MIDAS中PSC变截面箱梁施工阶段及PSC设计例题

合集下载

MIDAS中的psc验算

MIDAS中的psc验算

斜截面抗裂验算
6.3.1(第2条) 6.3.3
裂缝宽度验算
6.4.2~6.4.4
挠度验算
6.5.1~6.5.4
正截面砼的法向压应力验 算
6.1.5,6.1.6 7.1.3,7.1.4 7.1.5
斜截面砼的主压应力验算
7.1.6,7.1.3 7.1.4,7.1.5
受拉区钢筋的拉应力验算
7.1.3, 7.1.4 7.1.5
梁 (受弯)
梁 (受弯)
程序验算结果与规范中相应条文的对应关系
验算内容
规范条款
备注
程序
表2 对应程序内的验算
正截面抗弯验算 斜截面抗剪验算 斜截面抗弯验算
5.2.2~5.2.5 5.2.6~5.2.11 5.2.12
适用于全预应力、A类、B类构件 适用于全预应力、A类、B类构件
是 7.使用阶段正截面抗弯验算 是 8.使用阶段斜截面抗剪验算 否
2) 受拉区钢筋拉应力验算:表中应力拉为正,压为负。 3) 使用阶段正截面法向应力验算:
- 表中应力压为正,拉为负。 - 最大、最小分别指的是压应力和拉应力的验算。本项验算结果表格中包含了规范里
面两项验算内容,即正截面抗裂验算和正截面砼的法向压应力验算,其中表格中“最 大/最小”位置显示“最小”的为正截面抗裂验算结果,表格中“最大/最小”位置 显示“最大”的为正截面砼的法向压应力验算。如果用户想分别查看两项验算结果 或者整理计算书时分开整理,可以只激活“最大”的结果或者“最小”的结果。下 面第4项、第5项验算内容和第3项内容类似,也是对应着规范里面两项验算内容, 查看时可以参考本条说明。在Civil 6.7.1中将把两项验算结果分开在两个表格里面 查看。 - 表格中“组合名称”项表示最大最小值所属的荷载组合 - 表格中“类型”项表示所属荷载组合中(包含移动荷载)显示的内力项最大时,会产 生所需的最大最小值。(当有移动荷载、支座沉降组分析时,程序计算了所有荷载工 况的6项内力及每项内力的最大最小两项,即对每一种荷载工况计算6*2=12次,表 格中的结果采用的是同时发生的内力计算的)。 4) 使用阶段斜截面应力验算(剪力最大时): - 表中应力压为正,拉为负。 - 最大、最小分别指的是压应力和拉应力的验算。 - 表格中“组合名称”项表示最大最小值所属的荷载组合 - 程序实现验算所有荷载工况下的斜截面应力并不困难,但是由于验算的工况太多, 计算时间可能很长。由于最大主拉应力一般都发生在腹板受最大剪应力的时候,而 腹板剪应力主要由剪力和扭矩产生,因而程序选择了剪力最大时和扭矩最大时两种 工况验算斜截面应力。 5) 使用阶段斜截面应力验算(扭矩最大时):表中应力压为正,拉为负。最大、最小分别 指的是压应力和拉应力的验算。其余说明同4)项。 6) 使用阶段裂缝宽度验算:最大、最小指的是不同荷载组合产生的截面弯距的最大、最小 值。在此需注意的是梁上部受拉时也会发生裂缝,程序将对此提供验算(最小项)。 7) 使用阶段正截面抗弯验算:最大、最小指的是不同荷载组合产生的截面弯矩的最大、最 小值。 8) 使用阶段斜截面抗剪验算:最大、最小指的是不同荷载组合产生的截面剪力的最大、最 小值。不同荷载组合下剪力的方向可能会发生变化,且弯矩变号会引起梁计算高度hB0B发 生变化(因为梁顶和梁底的钢筋中心距截面外端距离可能不一样),所以有必要验算剪力 最大和最小两种情况。 9) 使用阶段抗扭验算。最大最小项无意义。

迈达斯Midas-civil 梁格法建模实例

迈达斯Midas-civil 梁格法建模实例
节点连接: 1 2 节点连接:2 3
截面:号 1 名称 端部变截面右截面:号 3 名称 端部变截面左
节点连接: 3 4 节点连接:4 5
截面:号 2 名称 跨中等截面 截面:号 1 名称 端部变截面右
节点连接: 5 6 节点连接:6 7
截面:号 3 名称 端部变截面左 截面:号 2 名称 跨中等截面
模型 / 材料和截面特性 / 时间依存材料连接
时间依存材料类型>徐变和收缩>徐变和收缩
选择指定的材料>材料>1:C50选择的材料
图12. 时间依存性材料连接
采用建立节点和建立单元的常规步骤来建立结构模型
建立纵梁
点格(开) ;捕捉点(关) ;捕捉轴线(关)单元(开)
正面;自动对齐
模型>节点>建立节点
钢筋松弛系数(开),选择JTG04和0.3(低松弛)
超拉(开)
预应力钢筋抗拉强度标准值(fpk):1860N/mm^2
预应力钢筋与管道壁的摩擦系数:0.3
管道每米局部偏差对摩擦的影响系数:0.0066(1/m)
锚具变形、钢筋回缩和接缝压缩值:
开始点:6mm
结束点:6mm
拉力:抗拉强度标准值的75%
>徐变和收缩
X轴变化:一次方程
Y轴变化:一次方程
考虑剪切变形(开)
偏心>中-下部
图8. 端部变截面右
模型/材料和截面特性/截面
数据库/用户> 截面号(4); 名称(端部横梁)
截面类型>变截面>PSC-T形
尺寸
对称:(开)
左侧
HL1:0.2 ;HL3: 1.8; BL1:0.15 ;BL3: 0.01; BL4: 0.16

midas学习_PSC_截面设计验算

midas学习_PSC_截面设计验算
- 计算结果的判定标准对于全预应力混凝土受弯构件依照规范中公式(6.3.1-1)和公 式(6.3.1-2),各位置输出应力值已经考虑了0.85和0.8的系数;对于A类预应力混凝 土构件依照规范中公式(6.3.1-3)和公式(6.3.1-4),程序内部分别就短期效应组合 和长期效应组合分别进行正截面抗裂验算,对两种验算结果进行比较后输出最不利 情况。如果Sig_ALW=0,那么说明输出的是长期效应组合下的正截面抗裂验算结果, 如果Sig_ALW=0.7f_tk,那么说明输出的是短期效应组合下的正截面抗裂验算结果。
5(第2条)的规定。其中σ p 为按照规范第7.1.3条和第7.1.4条计算预应力混凝土受
弯构件由使用阶段作用标准值产生的预应力钢筋的应力增量。 - 设计结果表格中Sig_DL指的是施工阶段扣除短期预应力损失后的预应力钢筋的有
效预应力;Sig_LL指的是扣除全部预应力损失并考虑使用阶段作用标准值引起的钢 束应力变化后的预应力钢筋的拉应力;Sig_ADL指的是施工阶段预应力钢筋张拉控 制应力容许值;Sig_ALL指的是使用阶段预应力钢筋拉应力容许值,按规范7.1.5(第 2条)取用。 - 设计结果表格中应力拉为正,压为负。 - 要查看钢筋的应力状况必须在施工阶段分析中定义混凝土的收缩徐变,否则程序无 法考虑使用阶段荷载引起的预应力钢筋的应力变化。 3) 使用阶段正截面抗裂验算:(对应规范6.3.1(第1条)和规范6.3.2)
- 设计结果表格中底、顶指的是分别针对梁截面的底部和顶部的普通钢筋估算值。当 顶部弯矩Mj>0,即在梁顶部没有出现负弯矩的时候可以不配置普通钢筋,则顶部钢 筋估算值为0。
- 按照公式(6.3.3-1)~(6.3.3-4)计算由作用(或荷载)短期效应组合和预加力产生
的混凝土主压应力值,但公式(6.3.3-2)和公式(6.3.3-4)中的 M s 和Vs 应分别以 M k 、 Vk 代替。对混凝土主压应力结果要满足规范中公式(7.1.6-1)的规定。计算混凝土

MIDAS中的psc验算

MIDAS中的psc验算
梁 (受弯)
梁 (受弯)
程序验算结果与规范中相应条文的对应关系
验算内容
规范条款
备注
程序
表2 对应程序内的验算
正截面抗弯验算 斜截面抗剪验算 斜截面抗弯验算
5.2.2~5.2.5 5.2.6~5.2.11 5.2.12
适用于全预应力、A类、B类构件 适用于全预应力、A类、B类构件
是 7.使用阶段正截面抗弯验算 是 8.使用阶段斜截面抗剪验算 否
4) 进行设计的单元的预应力钢筋材料必须是新规范JTG D62-2004中的预应力钢筋材料。 否则会提示以下错误信息“钢束信息有错,设计截面用”。
5) 同一钢束组里面包含的预应力钢束必须具有相同的钢束特性值。否则会提示以下错误信 息“钢束组中有其他类型的钢束材料”。
6) 程序默认水平的梁单元按照梁设计,竖直的梁单元按照柱设计,对于倾斜的梁单元如果 想按照梁设计,需要在“设计――一般设计参数――编辑构件类型”中把相应的单元修 改为想采用的构件类型。否则会提示以下错误信息“不是适合的构件类型”。
MIDAS/Civil 6.7.0 PSC截面验算功能说明
1.程序给出的验算结果
程序一共给出了9项验算结果,如下所列。根据“PSC设计参数”中“截面设计内力” 和“构件类型”选定的内容的不同,给出的具体验算结果是不同的,详见表1。
1) 施工阶段正截面法向应力验算 2) 受拉区钢筋拉应力验算 3) 使用阶段正截面法向应力验算 4) 使用阶段斜截面应力验算(剪力最大时) 5) 使用阶段斜截面应力验算(扭矩最大时) 6) 使用阶段裂缝宽度验算 7) 使用阶段正截面抗弯验算 8) 使用阶段斜截面抗剪验算 9) 使用阶段抗扭验算
否 否 否
是 3.使用阶段正截面法向应力验算-查看“最小”的结果

MIDAS中PSC变截面箱梁施工阶段及PSC设计例题

MIDAS中PSC变截面箱梁施工阶段及PSC设计例题

PSC变截面箱梁施工阶段及PSC设计例题北京迈达斯技术有限公司2007年3月19日一、结构描述 (2)二、结构建模 (4)三、分步骤说明 (4)1、定义材料和截面特性 (4)2、建立上部梁单元并赋予单元截面属性 (7)3、定义结构组并赋予结构组单元信息 (11)4、定义边界组并定义边界条件 (12)5、定义荷载工况和荷载组 (13)6、定义施工阶段 (14)7、分阶段定义荷载信息 (15)8、分析及后处理查看 (20)9、按照JTG D62规范的要求对结构进行PSC设计 (21)PSC变截面箱梁施工阶段及PSC设计例题对于常规的PSC连续梁桥我们通常可以参考建模助手建立的模型,对于特殊的桥型或有特殊要求的结构我们需要按照一般方法建立有限元模型,施加边界和荷载进行分析。

这个例题主要说如何使用一般方法建立PSC连续梁桥并定义施工阶段进行施工阶段分析和按照JTG D62规范对结构进行设计验算.一、结构描述这是一座50+62+50的三跨预应力混凝土连续箱梁桥,这里仅模拟其上部结构.施工方法采用悬臂浇注,跨中截面和端部截面如图1所示.图1—1 跨中截面示意图1-2 支座截面示意桥梁立面图如图2所示。

图2 连续梁立面图图3 钢束布置形状二、结构建模对于施工阶段分析模型,通常采用的建模方法是:1、定义材料和截面特性(包括混凝土收缩徐变函数定义);2、建立上部梁单元并赋予单元截面属性;3、定义结构组并赋予结构组信息;4、建立边界组并定义边界条件;5、定义荷载工况和荷载组;6、定义施工阶段;7、分阶段定义荷载信息(分施工阶段荷载和成桥荷载两部分);8、分析,分析完成后定义荷载组合进行后处理结果查看;9、定义设计验算参数按照JTG D62对结构进行长短期及承载能力验算.下面就每个步骤分别详述如下——三、分步骤说明1、定义材料和截面特性本模型中涉及的材料包括混凝土主梁(C40)、预应力钢绞线(Strand1860)。

MIDAS中的psc验算

MIDAS中的psc验算
不同的“PSC设计参数”对应的验算结果
表1
ห้องสมุดไป่ตู้
项目
二维
二维+扭矩
全预应力
不提供第5)、6)、9)项验算 不提供第6)项验算
部分预应力A类 不提供第5)、6)、9)项验算 不提供第6)项验算
部分预应力B类 不提供第5) 、9)项验算
全部提供
* 以上不提供验算的项目均为规范中不要求验算的内容
三维 不提供第6)项验算 不提供第6)项验算 全部提供
MIDAS/Civil 6.7.0 PSC截面验算功能说明
1.程序给出的验算结果
程序一共给出了9项验算结果,如下所列。根据“PSC设计参数”中“截面设计内力” 和“构件类型”选定的内容的不同,给出的具体验算结果是不同的,详见表1。
1) 施工阶段正截面法向应力验算 2) 受拉区钢筋拉应力验算 3) 使用阶段正截面法向应力验算 4) 使用阶段斜截面应力验算(剪力最大时) 5) 使用阶段斜截面应力验算(扭矩最大时) 6) 使用阶段裂缝宽度验算 7) 使用阶段正截面抗弯验算 8) 使用阶段斜截面抗剪验算 9) 使用阶段抗扭验算
梁 (受弯)
梁 (受弯)
程序验算结果与规范中相应条文的对应关系
验算内容
规范条款
备注
程序
表2 对应程序内的验算
正截面抗弯验算 斜截面抗剪验算 斜截面抗弯验算
5.2.2~5.2.5 5.2.6~5.2.11 5.2.12
适用于全预应力、A类、B类构件 适用于全预应力、A类、B类构件
是 7.使用阶段正截面抗弯验算 是 8.使用阶段斜截面抗剪验算 否
1施工阶段正截面法向应力验算2受拉区钢筋拉应力验算3使用阶段正截面法向应力验算4使用阶段斜截面应力验算剪力最大时5使用阶段斜截面应力验算扭矩最大时6使用阶段裂缝宽度验算7使用阶段正截面抗弯验算8使用阶段斜截面抗剪验算9使用阶段抗扭验算不同的psc设计参数对应的验算结果不同的psc设计参数对应的验算结果表1项目项目二维二维二维二维扭矩不提供第6项验算不提供第6项验算全部提供扭矩三维三维全预应力部分预应力a类部分预应力b类以上不提供验算的项目均为规范中不要求验算的内容不提供第569项验算不提供第569项验算不提供第59项验算不提供第6项验算不提供第6项验算全部提供2

MIDAS-PSC设计验算说明

MIDAS-PSC设计验算说明

MIDAS-PSC设计验算说明MIDAS/Civil PSC设计验算功能说明⼀.程序给出的验算结果程序⼀共给出了12项验算结果,如下所列。

根据“PSC设计参数”中“截⾯设计内⼒”和“构件类型”选定的内容的不同,给出的具体验算结果是不同的,详见表1。

1)施⼯阶段正截⾯法向应⼒验算2)受拉区钢筋的拉应⼒验算3)使⽤阶段正截⾯抗裂验算*4)使⽤阶段斜截⾯抗裂验算*5)使⽤阶段正截⾯压应⼒验算*6)使⽤阶段斜截⾯主压应⼒验算*7)使⽤阶段裂缝宽度验算8)普通钢筋量估算*9)预应⼒钢筋量估算*10)使⽤阶段正截⾯抗弯验算11)使⽤阶段斜截⾯抗剪验算12)使⽤阶段抗扭验算不同的“PSC设计参数”对应的验算结果表1项⽬⼆维⼆维+扭矩三维全预应⼒不提供第7)、8)、12)项验算不提供第7)、8)项验算不提供第7) 、8)项验算部分预应⼒不提供第7)、12)项验算不提供第7)项验算不提供第7)项验算A类部分预应⼒不提供第3)、12)项验算不提供第3)项验算不提供第3)项验算B类*以上不提供验算的项⽬均为规范中不要求验算的内容⼆.程序验算结果说明及与规范中相应条⽂的对应关系1、施⼯阶段正截⾯法向应⼒验算:(对应规范7.2.7,7.2.8)-进⾏施⼯阶段正截⾯法向应⼒验算时,由预加⼒和荷载产⽣的法向应⼒可分别按照规范第6.1.5条和第7.1.3条进⾏计算。

此时,预应⼒钢筋应扣除相应阶段的预应⼒损失,荷载采⽤施⼯荷载,截⾯性质按本规范第6.1.4条的规定采⽤。

对计算结果的叠加要满⾜规范第7.2.8条的规定。

-最⼤、最⼩分别代表施⼯阶段在相应截⾯产⽣的正截⾯混凝⼟法向压应⼒和正截⾯混凝⼟法向拉应⼒。

-设计结果表格中最⼤/最⼩分别表⽰的是混凝⼟最⼤压应⼒/混凝⼟最⼤拉应⼒,同时相应的Sig_ALW指的是施⼯阶段混凝⼟容许压应⼒/容许拉应⼒。

-设计结果表格中应⼒压为正,拉为负。

-阶段表⽰的是该最⼤最⼩值所属施⼯阶段名称。

-抗压容许应⼒取⽤0.7f’tk,在计算抗压容许应⼒时取⽤的施⼯阶段混凝⼟的抗压强度标准值按f’ck=0.8fck计。

MIDASCivil 6.7.0 PSC截面验算功能说明

MIDASCivil 6.7.0 PSC截面验算功能说明
4) 进行设计的单元的预应力钢筋材料必须是新规范JTG D62-2004中的预应力钢筋材料。 否则会提示以下错误信息“钢束信息有错,设计截面用”。
5) 同一钢束组里面包含的预应力钢束必须具有相同的钢束特性值。否则会提示以下错误信 息“钢束组中有其他类型的钢束材料”。
6) 程序默认水平的梁单元按照梁设计,竖直的梁单元按照柱设计,对于倾斜的梁单元如果 想按照梁设计,需要在“设计――一般设计参数――编辑构件类型”中把相应的单元修 改为想采用的构件类型。否则会提示以下错误信息“不是适合的构件类型”。
不同的“PSC设计参数”对应的验算结果
表1
项目
二维
二维+扭矩
全预应力
不提供第5)、6)、9)项验算 不提供第6)项验算
部分预应力A类 不提供第5)、6)、9)项验算 不提供第6)项验算
部分预应力B类 不提供第5) 、9)项验算
全部提供
* 以上不提供验算的项目均为规范中不要求验算的内容
三维 不提供第6)项验算 不提供第6)项验算 全部提供
预钢筋端部锚固区、墩顶 正截面拉应力验算 (仅适用于全预应力和A类构件) 斜截面砼主拉应力验算 (适用于全预应力、A类、B类构件) 仅适用于B类构件
7.1.3适用于全预应力和A类构件 7.1.4适用于B类构件
7.1.3适用于全预应力和A类构件 7.1.4适用于B类构件 7.1.3适用于全预应力和A类构件 7.1.4适用于B类构件
斜截面抗裂验算
6.3.1(第2条) 6.3.3
裂缝宽度验算
6.4.2~6.4.4
挠度验算
6.5.1~6.5.4
正截面砼的法向压应力验 算
6.1.5,6.1.6 7.1.3,7.1.4 7.1.5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PSC变截面箱梁施工阶段及PSC设计例题北京迈达斯技术有限公司2007年3月19日一、结构描述 (2)二、结构建模 (4)三、分步骤说明 (4)1、定义材料和截面特性 (4)2、建立上部梁单元并赋予单元截面属性 (7)3、定义结构组并赋予结构组单元信息 (11)4、定义边界组并定义边界条件 (12)5、定义荷载工况和荷载组 (13)6、定义施工阶段 (14)7、分阶段定义荷载信息 (14)8、分析及后处理查看 (20)9、按照JTG D62规范的要求对结构进行PSC设计 (21)PSC变截面箱梁施工阶段及PSC设计例题对于常规的PSC连续梁桥我们通常可以参考建模助手建立的模型,对于特殊的桥型或有特殊要求的结构我们需要按照一般方法建立有限元模型,施加边界和荷载进行分析。

这个例题主要说如何使用一般方法建立PSC连续梁桥并定义施工阶段进行施工阶段分析和按照JTG D62规范对结构进行设计验算。

一、结构描述这是一座50+62+50的三跨预应力混凝土连续箱梁桥,这里仅模拟其上部结构。

施工方法采用悬臂浇注,跨中截面和端部截面如图1所示。

图1-1跨中截面示意图1-2支座截面示意桥梁立面图如图2所示。

图2连续梁立面图图3钢束布置形状二、结构建模对于施工阶段分析模型,通常采用的建模方法是:1、定义材料和截面特性(包括混凝土收缩徐变函数定义);2、建立上部梁单元并赋予单元截面属性;3、定义结构组并赋予结构组信息;4、建立边界组并定义边界条件;5、定义荷载工况和荷载组;6、定义施工阶段;7、分阶段定义荷载信息(分施工阶段荷载和成桥荷载两部分);8、分析,分析完成后定义荷载组合进行后处理结果查看;9、定义设计验算参数按照JTG D62对结构进行长短期及承载能力验算。

下面就每个步骤分别详述如下——三、分步骤说明1、定义材料和截面特性本模型中涉及的材料包括混凝土主梁(C40)、预应力钢绞线(Strand1860)。

如下图4所示。

图4材料列表通常对于预应力混凝土结构(PSC结构)按照现浇施工时,要考虑混凝土的收缩徐变效应,因此需要在建模前要定义混凝土的收缩徐变函数,按照如下图所示定义混凝土收缩徐变函数。

图5混凝土收缩徐变函数定义主梁截面为变截面箱梁,共有两个控制截面,一个是跨中截面,一是支座位置处截面。

以跨中截面和支座处截面定义变截面。

截面列表如图6所示。

其中跨中截面和支座截面在前面的结构描述中都有图示。

“跨中-支座”以及“支座-跨中”的变截面定义通过分别导入跨中截面和支座截面来定义就可以了。

如图6所示。

图6-1截面列表图6-2跨中-支座段变截面图6-3支座-跨中段变截面2、建立上部梁单元并赋予单元截面属性建立桥梁模型时,如果要同时进行施工阶段分析,要针对施工的特点建立有限元模型,例题中所示结构按照悬臂法施工,悬臂施工段为每段3m ,因此在建立模型时考虑按1.5m 或3m 长度单元建立模型,本例题中主梁是直梁结构,因此建模方式可选性很广,可以通过扩展单元的方式建立、或者从AutoCAD 导入已划分节段的主梁中心线、或者通过逐个建立单元的方式,这里采用扩展单元的方式建立一半主梁,然后通过镜像单元生成另一半主梁。

首先在(0,0,0)位置上建立主梁端部节点,然后通过对该节点进行扩展生成左半部主梁结构。

如下图所示——图7扩展生成左半边主梁然后对生成的左半边主梁进行镜像生成另一半主梁,如下图所示,扩展单元时输入的间距:6@3,2,8@3,2,1,3@2,1,2,8@3,1图8镜像生成另一半主梁生成全桥单元后,因为由镜像生成的梁单元的编号顺序也是镜向的,因此要对所有梁单元进行重新编号,以便于后续的单元选择(保证单元编号有规律的连续性对单元的选择操作很有帮助)。

上述步骤生成全桥单元时使用的是跨中截面,因此对生成的全桥单元应根据其实际对应的截面信息修改单元的截面信息,可以通过修改单元参数修改单元信息,也可以通过MIDAS 特有的拖放功能赋予单元截面信息,这里以拖放的方式赋予每段单元实际的截面信息。

首先选择支座附近单元,修改其截面类型为“支座”截面,打开单元编号显示,选择单元“18to20,43to45”,如下图——图9拖放功能修改支座附近单元的截面信息同样的方法,选择单元“9to17,34to42”,将截面“3:跨中-支座”拖放至模型窗口,得到如下图所示的模型——图10修改截面高度由低变高段(跨中-支座)同样的方法,选择单元“21to29,46to54”,将截面“4:支座-跨中”拖放至模型窗口,得到如下图所示的模型——通过拖放功能对选择的单元修改其截面信息拖放:将鼠标放置在树形菜单“支座截面”处,按住不放将鼠标拖到模型窗口中图11修改截面高度由低变高段(支座-跨中)赋予变高梁段变截面信息后,发现桥梁模型显示都是锯齿状,此时需要将同类的变截面定义为一个变截面组,保证单元截面变化的连续性。

在树形菜单双击“跨中-支座”,在变截面组信息中定义名称为“跨中-支座”,z 轴变化选择2项式变化,对称轴为单元组的i 端;图12-1变截面组“跨中-支座”定义图示在树形菜单双击“支座-跨中”,在变截面组信息中定义名称为“支座-跨中”,z轴变化选择2项式变化,对称轴为单元组的j端;3、定义结构组并赋予结构组单元信息结构组名称及结构组单元信息如下表所示——结构组名称结构组所含单元结构组名称结构组所含单元左支座处梁段17to21桥梁段2-33949右支座处梁段42to46桥梁段2-43850桥梁段1-11622桥梁段2-53751桥梁段1-21523桥梁段2-63652桥梁段1-31424桥梁段2-73553桥梁段1-41325桥梁段2-83454桥梁段1-51226桥梁段2-93355桥梁段1-61127左边跨合龙段7桥梁段1-71028跨中合龙段3132桥梁段1-8929右边跨合龙段56桥梁段1-9830左侧满堂支架区段1to6桥梁段2-14147右侧满堂支架区段57to62桥梁段2-24048所有合龙段7313256桥梁主梁1to62*注:“左支座处梁段”、“右支座处梁段”、“左侧满堂支架区段”、“右侧满堂支架区段”还应包括在步骤4中建立的支座节点。

建立好模型后,就可以对执行程序自动修改构件理论厚度的功能了。

如图选择所有梁单元,在“模型〉材料和截面特性〉修改时间依存材料特性”中选择修改构件理论厚度——图13修改构件理论厚度4、定义边界组并定义边界条件边界采用一般支承来模拟,因为截面选择的是顶对齐,因此需要在梁底支座支承的位置处建立支座节点,然后将支座节点和主梁节点通过弹性连接〉刚性连接起来。

选择中部节点19、20、44、45,选择节点〉复制移动,对选择的两个节点向下复制5.9m ,生成新节点64~67;选择边跨端部节点1和63,选择节点〉复制移动,对选择的两个节点向下复制3.05m ,生成新节点68、69。

(新生成的支座节点要按照步骤3的注释中说明的将节点放置在对应的结构组中。

)定义边界组和边界信息如下表所示。

支座约束支座与主梁约束边界组名称一般支承适用支座节点弹性连接适用节点支承11111164to67刚性19-64,20-65,44-66,45-67左边跨01110068刚性1-68右边跨01110069刚性63-69得到结构的边界条件如下图所示——点击*注:约束、荷载及其他模型中内容可以在“视图〉显示”中定义显示,如上述边界条件的显示,在显示菜单中选择要显示内容进行显示即可——5、定义荷载工况和荷载组荷载工况和荷载组定义如下表所示——编号荷载工况名称荷载类型荷载组说明1自重施工阶段荷载(CS)自重结构自重2预应力施工阶段荷载(CS)钢束1-0to 钢束1-9钢束2-0to 钢束2-9合拢段钢束1to3不同施工阶段对于预应力钢束的预应力3挂篮重施工阶段荷载(CS)挂篮1to9模架移动装置换算荷载4合拢段挂篮重施工阶段荷载(CS)合拢段挂篮1,2-1,2-2,3模架移动装置换算荷载6、定义施工阶段本模型采用悬臂浇注施工方法,从施工零号块开始,对称浇注两端悬臂段,直至全桥合龙,共分12个施工阶段。

施工阶段信息如下表所示——结构组边界组荷载组施工阶段名称激活钝化激活钝化激活钝化1-零号块施工左、右支座处梁段——支承——自重,挂篮1,钢束1-0,钢束2-0——2-悬浇1桥梁段1-1,桥梁段2-1——————挂篮2,钢束1-1,钢束2-1挂篮13-悬浇2桥梁段1-2,桥梁段2-2——————挂篮3,钢束1-2,钢束2-2挂篮24-悬浇3桥梁段1-3,桥梁段2-3——————挂篮4,钢束1-3,钢束2-3挂篮35-悬浇4桥梁段1-4,桥梁段2-4——————挂篮5,钢束1-4,钢束2-4挂篮46-悬浇5桥梁段1-5,桥梁段2-5——————挂篮6,钢束1-5,钢束2-5挂篮57-悬浇6桥梁段1-6,桥梁段2-6——————挂篮7,钢束1-6,钢束2-6挂篮68-悬浇7桥梁段1-7,桥梁段2-7——————挂篮8,钢束1-7,钢束2-7挂篮79-悬浇8桥梁段1-8,桥梁段2-8——————挂篮9,钢束1-8,钢束2-8挂篮810-悬浇9桥梁段1-9,桥梁段2-9——————合龙段挂篮1、2-1、2-2、3,钢束1-9,钢束2-9挂篮911-边跨合龙——左、右边跨——合龙段钢束1、3,合龙段挂篮1、312-中跨合龙——————合龙段钢束2,合龙段挂篮2-1、2-27、分阶段定义荷载信息本例题主要模拟5种荷载作用:结构自重、挂篮荷载、预应力荷载、混凝土收缩徐变荷载、公路一级车道荷载。

以上5种荷载,除收缩徐变由程序根据已定义的收缩徐变函数自动计算外,其他的都要定义荷载信息。

下面分述如下——1)自重:在荷载中选择自重,按照下图指定荷载工况名称、荷载组、自重系数添加即可。

2)挂篮荷载:主梁合龙前,在悬臂端都有挂篮荷载的作用,由于结构是对称施工,而且结构本身也是对称结构,因此施工过程中的等效挂篮荷载也是对称的。

在这里通过节点荷载来模拟。

挂篮作用在悬臂端外 2.452m 处m 处,挂篮换算荷载为10KN 及附加弯矩24.52KNm 。

以第一阶段挂篮1为例,定义挂篮荷载如下图所示——选择显示第一施工阶段,然后选择两个零号块的右端节点22和47,选择荷载工况为“模架移动装置”,荷载组选择“挂篮1”,添加节点荷载值Fz=-10KN ,My=24.52KNm 适用,然后再选择节点17和42,选择荷载工况为“模架移动装置”,荷载组选择“挂篮1”,添加节点荷载值Fz=-10KN ,My=-24.52KNm适用。

3)预应力荷载:定义预应力荷载分三步骤,钢束特性值——钢束布置形状——钢束预应力荷载。

钢束布置形状只能在基本状态下添加,而预应力荷载可以在施工阶段添加。

相关文档
最新文档