体思想如下: 1. 概念及其分布列表示 一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品, 则该事件(X=x)发的概率分布为超几何分布.
.则称满足上述分布列
知识回顾 问题探究 课堂小结 随堂检测
补充:若随机变量X服从超几何分布,则记作X~H(n,M,N).简写为H(k,n,M,N).
分析:由超几何分布的概率公式不难看出,在分析X件次品的可能情况中, 我们采用了分步乘法计数原理和组合的应用方法.然后严格根据概率的定义 得出所求取的结果. 注意:
知识回顾 问题探究 课堂小结 随堂检测
重难点突破
1.超几何分布随机变量的确定. 2.超几何分布概率的算法(结合排列组合思想解题;互斥事件的概率 加法原则).
解决此类问题的关键是根据题设条件找到X的可能取值,再利用概 率的有关知识求出相应的概率,最后根据分布列的定义写出分布列并 利用性质检验分布列的正确性.
《离散型随机变量的分布列》人教版高中数学选修2-3PPT课件(第2.1.2课时)

∴p(ξ=0)=C20(1-0.05)2=0.9025 .
课堂练习
继续解答
ξ =1表示抽取一件正品一件次品;
P(ξ=1)= C21 (1-0.05)×0.05=0.95 ξ =2抽取两件均为次品;
P(ξ=2)= C22 0.052=0.0025 ∴ξ的概率散布为:
3.散布列的两条性质 (1)Pi≥0,i=1,2,…; (2)P1+P2+…=1.
4.两种典型散布 (1)两点散布; (2)超几何散布.
人教版高中数学选修2-3
第2章 随机变量及其散布
感谢你的凝听
PEOPLE'S EDUCATION PRESS HIGH SCHOOL MATHEMATICS ELECTIVE 2-3
10
课堂练习
(Ⅲ)随机变量 可能取的值为1,2.事件“ξ=2”是指有两人同时参加 岗位服务,
则
P(ξ
= 2) =
C52 A33 C53 A44
=
1 4
.所以
P(ξ = 1) = 1- P(ξ = 2) = 3 4
,ξ的散布列是
ξ
1
2
P
0.75
0.25
课堂练习
1.填空 (1)某批数量较大的商品的次品率为10%,从中任意地连续取出5件,其中次品数ξ的散 布列为________.
例题2 在含有5件次品的100件产品中,任取3件,求: (1)取到的次品数X的散布列; (2)至少取到一件次品的概率.
新知探究
解:(1)因为从100件产品中任取3件的结果数为C1003,从100件产品中任取3件, 其中恰有k件次品的结果数为C5kC953-k,所以100件产品中任取3件,其中恰有k件次品 的概率为
新人教选修2-3第2章第3节离散型随机变量的分布列

C1 15 P4=C1 ,故其分布列为 45 X P 1 2 9 2 4 15 3 8 45 4 1 3
高考连接:
1.从装有3个红球、2个白球的袋中任取3个球, 则所取的3个球中至少有一个白球的概率是 2.一个盒子里装有4张大小形状完全相同的卡片, 分别标有数2,3,4,5;另一个盒子也装有4张大 小形状完全相同的卡片,分别标有数3,4,5,6. 现从一个盒子中任取一张卡片,其上面的数记为x; 再从另一盒子里任取一张卡片,其上面的数记为y, 记随机变量Y=x+y,求Y的分布列.
例1:在掷一枚图钉的随机试验中, 1, 针尖向上; 令X= 0,针尖向下. 如果针尖向上的概率为p, 试写出随机 变量X 的分布列.
[例 2] 袋内有 5 个白球,6 个红球,从中摸出两球,记
0 X= 1
两球全红 .求 X 的分布列. 两球非全红
例3:在含有5件次品的100件产品中,任取3件,求: (1)取到的次品数X的分布列; (2)至少取到一件次品的概率.
例4:在8个大小相同的球中,有2个黑球, 6个白球,现从中任取3个球,求取出的球 中白球个数X的分布列.
练习:从某医院的3名医生,2名护士中随机选 派2人参加抗洪抢险救灾,设其中医生的人数 为X,求随机变量X的分布列.
[解析] 依题意可知随机变量 X 服从超几何分布,所以
k 2-k C3 C2 P(X=k)= C2 (k=0,1,2). 5 0 2 C3 C2 1 P(X=0)= 2 = =0.1, C5 10 1 1 C3 C2 6 P(X=1)= 2 = =0.6, C5 10 2 0 C3 C2 3 P(X=2)= 2 = =0.3(或 P(X=2)=1-P(X=0)-P(X C5 10
人教课标版高中数学选修2-3:《离散型随机变量及其分布列(第1课时)》教案-新版

2.1 离散型随机变量及其分布列(第1课时)一、教学目标【核心素养】对离散型随机变量及其分布列概念的学习,初步形成从实际问题到数学问题的数学建模思想.【学习目标】1.了解随机变量的概念.2.理解离散型随机变量的概率分布列及其特征.3.学会解答一些简单分布列的运算.【学习重点】离散型随机变量分布列制表.【学习难点】1.正确选取离散型随机变量及概率的运算.2.掌握如何将实际问题划归为离散型随机变量的分布列方法.二、教学设计(一)课前设计1.预习任务任务1-阅读教材,了解离散型随机变量的的概念及性质.任务2-离散型随机变量分布列的性质及表格的制作.2.预习自测1.已知:①某机场候机室中一天的旅客数量X;②某寻呼台一天内收到的寻呼次数X ;③某篮球下降过程中离地面的高度X ;④某立交桥经过的车辆数X .其中不是离散型随机变量的是( ) A.①中的X B.②中的X C.③中的X D.④中的X 解:C2.袋中有大小相同的5个小球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X,则X 所有可能取值的个数是( ) A.5 B.9 C.10 D.25 解:B由于本试验属于有放回抽取,所以所有1,2,3,4,5肯能号码都可被抽取到.然后抽取的数字之和是相同值得时候只能看作1次取值.所以最后可能组合就有9组不重复可能取值.3.某一随机变量X 的概率分布列如下表,且2.12=+n m ,则2nm -的值为( )A.-0.2B.0.2C.0.1D.-0.1 解:B利用概率=∑=ni i p 11.(二)课堂设计问题探究一 、离散型随机变量的定义●活动一 感知随机变量引例:某一时间段内公交站等公交的乘客人数;某固定电话在某时间段内接到的电话数量;一批注入某种毒素的动物在确定时间段内死亡的数量;长途汽车在1000KM 的行驶路程中到达目的地所用的时间等等. 讨论:(1)变量:可变的量;在函数中常见;常用x,y,z 等字母表示一些不确定的数值关系.(2)随机性:偶然性的一种形式;是对某一事件发生的不确定性的描述. (3)离散性:数据的分散性,不具备连续的特征(如:连续型数据-10≤x ≤9;离散型数据:x =-10,-1,0,1,9). 引入(1)在随机试验的实际结果与数学之间,自然地或人为地建立起一种数学数字对应关系,使每一个可能的结果都对应着一个实数,那么随机试验的结果就可以用取值对应的任一个变量来表示,这个变量叫随机变量,随机变量常用X 、Y 、ξ、η等表示(区别于连续型函数)(x f ).(2)离散型随机变量:如果对于随机变量可能取的值有限多个或无限多个,但可以按一定次序一一列出,这样的随机变量叫做离散型随机变量(如:掷骰子点6出现的次数X ;抛硬币正面出现的次数N ;流水生产线上发生故障点的个数M ).注意:①并不是所有的随机变量都能一一列出.例如汽车的使用寿命;从发电站到用户家庭的线路故障点;一天中雷雨天气的发生时间等等.②相反的,如果随机变量可以取定区间内的任意一个数值,这样的变量称之为连续型随机变量.●活动二随机变量类型的判别、选取、取值实例感知,如何在实际情景中选取随机变量:例1.重庆至武汉的高铁路段设立有固定的100个安全检测点,请能否将此监测点看作随机变量?属于离散型或是连续型?如何选取随机变量?例2.三峡大坝水位检测站承担对长江沿岸(0,168m)水位任务检测工作.该水位站检测到的水位数据是否属于随机变量?是连续型或是离散型?例3.一个盒子里面装有5个红球4个黄球3个白球.一次实验中取出依次不放回取出3个球.根据题意如何选取随机变量.例4.在一次关于电视娱乐节目的调查中,对100个家庭进行了调查分析.发现有观看关于娱乐节目、生活节目、电视剧节目、电影节目.请对以上调查结果做出合理的分析,给出随机变量的的选取意见.随机变量从本质上讲就是以随机试验的每一个可能结果对应的某个函数的自变量.即随机变量的取值实质上是试验所对应的结果数,但这些数是预先知道的所有可能的值,而不知道具体是哪一个值,也就充分验证了实验结果具有随机性的特征.问题探究二、离散型随机变量的分布列及其性质●活动一列分布列表(1)分布列的定义表示概率在所有试验结果中的分布情况的列表.(2)分布列的表示①设定离散型随机变量X 可能的取值为nx x x ,,,21⋅⋅⋅.②求出X 取定每一个值i x (n i ,,3,2,1⋅⋅⋅=)的概率i i p x X P ==)(. ③列出概率分布表则该表格为离散型随机变量X 的概率分布列,简称X 的分布列. ●活动二 结合实例,认知分布列性质思考:分布列的概率问题是否与之前所学概率知识有相通之处?例1.已知随机变量X 的分布列为33)21()(i C i X P == (i =0,1,2,3)则==)2(X P ;详解:83)21()2(323===i C X P点拔:考察组合在概率中的基本算法. 例2.已知随机变量X 的分布列为则x = .详解:3.0)5.02.0(1)2(=+-==X P . 点拔:概率的性质.通过以上案例的分析,我们不难发现: 离散型随机变量分布列的性质由概率的性质可知,任一离散型随机变量的分布列都具有下面两个性质: ①0(1,2,3,,)i p i n ≥=L , ②11ni i p ==∑点拔:1.理解分布列的两大性质,熟练掌握概率的算法及运用它来解决一些实际问题.2.重点理解性质②,对于求取分布列中的某些参数具有重要指导意义. 三、课堂总结 【知识梳理】1.连续型随机变量、离散型随机变量的概念与区别.2.如何在实际问题中筛选出随机变量并建立变量关系.3.离散型随机变量分布列的概率性质:①0(1,2,3,,)i p i n ≥=L ,;②=∑=ni i p 1 1.4.随机变量分布列的表格制作步骤:①选取随机变量的可能取值;②计算随机变量取值对应的概率;③制作概率分布列表格. 【重难点突破】1.若X 是一个随机变量,λ、μ是常数.则有如下情况:μλ+=X Y ;X X Y μλ+=2; 2)(μλ+=X Y ......中的Y 也是一个随机变量.提示:类比于理解函数中x 与f (x )的对应关系.2.掌握离散型随机变量分布列的两大性质,学会应用其概率特征解决一些参数问题.3.在具体划归分布列的应用中,关键明确变量的取值,正确求取值对应的概率四、随堂检测1.抛掷两颗骰子,如果将所得点数之和记为X,那么X=4表示的随机试验结果是()A.两颗都是4点B.一颗是1点,另一颗是3点C.两颗都是2点D.一颗是1点,另一颗是3点,或者两颗都是2点【知识点:随机变量的概念】解:D2.下列4个表格中,可以作为离散型随机变量分布列的一个是()A.B.C.D.【知识点:概率分布列的性质;互斥事件】 解:C3.随机变量X 的概率分布规律为)4,3,2,1()1()(=+==n n n an X P 其中a 是常数,则)2521(<<X P 的值为 .【知识点:分布列的性质;互斥事件概率】解:654.设X 是离散型随机变量,其分布列如下表所示.则=q ( ). A.1 B.221±C.221+D.221-【知识点:分布列的性质;互斥事件概率】 解:D 五、课后作业 ★基础型 自主突破1.如果X 是一个离散型随机变量,则假命题是( ) A.X 取每一个可能值的概率都是非负数; B.X 取所有可能值的概率之和为1;C.X 取某几个值的概率等于分别取其中每个值的概率之和;D.X 在某一范围内取值的概率大于它取这个范围内各个值的概率之和 【知识点:真假命题;分布列的性质】解:由分布列性质①可知1≥i p ≥0,(n i ,,3,2,1⋅⋅⋅=),故A 是真命题;分布列性质②=∑=ni i p 1 1 可知B 、C 是真命题.故D 是假命题.2.①某寻呼台一小时内收到的寻呼次数X ;②在(0,1)区间内随机的取一个数X ;③某超市一天中的顾客量X 其中的X 是离散型随机变量的是( ) A.① B .② C.③ D.①③【知识点:离散型随机变量的定义】解:②中的区间取值是随机的,但是数值是连续的,是不能一一列出的,这样的数据属于连续型随机变量.故选D.3.设离散型随机变量ξ的概率分布如下,则a 的值为( )A .12B .16C .13D .14【知识点:分布列性质】解:由概率分布列性质=∑=ni i p 11可知31,1)4()3()2()1(===+=+=+=a X P X P X P X P 故选C .4、设随机变量X 的分布列为()()1,2,3,,,k P X k k n λ===⋯⋯,则λ的值为( ) A .1B .12C .13D .14【知识点:等比数列通项式及前n 项和公式;分布列性质】解:21,113211==-=⋅⋅⋅++⋅⋅⋅+++=∑∞=λλλλλλλn i i p 故选B .5、已知随机变量X 的分布列为:()12k p X k ==, ,3,2,1=k ,则()24p X <≤=( ) A.163B.41C.161 D.165【知识点:互斥事件概率问题;分布列性质】 解:,1632121)4()3()42(43=+==+==≤<X p X p X p 故选A .6、投掷两枚骰子,所得点数之和记为X ,那么4X =表示的随机实验结果是( )A.一枚是3点,一枚是1点B.两枚都是2点C.两枚都是4点D.一枚是3点,一枚是1点或两枚都是2点【知识点:离散型随机变量;数学思想:分类讨论】解:一枚骰子可取点数范围从1、2、3、4、5、6;X =2+2=4 或X =1+3=4的讨论组合方式,故选D .★★能力型 师生共研7.设随机变量X 的分布列为()()21,2,3,,,k P X k k n λ==⋅=⋯⋯,则 λ= .【知识点:等比数列通项式及前n 项和公式;分布列性质】 解:31,11222223211==-=⋅⋅⋅++⋅⋅⋅+++=∑∞=λλλλλλλn i i p8.一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数X 可能取值为【知识点:组合;数学思想:分类讨论】解:由于抽取的过程中是不放回取球.可能情况数1035 C ,分类讨论情况如下(不论先后):①1,2,3.②1,3,4③1,3,5 ④2,3,4 ⑤2,3,5 ⑥3,4,5.⑦4,5,1⑧4,5,2⑨5,1,2⑩4,2,1.故X 的可能取值为3,4,5.9.某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车费若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足1km 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量(1)求租车费η关于行车路程ξ的关系式;(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?【知识点:离散型随机变量;数学思想:转化】解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2(2)由38=2ξ+2,得ξ=18,5×(18-15)=15.所以,出租车在途中因故停车累计最多15分钟.★★★探究型 多维突破11、一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数X 的分布列.【知识点:分布列;数学思想:转化、分类讨论】解:设黄球的个数为n ,由题意知绿球个数为2n ,红球个数为4n ,盒中的总数为7n .∴44(1)77n P X n ===,1(0)77n P X n ===,22(1)77n P X n =-==. 所以从该盒中随机取出一球所得分数X 的分布列为12、一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂n 次终止的概率是n 21(n =1,2,3,…).记X 为原物体在分裂终止后所生成的子块数目,求(10)P X ≤.【知识点:分布列,互斥事件概率;数学思想:转化、分类讨论】解:依题意,原物体在分裂终止后所生成的数目X 的分布列为∴(10)(2)(4)(8)P X P X P X P X ≤==+=+==87814121=++. 自助餐1.下列随机变量中,不是离散随机变量的是( )A.从10只编号的球 ( 0号到9号) 中任取一只,被取出的球的号码ξB.抛掷两个骰子,所得的最大点数ξC.[0 , 10]区间内任一实数与它四舍五入取整后的整数的差值ξD.一电信局在未来某日内接到的 电话呼叫次数ξ【知识点:离散型随机变量】2.甲乙两名篮球运动员轮流投篮直至某人投中为止,设每次投篮甲投中的概率为0.4,乙投中的概率为0.6,而且不受其他投篮结果的影响.设甲投篮的次数为ξ,若甲先投,则==)(k P ξ( )A.4.06.01⨯-kB.76.024.01⨯-kC.6.04.01⨯-kD.24.076.01⨯-k【知识点:互斥事件概率;数学思想:转化、分类讨论】解:B 若甲投1次球,则包含两层信息---甲乙两人共投球1次;甲乙两人共投球2次,即概率76.0)4.01)(4.01(4.0)1(=--+==ξP ;若甲投2次球,则包含两层信息---甲乙两人共投球3次;甲乙两人共投球4次,即概率1824.0)4.01)(4.01(4.0)4.01(4.04.0)4.01()2(=--⋅-+⋅-==ξP .同理可得出==)(k P ξ76.024.01⨯-k .3.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则)0(=ξP 等于( )A.0B.21 C.31 D.32 【知识点:对立事件概率】4.设随机变量ξ的分布列为)5,4,3,2,1(15)(===k k k P ξ,则)2521(<<ξP 等于( ) A.21B.91C.61D.51【知识点:互斥事件概率;数学思想:分类讨论】解:D5.已知随机变量ξ的分布列为:),3,2,1(21)(⋅⋅⋅===k k P k ξ,则=≤<)42(ξP ()A.163B.41C.161D.165【知识点:互斥事件概率;数学思想:分类讨论】解:A6.已知随机变量ξ的概率分布为:则==)10(ξP ( ) A.932 B.1032 C.931 D.1031 【知识点:分布列;数学思想:观察法】解:D7.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上向右的概率都是21,质点P 移动5次后位于点(2,3)的概率是( ) A.3)21( B.525)21(C C.335)21(C D.53525)21(C C 【知识点:计数原理,独立事件概率;数学思想:组合】解:B8.在一批产品中共12件,其中次品3件,每次从中任取一件,在取得合格品之前取出的次品数ξ的所有可能取值是【知识点:离散型随机变量】解:0,1,2,3.9.设随机变量ξ只能取5,6,7,…,16这12个值,且取每个值的概率相同,则=>)8(ξP ,)146(≤<ξP =【知识点:对立事件、互斥事件概率;数学思想:分类讨论、正反面】 解:31121121121121)8(=+++=>ξP ;65)121121(1)6(1)146(=+-=≤-=≤<ξξP P .10.已知随机变量ξ的分布列是:=≤≤)42(ξP【知识点:分布列;数学思想:分类讨论】解:0.711.指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由.(1)某人射击一次命中的环数;(2)任意掷一枚均匀硬币5次,出现正面向上的次数;(3)投一颗质地均匀的骰子出现的点数(最上面的数字);(4)某个人的属相随年龄的变化.【知识点:离散型随机变量】解:(1)某人射击一次,可能命中的环数是0环,1环,…,10环结果中的一个而且出现哪一个结果是随机的,因此是随机变量.(2)任意掷一枚硬币1次,可能出现正面向上也可能出现反面向上,因此投掷5次硬币,出现正面向上的次数可能是0,1,2,3,4,5,而且出现哪种结果是随机的,是随机变量.(3)投一颗骰子出现的结果是1点,2点,3点,4点,5点,6点中的一个且出现哪个结果是随机的,因此是随机变量.(4)属相是人出生时便确定的,不随年龄的变化而变化,不是随机变量.12.设b,c 分别是先后抛掷一枚骰子得到的点数.(1)设A =},,02|{2R x c bx x x ∈<+-求φ≠A 的概率;(2)设随机变量|,|c b -=ξ求ξ的分布列. 【知识点:二次方程根的判别,对立事件概率;数学思想:分类讨论】 解:b,c 的所有可能取值从1-6.当b =1,c =1,2,3,4,5,6; 08)2(4)(4222<-=--=-=∆c b c b ac b ;当b =2,c =1,2,3,4,5,6;08)2(4)(4222<-=--=-=∆c b c b ac b ;当b =3,c =2,3,4,5,6;08)2(4)(4222<-=--=-=∆c b c b ac b ; 当b =4,c =3,4,5,6;08)2(4)(4222<-=--=-=∆c b c b ac b ;当b =5,c =4,5,6;08)2(4)(4222<-=--=-=∆c b c b ac b ;当b =6,c =5,6;08)2(4)(4222<-=--=-=∆c b c b ac b .故当φ≠A 时概率18536261=-;5,4,3,2,1,0=ξ其分布列如下:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章随机变量及其分布列2.1离散型随机变量及其分布列【理清基础】1.随机试验:一般地,一个试验如果满足下列条件:(1)试验可以在相同的情形下重复进行;(2)试验所有可能的结果是明确的,并且不只一个;(3)每次试验总是恰好出现这些可能a 结果中的一个,但在一次试验之前却不能肯定这次试验的结果会出现哪一个.这种试验就是一个随机试验.2.随机变量:在随机试验中,随着试验结果变化而变化的变量称为随机变量.3.离散型随机变量:所有取值可以一一列出的随机变量,称为离散型随机变量.4.离散型随机变量X 的分布列一般地,若离散型随机变量X 可能取的不同值为1x ,2x ,…,i x ,…,n x ,X 取每一个值i x (i=1,2,…,n)的概率。
i i p x X P ==)(,以表格的形式表示如下:X 1x 2x ···i x ···n x P1p 2p ···ip ···np 此表称为离散型随机变量X 的概率分布列,简称为X 的分布列.5.离散型随机变量的分布列的性质:(1)0≥i p ,i=1,2,3,…,n;(2)1=∑niip.【典例分析】要点一随机变量的概念例、指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由.(1)任意掷一枚均匀硬币5次,出现正面向上的次数;(2)投一颗质地均匀的骰子出现的点数(最上面的数字);(3)某个人的属相随年龄的变化;(4)在标准状况下,水在0℃时结冰.解(1)任意掷一枚硬币1次,可能出现正面向上也可能出现反面向上,因此投掷5次硬币,出现正面向上的次数可能是0,1,2,3,4,5,而且出现哪种结果是随机的,是随机变量.(2)投一颗骰子出现的结果是1点,2点,3点,4点,5点,6点中的一个且出现哪个结果是随机的,因此是随机变量.(3)属相是出生时便定的,不随年龄的变化而变化,不是随机变量.(4)标准状况下,在0℃时水结冰是必然事件,不是随机变量.【归纳总结】解答此类题目的关键在于分析变量是否满足随机试验的结果,随机变量从本质上讲就是以随机试验的每一个可能结果为一个映射,即随机变量的取值实质上是试验结果对应的数,但这些数是预先知道所有可能取的值,而不知道在一次试验中哪一个结果发生,随机变量取哪一个值.强化训练、下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由.(1)上海国际机场候机室中2019年10月1日的旅客数量;(2)2019年某天屯溪至合肥的D36次高铁到合肥站的时间;(3)2019年某天收看中央电视台《新闻联播》节目的人数;cm的球的半径长.(4)体积为10003解(1)候机室中的旅客数量可能是0,1,2,…,出现哪一个结果都是随机的,因此是随机变量.(2)D36次屯溪至合肥的列车,到达终点的时间每次都是随机的,可能提前,可能准时,亦可能晚点,故是随机变量.(3)在《新闻联播》节目播放的时刻,收看人数的变化是随机的,可能多,也可能少,因此是随机变量.cm的球半径长为定值,故不是随机变量.(4)体积为10003要点二离散型随机变量的判定例、指出下列随机变量是否是离散型随机变量,并说明理由.(1)从10张已编好号码的卡片(从1号到10号)中任取一张,被取出的卡片的号数;(2)一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数;(3)某林场树木最高达30m,则此林场中树木的高度;(4)某加工厂加工的某种铜管的外径与规定的外径尺寸之差.解(1)只要取出一张,便有一个号码,因此被取出的卡片号数可以一一列出,符合离散型随机变量的定义.(2)从10个球中取3个球,所得的结果有以下几种:3个白球;2个白球和1个黑球;1个白球和2个黑球;3个黑球,即其结果可以一一列出,符合离散型随机变量的定义.(3)林场树木的高度是一个随机变量,它可以取(0,30]内的一切值,无法一一列举,不是离散型随机变量.(4)实际测量值与规定值之间的差值无法一一列出,不是离散型随机变量.【归纳总结】离散型随机变量的判定方法判断一个随机变量X是否为离散型随机变量的关键是判断随机变量X的所有取值是否可以一一列出,其具体方法如下:(1)明确随机试验的所有可能结果;(2)将随机试验的试验结果数量化;(3)确定试验结果所对应的实数是否可按一定次序一一列出,如果能一一列出,则该随机变量是离散型随机变量,否则不是.强化训练①某座大桥一天经过的轿车的辆数为X;②某网站中歌曲《爱我中华》一天内被点击的次数为X;③射手对目标进行射击,击中目标得1分,未击中目标得0分,用X表示该射手在一次射击中的得分.上述问题中的X是离散型随机变量的是()A.①②③B.①②C.①③D.②③解析①②③中的变量取值均可一一列出.要点三随机变量的应用例3写出下列各随机变量的可能取值,并说明随机变量所取的值表示的随机试验的结果.(1)抛掷甲、乙两枚骰子,所得点数之和Y.(2)盒中装有6支白粉笔和2支红粉笔,从中任意取出3支,其中所含白粉笔的支数ξ,所含红粉笔的支数η.(3)一个袋中装有5个同样大小的球,编号为1,2,3,4,5.现从该袋内随机取出3个球,被取出的球的最大号码数为ξ.解(1)Y的可能取值为2,3,4,…12,若以(i,j)表示抛掷甲、乙两枚骰子后骰子甲得i 点且骰子乙得j点,则{Y=2}表示(1,1);{Y=3}表示(1,2),(2,1);{Y=4}表示(1,3),(2,2),(3,1);…;{Y=12}表示(6,6).(2)ξ可取1,2,3.{ξ=i}表示取出i支白粉笔,3-i支红粉笔,其中i=1,2,3.η可取0,1,2.{η=i}表示取出i支红粉笔,3-i支白粉笔,其中i=0,1,2.(3)ξ可取3,4,5.{ξ=3}表示取出的3个球的编号为1,2,3;{ξ=4}表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;{ξ=5}表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3,5或2,4,5或3,4,5.【归纳总结】随机变量从本质上讲就是以随机试验的每个结果为自变量的一个函数,即随机变量的取值本质上是试验结果对应的数,起到了描述随机事件的作用.这些数是预先知道的所有可能的值,而不知道究竟是哪一个值,这便是“随机”的本源.强化训练、写出下列随机变量可能的取值,并说明随机变量的取值所表示的随机试验的结果.(1)从一个装有编号为1号到10号的10个球的袋中,任取1球,被取出的球的编号为X;(2)在含有10件次品的100件产品中,任意抽取4件,可能含有的次品的件数X是一个随机变量.(3)一袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数ξ是一个随机变量.解(1)X的可能取值为1,2,3,…,10,{X=k}(k=1,2,…,10)表示取出编号为k号的球.(2)随机变量X可能的取值为0,1,2,3,4.{X=0},表示“抽出0件次品”;{X=1},表示“抽出1件次品”;{X=2},表示“抽出2件次品”;{X=3},表示“抽出3件次品”;{X=4},表示“抽出4件次品”.(3)随机变量ξ可能的取值为0,1,2,3.{ξ=0},表示“取出0个白球,3个黑球”;{ξ=1},表示“取出1个白球,2个黑球”;{ξ=2},表示“取出2个白球,1个黑球”;{ξ=3},表示“取出3个白球,0个黑球”.要点4求离散型随机变量的分布列例1袋中装有编号为1~6的同样大小的6个球,现从袋中随机取3个球,设ξ表示取出3个球中的最大号码,求ξ的分布列.解根据题意,随机变量ξ的所有可能取值为3,4,5,6.ξ=3,即取出的3个球中最大号码为3,其他2个球的号码为1,2,所以,201)3(3622===C C P ξ;ξ=4,即取出的3个球中最大号码为4,其他2个球只能在号码为1,2,3的3个球中取,所以,203)4(3623===C C P ξ;ξ=5,即取出的3个球中最大号码为5,其他2个球可以在号码为1,2,3,4的4个球中取,所以,013)5(3624===C C P ξ;ξ=6,即取出的3个球中最大号码为6,其他2个球可以在号码为1,2,3,4,5的5个球中取,所以,21)6(3625===C C P ξ.所以,随机变量ξ的分布列为ξ3456P12032031012【归纳总结】求离散型随机变量的分布列关键有三点:(1)随机变量的取值;(2)每一个取值所对应的概率;(3)所有概率和是否为1来检验.强化训练、从集合{1,2,3,4,5}的所有非空子集中,等可能地取出一个.记所取出的非空子集的元素个数为ξ,求ξ的分布列.解依据题意,ξ的所有可能值为1,2,3,4,5.又31531)1(15===C P ξ,311031)2(25===C P ξ,311031)3(35===C P ξ,31531)4(45===C P ξ,31131)5(55===C P ξ.故ξ的分布列为ξ12345P53110311031531131要点5分布列的性质及应用例2设随机变量X 的分布列P(X=k5)=a k(k=1,2,3,4,5).(1)求常数a 的值;(2)求P(X≥35);(3)求P(110<X<710).解由题意,所给分布列为X 1525354555Pa2a3a4a5a(1)由分布列的性质得a +2a +3a +4a +5a =1,解得a =115.(2)P(X≥35)=P(X=35)+P(X=45)+P(X=55)=315+415+515=45,或P(X≥35)=1-P(X≤25)=1-(115+215)=45.(3)∵110<X<710,∴X=15,25,35.∴P(110<X<710)=P(X=15)+P(X=25)+P(X=35)=115+215+315=25.【归纳总结】应熟悉分布列的基本性质:若随机变量X 的取值为1x ,2x ,…,i x ,…,n x ,,取这些值的概率为i i p x X P ==)(,i=1,2,…,n,则①)0≥i p ,i=1,2,3,…,n,②1=∑niip.此外,利用分布列的性质检验所求分布列的正误,是非常重要的思想方法.③一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.强化训练2设ξ是一个离散型随机变量,其分布列为ξ-101P121-2q2q (1)求q 的值;(2)求P(ξ<0),P(ξ≤0).解(1)由分布列的性质得,1-2q≥0,2q ≥0,12+(1-2q)+2q =1,∴q=1-22.(2)P(ξ<0)=P(ξ=-1)=12,P(ξ≤0)=P(ξ=-1)+P(ξ=0)=12+1-2(1-22)=2-12.要点6离散型随机变量的分布列的综合应用例、第26届世界大学生夏季运动会于2011年8月12日至23日在深圳举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如下茎叶图(单位:cm):若身高在175cm 以上(包括175cm)定义为“高个子”,身高在175cm 以下定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有1人是“高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,试写出ξ的分布列.解(1)根据茎叶图,“高个子”有12人,“非高个子”有18人.用分层抽样的方法,每个人被抽中的概率是530=16,所以选中的“高个子”有12×16=2人,“非高个子”有18×16=3人.用事件A 表示“至少有1名‘高个子’被选中”,则它的对立事件A -表示“没有‘高个子’被选中”,则P(A)=1-C23C25=1-310=710.因此,至少有1人是“高个子”的概率是710.(2)依题意,ξ的可能取值为0,1,2,3,则5514C )0(31238===C P ξ,5528C )1(3122814===C C P ξ,5512C )2(3121824===C C P ξ,551C )3(31234===C P ξ.因此,ξ的分布列为ξ0123P145528551255155【归纳总结】求离散型随机变量的分布列,首先要根据具体情况确定ξ的取值情况,然后利用排列、组合与概率知识求出ξ取各个值的概率.即必须解决好两个问题,一是求出ξ的所有取值,二是求出ξ取每一个值时的概率.强化训练、某篮球运动员在一次投篮训练中的得分ξ的分布列如下表,其中a,b,c成等差数列,且c=ab,ξ023P a b c求这名运动员投中3分的概率.解由题中条件,知2b=a+c,c=a b,再由分布列的性质,知a+b+c=1,且a,b,c都是非负数,由三个方程联立成方程组,可解得a=12,b=13,c=16,所以投中3分的概率是1 6 .。