数值分析课程设计题目(10级)
2010级数值分析试题

A ;
4.已知 f ( x ) 2 x 3 4 x 5 ,写出以 2, 0, 1 为插值节点的二次拉格朗日插值多项式; 5.写出用变步长梯形求积公式计算积分 f ( x )dx的计算公式.
a xk
3
r
产生的序列 x k 收敛到 4
a ,使其收敛阶尽可能高,
并说明该迭代公式的收敛阶.
10 a 0 五、(本题满分15分)设 A b 10 b ( A 的行列式 0 a 5
2 det( A) 0),给定方程组 AX 1 1
要求:(1)写出计算公式;(2)画出算法框图. 七、(本题满分10分)确定求积公式
3
1
f ( x )dx A0 f (0) A1 f (1) A2 f (2)
中的待定参数 A0 , A1 ,与 A2,使其代数精度尽可能高, 并指明该求积公式所具有的代数精度.
八、(本题满分5分)
给定等距节点
a b
二、(本题满分10分) 用高斯消去法求解方程组
a11 x1 a12 x 2 a13 x 3 a1n x n b1 a x a x a x a x b 21 1 22 2 23 3 2n n 2 a n1 x1 a n 2 x 2 a n 3 x 3 a nn x n bn
1.根据迭代法收敛的充分必要条件确定a,b的取值范围, 使求解上述方程组的雅可比迭代法收敛.
. 2.写出求解上述方程组的雅可比迭代公式.
3.若用高斯—塞德尔迭代法求解上述方程组,画出高斯 —塞德尔迭代法的算法框图.
数值分析(计算方法)课程设计实验报告(附程序)

n=4 时,max[L(X)-h(X)]=0.4020;
n=8 时,max[L(X)-h(X)]=0.1708;
n=10 时,max[L(X)-h(X)]=0.1092。
图象分析: 从图象可以看出随着插值节点数的增加出现异常的摆动,中间能较好的接近 原函数,但两边却出现很大的误差。
(3).对定义在(-5,5)上的函数
程序代码 2:
x=[-1:0.2:1]; y=1./(1+25.*x.^2); x0=[-1:0.01:1]; y0=lagrange(x,y,x0); y1=1./(1+25.*x0.^2);
plot(x0,y0,'--r'); hold on; plot(x0,y1,'-b'); x2=abs(y0-y1); max(x2) ; 程序代码3: n=3; for i=1:n x(i)=cos(((2.*i-1).*pi)./(2.*(n+1))); y(i)=1./(1+25.*x(i).*x(i)); end x0=-1:0.01:1; y0=lagrange(x,y,x0); y1=1./(1+25.*x0.^2); plot(x0,y0,'--r') hold on plot(x0,y1,'-b')
以 x1,x2,„,xn+1 为插值节点构造上述各函数的 Lagrange 插值多项式, 比较其 结果。
设计过程: 已知函数 f(x)在 n+1 个点 x0,x1,…,xn 处的函数值为 y0,y1,…,yn 。 求一 n 次多 项式函数 Pn(x),使其满足: Pn(xi)=yi,i=0,1,…,n. 解决此问题的拉格朗日插值多项式公式如下
数值分析试题与答案

一、单项选择题(每小题3分,共15分)1. 和分别作为π(de)近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y (de)拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x =B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =(de)根(de)牛顿法收敛,则它具有( )敛速.A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到(de)第3个方程( ).A .232x x -+=B .232 1.5 3.5x x -+=C .2323x x -+=D .230.5 1.5x x -=-二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根.5. 取步长0.1h =,用欧拉法解初值问题()211y y yx y ⎧'=+⎪⎨⎪=⎩(de)计算公式 .0,1,2分 人三、计算题(每题15分,共60分)1. 已知函数211y x =+(de)一组数据:求分段线性插值函数,并计算()1.5f (de)近似值.1. 解 []0,1x ∈,()1010.510.50110x x L x x --=⨯+⨯=---[]1,2x ∈,()210.50.20.30.81221x x L x x --=⨯+⨯=-+--所以分段线性插值函数为()[][]10.50,10.80.31,2x x L x x x ⎧-∈⎪=⎨-∈⎪⎩ ()1.50.80.3 1.50.35L =-⨯=2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;(2) 对于初始值()()00,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X (保留小数点后五位数字).1.解 原方程组同解变形为1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m =高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩ (0,1...)m =用雅可比迭代公式得()()10.72000,0.83000,0.84000X =用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间(de)近似根(1)请指出为什么初值应取2 (2)请用牛顿法求出近似根,精确到. 3. 解()331f x x x =--,()130f =-<,()210f =>()233f x x '=-,()12f x x ''=,()2240f =>,故取2x =作初始值4. 写出梯形公式和辛卜生公式,并用来分别计算积分111dxx+⎰.四、证明题(本题10分)确定下列求积公式中(de)待定系数,并证明确定后(de)求积公式具有3次代数精确度()()()()1010hhf x dx A f h A f A f h --=-++⎰证明:求积公式中含有三个待定系数,即101,,A A A -,将()21,,f x x x =分别代入求一、 填空(共20分,每题2分)1. 设2.3149541...x *=,取5位有效数字,则所得(de)近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商 ()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X .4.求方程 21.250x x --= (de)近似根,用迭代公式 1.25x x =+,取初始值 01x =, 那么 1______x =。
数值分析课程设计题目_0811_

《数值分析》课程设计负责老师:刘瑞华、许安见、牛普 面向对象:0811-1、-2班级全体同学 时 间:第十八周周一至周五全天 地 点:实验楼B503 要求:(1) 4人一小组做一个设计题目,按照上次分组顺利,依次做下面的设计; (2) 每小组推选一位同学参加答辩,答辩不通过者,成绩等级将视为不及格; (3) 课程设计期间严格实行考勤记录,要求同学们到指定教室;(4) 严格按照课程设计的要求提交课程设计论文,需要制作封面,打印成绩评定书,其中成绩评定书装订在第2页;(5) 论文于第十八周周四下午5点前以班为单位收齐后交到实验楼B501,第十八周周五上午8:30在实验楼B502进行答辩。
题目(一)1、考虑两点边值问题()()⎪⎩⎪⎨⎧==<<=+.11,00,10,22y y a a dx dydx y d ε 容易知道它的精确解为.1111ax e e a y x +⎪⎪⎭⎫ ⎝⎛---=--εε为了把微分方程离散,把[]1,0区间n 等分,令nh 1=,ih x i =,,1,,2,1-=n i 得到差分方程 ,21211a h y y hy y y ii i i i =-++-++-ε简化为()(),2211ah y y h y h i i i =++-+-+εεε从而离散后得到的线性方程组的系数矩阵为()()()()⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+-++-++-++-=h h h h h h h A εεεεεεεεεε2222对1=ε,4.0=a ,200=n ,分别用1=ω、5.0=ω和5.1=ω的超松弛迭代法求解线性方程组,要求有4位有效数字,然后比较与精确解的误差,探讨使超松弛迭代法收敛较快的ω取值,对结果进行分析。
改变n ,讨论同样问题。
题目(二)2、先用你所熟悉的计算机语言将不选主元、列主元和完全主元Gauss 消去法编写成通用的子程序,然后用你编写的程序求解下面的方程组(考虑n 从120到130)123216186186186186186n n n x x x x x x --⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ =71515151514⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; 对上述方程组还可以采用哪些方法求解?选择其中一些方法编程上机求解上述方程组,说明最适合的是什么方法;将计算结果进行比较分析,谈谈你对这些方法的看法。
数值分析课后习题部分参考答案

数值分析课后习题部分参考答案Chapter 1(P10)5. 求2的近似值*x ,使其相对误差不超过%1.0。
解: 4.12=。
设*x 有n 位有效数字,则n x e -⨯⨯≤10105.0|)(|*。
从而,1105.0|)(|1*nr x e -⨯≤。
故,若%1.0105.01≤⨯-n,则满足要求。
解之得,4≥n 。
414.1*=x 。
(P10)7. 正方形的边长约cm 100,问测量边长时误差应多大,才能保证面积的误差不超过12cm 。
解:设边长为a ,则cm a 100≈。
设测量边长时的绝对误差为e ,由误差在数值计算的传播,这时得到的面积的绝对误差有如下估计:e ⨯⨯≈1002。
按测量要求,1|1002|≤⨯⨯e 解得,2105.0||-⨯≤e 。
Chapter 2(P47)5. 用三角分解法求下列矩阵的逆矩阵:⎪⎪⎪⎭⎫ ⎝⎛--=011012111A 。
解:设()γβα=-1A。
分别求如下线性方程组:⎪⎪⎪⎭⎫ ⎝⎛=001αA ,⎪⎪⎪⎭⎫ ⎝⎛=010βA ,⎪⎪⎪⎭⎫ ⎝⎛=100γA 。
先求A 的LU 分解(利用分解的紧凑格式),⎪⎪⎪⎭⎫ ⎝⎛-----3)0(2)1(1)1(2)0(1)1(2)2(1)1(1)1(1)1(。
即,⎪⎪⎪⎭⎫ ⎝⎛=121012001L ,⎪⎪⎪⎭⎫⎝⎛---=300210111U 。
经直接三角分解法的回代程,分别求解方程组,⎪⎪⎪⎭⎫ ⎝⎛=001Ly 和y U =α,得,⎪⎪⎪⎭⎫ ⎝⎛-=100α;⎪⎪⎪⎭⎫ ⎝⎛=010Ly 和y U =β,得,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=323131β;⎪⎪⎪⎭⎫ ⎝⎛=100Ly 和y U =γ,得,;⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=313231γ。
所以,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=-3132132310313101A。
(P47)6. 分别用平方根法和改进平方根法求解方程组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----816211515311401505231214321x x x x 解:平方根法:先求系数矩阵A 的Cholesky 分解(利用分解的紧凑格式),⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----1)15(2)1(1)5(3)3(3)14(2)0(1)1(1)5(2)2(1)1(,即,⎪⎪⎪⎪⎪⎭⎫⎝⎛--=121332100120001L ,其中,TL L A ⨯=。
数值分析课程课程设计汇总

课程 设 计我再也回不到大二了,大学是那么短暂设计题目 数值分析 学生姓名 李飞吾 学 号 x x x x x x x x 专业班级 信息计x x x x x 班 指导教师设 计 题 目共15题如下成绩数值分析课程设计1.1 水手、猴子和椰子问题:五个水手带了一只猴子来到南太平洋的一个荒岛上,发现那里有一大堆椰子。
由于旅途的颠簸,大家都很疲惫,很快就入睡了。
第一个水手醒来后,把椰子平分成五堆,将多余的一只给了猴子,他私藏了一堆后便又去睡了。
第二、第三、第四、第五个水手也陆续起来,和第一个水手一样,把椰子分成五堆,恰多一只猴子,私藏一堆,再去入睡,天亮以后,大家把余下的椰子重新等分成五堆,每人分一堆,正好余一只再给猴子,试问原先共有几只椰子?(15621) 试分析椰子数目的变化规律,利用逆向递推的方法求解这一问题 解:算法分析:解该问题主要使用递推算法,关于椰子数目的变化规律可以设起初的椰子数为0p ,第一至五次猴子在夜里藏椰子后,椰子的数目分别为01234,,,,p p p p p 再设最后每个人分得x 个椰子,由题:14(1)5k k p p +=- (k=0,1,2,3,4)51(1)5x p =-所以551p x =+,11k k p p +=+利用逆向递推方法求解151,4k k p p +=+ (k=0,1,2,3,4)MATLAB 代码: n=input('n= '); n= 15621 for x=1:n p=5*x+1; for k=1:5 p=5*p/4+1; endif p==fix(p), break end enddisp([x,p])1.2 设,15nn x I dx x=+⎰ (1)从0I 尽可能精确的近似值出发,利用递推公式:115(1,2,20)n n I I n n-=-+=计算机从1I 到20I 的近似值;(2)从30I 较粗糙的估计值出发,用递推公式:111(30,29,,3,2)55n n I I n n-=-+=计算从1I 到20I 的近似值;解:首先第一步,估计0I 和30I 的值:syms x n;int (x^0/(5+x),0,1) ans=log(2)+log(3)-log(5) eval(ans) ans= 0.1823则取0I 为0.18 syms x n;int(x^30/(5+x),0,1) ans =931322574615478515625*log(2)+931322574615478515625*log(3)-931322574615478515625*log(5)-79095966183067699902965545527073/465817912560 eval(ans) ans = 0MATLAB 中小数点后保留四位,由上面计算知道积分的值不为了零。
数值分析习题(含答案)

数值分析习题(含答案)第一章绪论姓名学号班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。
1 若误差限为5105.0-?,那么近似数0.003400有几位有效数字?(有效数字的计算)解:2*103400.0-?=x ,325*10211021---?=?≤-x x 故具有3位有效数字。
2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算)解:10314159.0?= π,欲使其近似值*π具有4位有效数字,必需41*1021-?≤-ππ,3*310211021--?+≤≤?-πππ,即14209.314109.3*≤≤π即取(3.14109 , 3.14209)之间的任意数,都具有4位有效数字。
3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ?有几位有效数字?(有效数字的计算)解:3*1021-?≤-aa ,2*1021-?≤-b b ,而1811.2=+b a ,1766.1=?b a 2123****102110211021)()(---?≤?+?≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。
2123*****10210065.01022031.1102978.0)()(---?≤=?+?≤-+-≤-b b a a a b ba ab 故b a ?至少具有2位有效数字。
4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算)解:已知δ=-**xx x ,则误差为δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。
习题10(答案)《数值分析》(第二版)第10章_习题参考答案

习题参考答案习题一1.(1) 0.05ε=,0.0185r ε=,有2位有效数字 (2) 0.0005ε=,0.000184r ε=,有4位有效数字 (3) 0.000005ε=,0.000184r ε=,有4位有效数字 (4) 0.0000005ε=,0.000184r ε=,有4位有效数字 2.0.0005ε=,0.00016r ε≈;有4位有效数字 3.|d | 1.210.005 3.650.0050.0050.02930.03a ≤⨯+⨯+≈≤4.*1x 有5位有效数字,*2x 有2位有效数字,*3x 有4位有效数字,*4x 有5位有效数字5.(1) ***124()x x x ε++31.0510−=⨯ (2) ***123()x x x ε=0.21479 (3) *2*4()x x ε50.8865410−=⨯6.略。
7.最小刻度x 满足0.002cm x ≤ 8.*3()10000 mm V επ=,*()0.02r V ε= 9.设正方形边长为a ,*2()0.510a ε−≤⨯10.*1()1%0.00333r R ε=⨯≈11.1||||14x =,2||||9.89949x ≈,||||9x ∞= 12.1|||||1.25||0.02|| 5.15||0| 6.42x =++−+=22221/22||||[(1.25)(0.02)( 5.15)(0)] 5.2996x =++−+=||||| 5.15| 5.15x ∞=−=13.||||10A ∞=,1||||9A =,2||||82.05125A ≈14.||||16A ∞=,1||||16A =,2||||12A =15.(1) ||()||1f x ∞=,1||()||8f x =,2||()||f x π=(2) ||()||23f x ∞=,1||()||17f x =,2||()||10.6427f x ≈ 16.略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析课程设计相关问题一、数值分析课程中已经学过的算法(22)
第一章非线性方程数值解
1.不动点迭代
2.二分法
3.试位法
4.牛顿迭代法
5.割线法
第二章线性方程组数值解
1.三角系数矩阵的回代方法
2.高斯消去法
3.选主元的矩阵分解法
4.高斯-塞德尔迭代法
第三章差值与多项式逼近
1.多项式的计算
2.拉格朗日差值法
3.牛顿插值法
第四章曲线拟合
1.最小二乘线性拟合
2.最小二乘多项式拟合
3.固定边界样条
第五章数值积分
1.复合梯形求积方法
2.复合辛普森求积方法
3.递归的梯形求积方法
4.龙贝格求积方法
5.高斯-勒让德求积方法
第六章微分方程数值解
1.Euler方法
2.Heun方法
二、课程设计的题目选择
(一)自定选题,要求与本课程内容相关。
(二)在下述选题中任选一题
1.数值计算中误差的存在与传播问题研究,并用数值算例加以说明。
2.算法设计与误差之间的关系问题研究,并用数值算例加以说明。
3.算法稳定性与误差之间的关系问题研究,并用数值算例加以说明。
4.求解非线性方程的不动点迭代方法研究及实现。
5.求解非线性方程的Newton型迭代方法研究及实现。
6.求解非线性方程的根的搜索方法研究及实现。
7.非线性方程迭代求解的收敛性问题研究
8.多项式插值问题的方法研究及实现。
9.分段低次插值问题的方法研究及实现。
10.离散问题的最小二乘拟合问题的方法研究及实现。
11.连续问题的最小二乘拟合问题的方法研究及实现。
12.三次样条的方法研究及实现。
13.求解线性方程组的高斯消去法的研究及实现。
14.求解线性方程组的矩阵分解法的研究及实现。
15.求解线性方程组的迭代法的研究及实现。
16.求解线性方程组的松弛因子法的研究及实现。
17.系数矩阵为三对角阵的线性方程组的数值求解方法的研究及实现。
18.特殊矩阵的矩阵分解方法研究及实现。
19.求解线性方程组迭代方法的收敛性问题研究。
20.Newton-Cotes 求积方法的研究及实现。
21.复合求积方法的研究与实现。
22.Romberg求积方法的研究与实现。
23.Gauss求积公式与Legendre多项式研究。
24.常微分方程初值问题的适定性问题研究。
25.常微分方程初值问题的Euler方法和改进Euler方法的研究与实现。
26.常微分方程初值问题的Taylor求解方法的研究与实现。
27.常微分方程初值问题的Runge-Kutta方法的研究与实现。
28.常微分方程初值问题的单步方法的研究与实现。
29.常微分方程初值问题的多步求解法的研究与实现。
30.常微分方程初值问题的隐式求解方法的研究与实现。
三、课程设计报告的具体要求
1.课程设计报告的具体内容应包含基本理论、方法建立、算法描述、程序实现、数值实例、结果分析以及设计体会等。
2.要求A4纸打印,行间距1.5倍,段落间距0,页面设置中页边距上下左右分别设置为2.5cm。
3.课程设计题目使用三号黑体,正文内容使用小四宋体,标题使用四号黑体。
四、课程设计报告封面
(见下页)
理学院School of Science
数值分析
课程设计报告
学生姓名:
学生学号:
所在班级:
所在专业:
指导教师:刘慧
实习场所:青岛理工大学实习时间:第五学期。