山东省滨州市中考数学第六章圆第三节与圆有关的计算要题随堂演练
山东省滨州市中考数学复习第六章圆第三节圆的弧长及扇形面积试题(无答案)(new)

第三节圆的弧长及扇形面积(分值:36分建议答题时间:60分钟)评分标准:选择题和填空题每小题3分.1. 120°的圆心角对的弧长是6π,则此弧所在圆的半径是()A。
3 B. 4 C. 9 D。
182. 如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧错误!的长等于( )A。
错误! B. 错误! C. 错误! D。
错误!第2题图3. 如图,将等边△ABC的边AC逐渐变成以B为圆心、BA为半径的错误!,长度不变,AB、BC的长度也不变,则∠ABC的度数大小由60°变为( )A. (错误!)° B。
(错误!)° C。
(错误!)° D。
(错误!)°第3题图4。
如图,现有一圆心角为90°,半径为8 cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为( )A。
4 cm B. 3 cm C. 2 cm D。
1 cm第4题图5. (人教九上P116第8题改编)如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB的长为25 cm,贴纸部分的宽BD为15 cm,若纸扇两面贴纸,则贴纸的面积为()A。
175π cm2 B。
350π cm2 C. 8003π cm2 D。
150π cm2第5题图6。
如图,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合.若BC=4,则图中阴影部分的面积是( )A. 2+πB。
2+2πC。
4+πD. 2+4π第6题图7。
(2017兰州)如图,正方形ABCD内接于半径为2的⊙O,则图中阴影部分的面积为( )A。
π+1 B. π+2C. π-1 D。
π-2第7题图8. (2017丽水)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A。
错误!-错误! B。
错误!-2错误!C。
错误!-错误! D。
2024年山东省滨州市中考数学试题(含解析)

滨州市二〇二四年初中学业水平考试数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分120分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共24分)一、选择题:本大题共8个小题,每小题3分,满分24分.每小题只有一个选项符合题目要求.1.12-的绝对值是()A.2B.12C.12- D.2-2.如图,一个三棱柱无论怎么摆放,其主视图不可能是()A.B.C.D.3.数学中有许多精美的曲线,以下是“悬链线”“黄金螺旋线”“三叶玫瑰线”和“笛卡尔心形线”.其中不是轴对称图形的是()A. B.C. D.4.下列运算正确的是()A.()336n n = B.22(2)4a a -=- C.824x x x ÷= D.23m m m ⋅=5.若点()12,N a a -在第二象限,那么a 的取值范围是()A.12a >B.12a <C.102a <<D.102a ≤<6.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数232341某同学分析上表后得出如下结论:①这些运动员成绩的平均数是1.65;②这些运动员成绩的中位数是1.70;③这些运动员成绩的众数是1.75.上述结论中正确的是()A.②③B.①③C.①②D.①②③7.点()11,M x y 和点()22,N x y 在反比例函数223k k y x -+=(k 为常数)的图象上,若120x x <<,则120y y ,,的大小关系为()A.120y y << B.120y y >> C.120y y << D.120y y >>8.刘徽(今山东滨州人)是魏晋时期我国伟大的数学家,中国古典数学理论的奠基者之一,被誉为“世界古代数学泰斗”.刘徽在注释《九章算术》时十分重视一题多解,其中最典型的是勾股容方和勾股容圆公式的推导,他给出了内切圆直径的多种表达形式.如图,Rt ABC △中,90C ∠=︒,,,AB BC CA 的长分别为,,c a b .则可以用含,,c a b 的式子表示出ABC 的内切圆直径d ,下列表达式错误的是()A.d a b c =+-B.2ab d a b c=++C.d =D.|()()|d a b c b =--第Ⅱ卷(非选择题共96分)二、填空题:本大题共8个小题,每小题3分,满分24分.9.若分式11x -在实数范围内有意义,则x 的取值范围是_____.10.小的整数是___________.11.将抛物线2y x =-先向右平移1个单位长度,再向上平移2个单位长度,则平移后抛物线的顶点坐标为____________.12.一副三角板如图1摆放,把三角板AOB 绕公共顶点O 顺时针旋转至图2,即AB OD ∥时,1∠的大小为____________︒.13.如图,在ABC 中,点D ,E 分别在边,AB AC 上.添加一个条件使ADE ACB ∽,则这个条件可以是____________.(写出一种情况即可)14.如图,四边形ABCD 内接于⊙O ,若四边形AOCD 是菱形,∠B 的度数是______.15.如图,四边形AOBC 四个顶点的坐标分别是(1,3)A -,(0,0)O ,(3,1)B -,(5,4)C ,在该平面内找一点P ,使它到四个顶点的距离之和PA PO PB PC +++最小,则P 点坐标为____________.16.如图,在边长为1的正方形网格中,点A ,B 均在格点上.(1)AB 的长为____________;(2)请只用..无刻度的直尺,在如图所示的网格中,画出以AB 为边的矩形ABCD ,使其面积为263,并简要说明点C ,D 的位置是如何找到的(不用证明):____________.三、解答题:本大题共8个小题,满分72分.解答时请写出必要的演推过程.17.计算:()11222-⎫⎛+-⨯-- ⎪⎝⎭.18.解方程:(1)21132x x -+=;(2)240x x -=.19.欧拉是历史上享誉全球的最伟大的数学家之一,他不仅在高等数学各个领域作出杰出贡献,也在初等数学中留下了不凡的足迹.设a ,b ,c 为两两不同的数,称()()()()()()()0,1,2,3n n nn a b c P n a b a c b c b a c a c b =++=------为欧拉分式.(1)写出0P 对应的表达式;(2)化简1P 对应的表达式.20.某校劳动实践基地共开设五门劳动实践课程,分别是A :床铺整理,B :衣物清洗,C :手工制作、D :简单烹饪、E :绿植栽培;课程开设一段时间后,季老师采用抽样调查的方式在全校学生中开展了“我最喜欢的劳动实践课程”为主题的问卷调查.根据调查所收集的数我进行整理、绘制了如下两幅不完整的统计图.根据图中信息,请回答下列问题:(1)请将条形统计图补充完整,并直接写出“手工制作”对应的扇形圆心角度数;(2)若该校共有1800名学生,请你估计全校最喜欢“绿植栽培”的学生人数;(3)小兰同学从B ,C ,D 三门课程中随机选择一门参加劳动实践,小亮同学从C ,D ,E 三门课程中随机选择一门参加劳动实践,求两位同学选择相同课程的概率.21.【问题背景】某校八年级数学社团在研究等腰三角形“三线合一”性质时发现:①如图,在ABC 中,若AD BC ⊥,BD CD =,则有B C ∠=∠;②某同学顺势提出一个问题:既然①正确,那么进一步推得AB AC =,即知AB BD AC CD +=+,若把①中的BD CD =替换为AB BD AC CD +=+,还能推出B C ∠=∠吗?基于此,社团成员小军、小民进行了探索研究,发现确实能推出B C ∠=∠,并分别提供了不同的证明方法.小军证明:分别延长,DB DC 至E ,F 两点,使得……小民证明:∵AD BC ⊥.∴ADB 与ADC △均为直角三角形、根据勾股定理,得……【问题解决】(1)完成①的证明;(2)把②中小军、小民的证明过程补充完整.22.春节期间,全国各影院上映多部影片,某影院每天运营成本为2000元,该影院每天售出的电影票数量y (单位:张)与售价x (单位:元/张)之间满足一次函数关系(3080x ≤≤,且x 是整数),部分数据如下表所示:电影票售价x (元/张)4050售出电影票数量y (张)164124(1)请求出y 与x 之间的函数关系式;(2)设该影院每天的利润(利润=票房收入-运营成本)为w (单位:元),求w 与x 之间的函数关系式;(3)该影院将电影票售价x 定为多少时,每天获利最大?最大利润是多少?23.①求证:四边形AFDE 为平行四边形;②若AB BDAC DC=,求证:四边形AFDE 为菱形;24.把一块三角形余料MNH (如图2所示)加工成菱形零件,使它的一个顶点与MNH △的顶点M 重合,另外三个顶点分别在三边MN NH HM ,,上,请在图2上作出这个菱形.(用尺规作图,保留作图痕迹,不写作法.)25.【教材呈现】现行人教版九年级下册数学教材85页“拓广探索”第14题:14.如图,在锐角ABC 中,探究sin aA ,sin bB ,sin c C之间的关系.(提示:分别作AB 和BC 边上的高.)【得出结论】sin sin sin a b c A B C==.【基础应用】在ABC 中,75B ∠=︒,45C ∠=︒,2BC =,利用以上结论求AB 的长;【推广证明】进一步研究发现,sin sin sin a b c A B C ==不仅在锐角三角形中成立,在任意三角形中均成立,并且还满足2sin sin sin a b c R A B C===(R 为ABC 外接圆的半径).请利用图1证明:2sin sin sin a b c R A B C===.【拓展应用】如图2,四边形ABCD 中,2AB =,3BC =,4CD =,90B C ∠=∠=︒.求过A,B,D三点的圆的半径.参考答案第Ⅰ卷(选择题共24分)一、选择题:本大题共8个小题,每小题3分,满分24分.每小题只有一个选项符合题目要求.1.【答案】B 【解析】【分析】本题考查了绝对值,根据数轴上某个数与原点的距离叫做这个数的绝对值的定义进行求解即可.【详解】解:∵1122-=,∴12-的绝对值是12,故选:B .2.【答案】A【解析】解:∵三棱柱的表面由2个三角形,1个正方形,2个矩形构成,∴其主视图可能是三角形或正方形或矩形,不可能是圆,故选:A .3.【答案】B【解析】解:A ,C ,D 选项中的图形都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;B 选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形.故选:B .4.【答案】D 【解析】解:A 、()3396n n n =≠,本选项不符合题意;B 、222(2)44a a a -=≠-,本选项不符合题意;C 、8264x x x x ÷=≠,本选项不符合题意;D 、23m m m ⋅=,本选项符合题意;故选:D .5.【答案】A【解析】解:∵点()12,N a a -在第二象限,∴1200a a -<⎧⎨>⎩,解得:12a >.故选:A .6.【答案】A【解析】解:①这些运动员成绩的平均数是()12 1.531.62 1.6531.74 1.7511.8 1.615⨯+⨯+⨯+⨯+⨯+⨯= ,原说法不正确;②这些运动员成绩的中位数是从小到大排列第8个数为1.70,原说法正确;③这些运动员成绩出现最多的是1.75,则的众数是1.75,原说法正确.故选:A .7.【答案】C【解析】解:∵()2223120k k k -+=-+>,∴反比例函数的图象分布在一、三象限,0x >时,0y >,0x <时,0y <,∵120x x <<,∴120y y <<,故选:C .8.【答案】D【解析】解:如图,设E F G 、、为切点,连接OC OD OE OF 、、、,则OEAC ⊥,OD BC ⊥,OF AB ⊥,2d OD OE OF ===,由切线长定理得,AE AF =,CE CD =,BD BF =,∵90ACB OEC ODC ∠=∠=∠=︒,CE CD =,∴四边形ODCE 是正方形,∴2d CE CD OD ===,∴2d AE b =-,2d BD a =-,∴2d BF a =-,∴22d d AF c a c a ⎛⎫=--=-+ ⎪⎝⎭,∵AE AF =,∴22d d b c a -=-+,∴d a b c =+-,故A 正确,不合题意;∵ABC BOC AOC AOB S S S S =++△△△△,∴11112222222d d d ab a b c =⨯+⨯+⨯,∴2ab ad bd cd=++∴2ab d a b c=++,故B 正确,不合题意;∵d a b c =+-,∴()22d a b c =+-222222a b c ab ac bc =+++--,∵222+=a b c ,222222d c ab ac bc∴=+--()()22c c a b c a =---()()2c a c b =--,∵0d >,d ∴=C 正确;令3a =,4b =,5c =,3452d a b c ∴=+-=+-=,而()()()()34541a b c b --=-⨯-=,|()()|d a b c b ∴≠--,故D 错误;故选D第Ⅱ卷(非选择题共96分)二、填空题:本大题共8个小题,每小题3分,满分24分.9.【答案】x ≠1【解析】∵分式11x -在实数范围内有意义,∴x −1≠0,解得:x ≠1故答案为x ≠1.10.【答案】2或3【解析】2<,3<23<<<小的整数为2或3,故答案为:2或311.【答案】()1,2【解析】解:由抛物线2y x =-先向右平移1个单位长度,再向上平移2个单位长度,根据“上加下减,左加右减”规律可得抛物线是()212y x =--+,∴顶点坐标是()1,2故答案为:()1,2.12.【答案】75【解析】解:∵AB OD ∥,∴45BOD B ∠=∠=︒,∴1453075BOD D ∠=∠+∠=︒+︒=︒,故答案为:75.13.【答案】ADE C ∠=∠或AED B ∠=∠或AD AE AC AB =【解析】解:DAE CAB ∠=∠ ,∴当ADE C ∠=∠时,ADE ACB ∽.当AED B ∠=∠时,ADE ACB ∽.当AD AE AC AB=时,ADE ACB ∽.故答案为:ADE C ∠=∠或AED B ∠=∠或AD AE AC AB =.14.【答案】60°##60度【解析】解:∵四边形ABCD 内接于⊙O ,∴∠B +∠D =180°,∵四边形OACD 是菱形,∴∠AOC =∠D ,由圆周角定理得,∠B =12∠AOC ,∴∠B +2∠B =180°,解得,∠B =60°,故答案为:60°.15.【答案】108,99⎛⎫ ⎪⎝⎭##181,99⎛⎫ ⎪⎝⎭【解析】解:连接AB OC 、相交于点P ,根据“两点之间线段最短”知PA PO PB PC +++最小,设直线AB 的解析式为y kx b =+,则有331k b k b -+=⎧⎨+=-⎩,解得12k b =-⎧⎨=⎩,∴直线AB 的解析式为2y x =-+,设直线OC 的解析式为y mx =,则有45m =,解得45m =,∴直线OC 的解析式为45y x =,联立得425x x =-+,解得109x =,则4108599y =⨯=,∴P 点坐标为108,99⎛⎫ ⎪⎝⎭,故答案为:108,99⎛⎫⎪⎝⎭.16.【答案】①.②.取点,E F ,得到正方形ABEF ,AF 交格线于点C ,BE 交格线于点D ,连接DC ,得到矩形ABCD ,即为所求.【解析】(1)AB ==(2)取点,E F ,则AF AB ===,得到正方形ABEF ,∴正方形ABEF 的面积为13=,AF 交格线于点D ,BE 交格线于点C ,连接DC ,得到矩形ABCD ,∵DG FH ,∴23AD AG AF AH ==,∴23AD AF BC ===,∴矩形ABCD 的面积为263=,如图,矩形ABCD ,即为所求..故答案为:取点,E F ,得到正方形ABEF ,AF 交格线于点D ,BE 交格线于点C ,连接DC ,得到矩形ABCD ,即为所求.三、解答题:本大题共8个小题,满分72分.解答时请写出必要的演推过程.17.【答案】0【解析】解:原式13122=+-,13122=-+,=11-+,0=.18.【答案】(1)5x =(2)10x =,24x =.【解析】【小问1详解】解:21132x x -+=,去括号得:()()22131x x -=+,去括号得:4233x x -=+,移项合并同类项得:5x =;【小问2详解】解:240x x -=,分解因式得:()40x x -=,∴0x =或40x -=,解得:10x =,24x =.19.【答案】(1)()()()()()()0111P a b a c b c b a c a c b =++------(2)10P =【解析】【小问1详解】解:当0n =时,()()()()()()0000a b c P a b a c b c b a c a c b =++------()()()()()()111a b a c b c b a c a c b =++------【小问2详解】()()()()()()1a b c P a b a c b c b a c a c b =++------()()()()()()a b a c b c a b a c b c a b c =-+------()())()()()(a b c b a c c a b a b a c b c =------+-()()()ab ac ab bc ca b c b c bca a =------++()()()ab ac ab bc ca b c b c bca a =------++0=.20.【答案】(1)补充条形统计图见解析;“手工制作”对应的扇形圆心角度数为72︒;(2)估计全校最喜欢“绿植栽培”的学生人数为540人;(3)甲乙两位同学选择相同课程的概率为:29.【解析】【小问1详解】解:参与调查的总人数为:3030%100÷=(人),“D ”的人数10025%25⨯=(人),“A ”的人数1001020253015----=(人),“手工制作”对应的扇形圆心角度数2036072100⨯︒=︒,补充条形统计图如图:【小问2详解】解:180030%540⨯=(人),因此估计全校最喜欢“绿植栽培”的学生人数为540人;【小问3详解】解:画树状图如下:由图可知,共有9种等可能的情况,其中两位同学选择相同课程的情况有2种,因此甲乙两位同学选择相同课程的概率为:29.21.【答案】(1)见解析(2)见解析【解析】【小问1详解】证明:∵AD BC ⊥,∴90ADB ADC ∠∠==︒,在Rt ADB 与Rt ADC 中,90AD AD ADB ADC BD CD ∠∠=⎧⎪==︒⎨⎪=⎩,∴()SAS Rt ADB Rt ADC ≌,∴B C ∠=∠;【小问2详解】小军证明:分别延长,DB DC 至E ,F 两点,使得,BE AB CF AC ==,如图所示:∵AB BD AC CD +=+,∴BE BD CF CD +=+即DE DF =,∵AD BC ⊥,∴90ADB ADC ∠∠==︒,在Rt ADE 与Rt ADF 中,90AD ADADB ADC ED FD∠∠=⎧⎪==︒⎨⎪=⎩,∴()SAS Rt ADE Rt ADF ≌,∴E F ∠∠=,∵,BE AB CF AC ==,∴E EAB F FAC ∠∠∠∠===,∴,E EAB ABC F FAC ACB ∠∠∠∠∠∠+=+=,∴ABC ACB ∠∠=;小民:证明:∵AD BC ⊥.∴ADB 与ADC △均为直角三角形,根据勾股定理,AD ==,AD ==∵AB BD AC CD +=+①,∴AB BD AC CD -=-②,+①②得:AB AC =,∴B C ∠=∠.22.【答案】(1)()43243080y x x =-+≤≤(2)()2432420003080w x x x =-+-≤≤(3)定价40元/张或41元/张时,每天获利最大,最大利润是4560元【解析】【小问1详解】解:设y 与x 之间的函数关系式为y kx b =+,则1644012450k b k b =+⎧⎨=+⎩,解得4324k b =-⎧⎨=⎩,∴y 与x 之间的函数关系式()43243080y x x =-+≤≤;【小问2详解】由题意得:22000(4324)200043242000w xy x x x x =-=-+-=-+-,即w 与x 之间的函数关系式为:()2432420003080w x x x =-+-≤≤.【小问3详解】()2281432420004(456130802w x x x x =-+-=--+≤≤, x 是整数,且3080x ≤≤,∴当40x =或41时,w 取得最大值,最大值为4560.价格低更能吸引顾客,定价40元/张或41元/张时,每天获利最大,最大利润是4560元.如图1,ABC 中,点D ,E ,F 分别在三边BC CAAB ,,上,且满足DF AC DE AB ,∥∥.23.【答案】23.①见解析;②见解析【解析】①证明:DF AC DE AB ∥,∥,∴四边形AFDE 为平行四边形;②DF AC ∥,DF BD AC BC∴=,即DF BC AC BD⋅=⋅DE AB ∥,DE CD AB BC∴=,即DE BC AB CD ⋅=⋅,又AB BD AC DC =,AB DC AC BD ∴⋅=⋅,DF DE ∴=,由①知四边形AFDE 为平行四边形,∴四边形AFDE 为菱形.24.【答案】见解析【解析】如图,菱形MDPE 即为所求.∵MP 平分NMH ∠,∴DMP EMP ∠=∠,∵DE 是MP 的垂直平分线,∴DM DP =,EM EP =,∴DMP DPM ∠=∠,=EMP EPM ∠∠,∴DPM EMP ∠=∠,EPM DMP ∠=∠,∴DP ME ∥,EP DM ∥,∴四边形MDPE 是平行四边形,∵DM DP =,∴平行四边形MDPE 是菱形.25.【答案】教材呈现:见解析;基础应用:3AB =;推广证明:见解析;拓展应用:6R =.【解析】解:教材呈现:如图,分别作,AD BC CE AB ⊥⊥,垂足分别为,D E ,在Rt △ABD 中,sin AD AD B AB c==,sin AD c B ∴=⋅,在Rt ADC 中,sin AD AD C AC b==,sin AD b C ∴=⋅,sin sin c B b C ∴⋅=⋅,sin sin c b C B∴=,在Rt AEC 中,sin EC A b=,sin EC A b ∴=⋅,在Rt BEC △中,sin EC B a =,∴sin EC B a =⋅,sin sin A b B a ∴⋅=⋅,sin sin a b A B ∴=,sin sin sin a b c A B C∴==.基础应用:∵ABC 中,75B ∠=︒,45C ∠=︒,∴180754560A ∠=︒-︒-︒=︒,由题意得sin sin AB BC C A=,2322=,解得263AB =;推广证明:作直径CQ ,连接AQ,∵直径CQ ,∴90QAC ∠=︒,∵ AC AC=,∴B Q ∠=∠,∴sin 2AC b Q CQ R∠==,∴2sin sin b b R Q B==,同理2sin b R A =,2sin b R C =,∴2sin sin sin a b c R A B C ===;拓展应用:连接BD ,作AE CD ⊥于点E ,∵90ABC C ∠=∠=︒,∴四边形ABCE 是矩形,∵2AB =,3BC =,4CD =,∴3AE BC ==,422DE CD CE =-=-=,22345BD =+=,∴22223213AD AE DE =+=+=∵90ABC C ∠=∠=︒,∴AB CD ∥,∴ABD BDC ∠=∠,∴3sin sin 5BC ABD BDC BD ∠=∠==,∵2sin AD R ABD =∠,即13235R =,∴5136R =.。
山东省滨州市2019中考数学 第六章 圆 第三节 与圆有关的计算习题

第三节 与圆有关的计算姓名:________ 班级:________ 用时:______分钟1.(xx·株洲中考)下列圆的内接正多边形中,一条边所对的圆心角最大的图形是( ) A .正三角形 B .正方形 C .正五边形 D .正六边形2.(xx·成都中考)如图,在▱ABCD 中,∠B=60°,⊙C 的半径为3,则图中阴影部分的面积是( )A .πB .2πC .3πD .6π3.(2019·易错题)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD ,将正方形ABCD 沿x 轴的正方向无滑动的在x 轴上滚动,当点A 离开原点后第一次落在x 轴上时,点A 运动的路径线与x 轴围成的面积为( )A.π2+12 B.π2+1 C .π+1 D .π+124.(xx·衢州中考)如图,AB 是圆锥的母线,BC 为底面直径,已知BC =6 c m ,圆锥的侧面积为15π c m 2,则sin ∠ABC 的值为( )A.34B.35C.45D.535.(xx·重庆中考)如图,在矩形ABCD 中,AB =4,AD =2,分别以A ,C 为圆心,AD ,CB 为半径画弧,交AB 于点E ,交CD 于点F ,则图中阴影部分的面积是( )A .4-2πB .8-12πC .8-2πD .8-4π6.(xx·连云港中考)一个扇形的圆心角是120°,它的半径是3 c m ,则扇形的弧长为________c m. 7.(2019·改编题)如图,▱ABCD 中,∠B=70°,BC =6,以AD 为直径的⊙O 交CD 于点E ,连接OE ,则图中阴影面积是______.8.(xx·玉林中考)如图,正六边形ABCDEF 的边长是6+43,点O 1,O 2分别是△ABF,△CDE 的内心,则O 1O 2=___________.9.(2019·原创题)如图,在△ABC 中,AD 为BC 边上的高,以点A 为圆心,AD 为半径作圆,交AB 于E ,交AC 于F ,点P 是⊙A 上一点,若BC =4,AD =2,∠EPF=40°,试求图中阴影部分的面积.10.(xx·湖州中考)如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,OC∥BD,交AD 于点E ,连接BC. (1)求证:AE =ED ;(2)若AB =10,∠CB D =36°,求AC ︵的长.11.(xx ·绵阳中考)如图,蒙古包可近似地看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25π m 2,圆柱高为3 m ,圆锥高为2 m 的蒙古包,则需要毛毡的面积是( )A .(30+529)π m 2B .40π m 2C .(30+521)π m 2D .55π m 212.(xx·十堰中考)如图,扇形OAB 中,∠AOB=100°,OA =12,点C 是OB 的中点,CD⊥OB 交AB ︵于点D ,以OC 为半径的CE ︵交OA 于点E ,则图中阴影部分的面积是( )A .12π+18 3B .12π+36 3C .6π+18 3D .6π+36 313.(xx ·扬州中考)用半径为10 c m ,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为________c m.14.(xx·兰州中考)如图,△ABC的外接圆O的半径为3,∠C=55°,则劣弧AB的长度是________.(结果保留π)15.(xx·扬州中考)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是OA的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.16.(2019·创新题)如图,△ABC 是正三角形,曲线CDEF 叫做正三角形的渐开线,其中CD ︵,DE ︵,EF ︵的圆心依次是A ,B ,C ,如果AB =1,那么曲线CDEF 的长是________.参考答案【基础训练】1.A 2.C 3.C 4.C 5.C 6.2π 7.π 8.12+4 3 9.解:∵AD⊥BC,∠EPF=40°, ∴∠EAF=2∠EPF=80°, ∴S 扇形EAF =80π×4360=8π9,S △ABC =12AD·BC=4,∴S 阴影部分=S △ABC -S 扇形EAF =4-8π9.10.(1)证明:∵AB 是⊙O 的直径,∴∠ADB=90°. ∵OC∥BD ,∴∠AEO=∠ADB=90°, 即OC⊥AD,∴AE=ED. (2)解:∵OC⊥AD,∴AC ︵=CD ︵, ∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°, ∴AC ︵的长为72π×5180=2π.【拔高训练】 11.A 12.C 13.103 14.116π15.(1)证明:如图,作OH⊥AC 于点H.∵AB=AC,AO⊥BC于点O,∴AO平分∠BAC.∵OE⊥AB,OH⊥AC,∴OH=OE,∴AC是⊙O的切线.(2)解:∵点F是AO的中点,∴AO=2OF=6. ∵OE=3,∴∠OAE=30°,∠AOE=60°,∴AE=3OE=33,∴S图中阴影部分=S△A OE-S扇形EOF=12×3×33-60·π·32360=93-3π2.(3)解:BP= 3.提示:如图,作F点关于BC的对称点F′,连接EF′交BC于点P. ∵PF=PF′,∴PE+PF=PE+PF′=EF′,此时EP+FP最小.∵OF′=OF=OE,∴∠F′=∠OEF′.而∠AOE=∠F′+∠OEF′=60°,∴∠F′=30°,∴∠F′=∠EAF′,∴EF′=EA=33,即PE+PF最小值为3 3.在Rt△OPF′中,OP=33OF′=3,在Rt△ABO中,OB=33OA=33×6=23,∴BP=23-3=3,即当PE+PF取最小值时,BP的长为 3.【培优训练】16.4π如有侵权请联系告知删除,感谢你们的配合!。
山东省滨州地区2024届中考数学全真模拟试卷含解析

山东省滨州地区2024届中考数学全真模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列图形不是正方体展开图的是()A.B.C.D.2.如图,BC是⊙O的直径,A是⊙O上的一点,∠B=58°,则∠OAC的度数是( )A.32°B.30°C.38°D.58°3.如图,四边形ABCD是正方形,点P,Q分别在边AB,BC的延长线上且BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②△OAE∽△OPA;③当正方形的边长为3,BP=1时,cos∠DFO=35,其中正确结论的个数是( )A.0 B.1 C.2 D.3 4.如图所示的几何体,它的左视图是()A.B.C.D.5.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为()A.B.C.D.6.一元二次方程x2+x﹣2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.计算(1-1x)÷221x xx-+的结果是( )A.x-1 B.11x-C.1xx-D.1xx-8.如图,BC∥DE,若∠A=35°,∠E=60°,则∠C等于()A.60°B.35°C.25°D.20°9.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是()A.①②③④B.②①③④C.③②①④D.④②①③10.如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是()A.B.C.D.二、填空题(共7小题,每小题3分,满分21分)11.数据:2,5,4,2,2的中位数是_____,众数是_____,方差是_____.12.关于x 的方程ax=x+2(a 1) 的解是________.13.如图,△ABC中,AB=AC,D是AB上的一点,且AD=23AB,DF∥BC,E为BD的中点.若EF⊥AC,BC=6,则四边形DBCF的面积为____.14.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件_____.15.如图,某小型水库栏水坝的横断面是四边形ABCD,DC∥AB,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC宽为2m,坝高为6m,则坝底AB的长为_____m.16.如图,边长为4的正方形ABCD内接于⊙O,点E是弧AB上的一动点(不与点A、B重合),点F是弧BC上的一点,连接OE,OF,分别与交AB,BC于点G,H,且∠EOF=90°,连接GH,有下列结论:①弧AE=弧BF;②△OGH是等腰直角三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为2其中正确的是_____.(把你认为正确结论的序号都填上)17.在直角坐标系平面内,抛物线y=3x2+2x在对称轴的左侧部分是_____的(填“上升”或“下降”)三、解答题(共7小题,满分69分)18.(10分)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A(﹣2,1),B(1,n)两点.求反比例函数和一次函数的解析式;根据图象写出一次函数的值大于反比例函数的值的x的取值范围.19.(5分)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)于销售单价x(元/个)之间的对应关系如图所示.试判断y与x之间的函数关系,并求出函数关系式;若许愿瓶的进价为6元/个,按照上述市场调查销售规律,求利润w(元)与销售单价x(元/个)之间的函数关系式;若许愿瓶的进货成本不超过900元,要想获得最大利润,试求此时这种许愿瓶的销售单价,并求出最大利润.20.(8分)先化简,再求值:x23x1x1x1-⎛⎫÷+-⎪--⎝⎭,其中x=3-1.21.(10分)抛一枚质地均匀六面分别刻有1、2、3、4、5、6点的正方体骰子两次,若记第一次出现的点数为a,第二次出现的点数为b,则以方程组322ax byx y+=⎧⎨+=⎩的解为坐标的点在第四象限的概率为_____.22.(10分)如图,一次函数的图象与反比例函数的图象交于C,D两点,与x,y轴交于B,A两点,且,,,作轴于E点.求一次函数的解析式和反比例函数的解析式;求的面积;根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.23.(12分)如图,建筑物BC上有一旗杆AB,从与BC相距40m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,求旗杆AB的高度.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)24.(14分)在等边△ABC外侧作直线AM,点C关于AM的对称点为D,连接BD交AM于点E,连接CE,CD,AD.(1)依题意补全图1,并求∠BEC的度数;(2)如图2,当∠MAC=30°时,判断线段BE与DE之间的数量关系,并加以证明;(3)若0°<∠MAC<120°,当线段DE=2BE时,直接写出∠MAC的度数.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解题分析】由平面图形的折叠及正方体的展开图解题.【题目详解】A 、C 、D 经过折叠均能围成正方体,B •折叠后上边没有面,不能折成正方体.故选B .【题目点拨】此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.2、A【解题分析】根据∠B =58°得出∠AOC=116°,半径相等,得出OC=OA ,进而得出∠OAC=32°,利用直径和圆周角定理解答即可.【题目详解】解:∵∠B =58°, ∴∠AOC=116°,∵OA=OC ,∴∠C=∠OAC=32°,故选:A .【题目点拨】此题考查了圆周角的性质与等腰三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用. 3、C【解题分析】由四边形ABCD 是正方形,得到AD =BC ,90DAB ABC ∠=∠=︒, 根据全等三角形的性质得到∠P =∠Q ,根据余角的性质得到AQ ⊥DP ;故①正确;根据勾股定理求出5,AQ ==,DFO BAQ ∠=∠直接用余弦可求出.【题目详解】详解:∵四边形ABCD 是正方形,∴AD =BC ,90DAB ABC ∠=∠=,∴AP =BQ ,在△DAP 与△ABQ 中, AD AB DAP ABQ AP BQ =⎧⎪∠=∠⎨⎪=⎩,∴△DAP ≌△ABQ ,∴∠P =∠Q ,∵90Q QAB ∠+∠=,∴90P QAB ∠+∠=,∴90AOP ∠=,∴AQ ⊥DP ;故①正确;②无法证明,故错误.∵BP =1,AB =3,∴4BQ AP ==,5,AQ ==,DFO BAQ ∠=∠ ∴3cos cos .5AB DFO BAQ AQ ∠=∠== 故③正确, 故选C .【题目点拨】考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高. 4、D【解题分析】分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D .点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5、D试题分析:列举出所有情况,看取出的两个都是黄色球的情况数占总情况数的多少即可.试题解析:画树状图如下:共有12种情况,取出2个都是黄色的情况数有6种,所以概率为.故选D.考点:列表法与树状法.6、A【解题分析】∵∆=12-4×1×(-2)=9>0,∴方程有两个不相等的实数根.故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.7、B【解题分析】先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.【题目详解】解:原式=(xx-1x)÷()2x1x-=x1x-•()2xx1-=1x1-,故选B.【题目点拨】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.8、C【解题分析】先根据平行线的性质得出∠CBE=∠E=60°,再根据三角形的外角性质求出∠C的度数即可.【题目详解】∵BC∥DE,∴∠CBE=∠E=60°,∵∠A=35°,∠C+∠A=∠CBE,∴∠C=∠CBE﹣∠C=60°﹣35°=25°,故选C.【题目点拨】本题考查了平行线的性质、三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.9、B【解题分析】根据常见几何体的展开图即可得.【题目详解】由展开图可知第一个图形是②正方体的展开图,第2个图形是①圆柱体的展开图,第3个图形是③三棱柱的展开图,第4个图形是④四棱锥的展开图,故选B【题目点拨】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.10、C【解题分析】根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题.【题目详解】解:由题意可得,y=308x=240x,当x=40时,y=6,故选C.【题目点拨】本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键.二、填空题(共7小题,每小题3分,满分21分)11、2 2 1.1.【解题分析】先将这组数据从小到大排列,再找出最中间的数,即可得出中位数;找出这组数据中最多的数则是众数;先求出这组数据的平均数,再根据方差公式S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2]进行计算即可.【题目详解】解:把这组数据从小到大排列为:2,2,2,4,5,最中间的数是2,则中位数是2;众数为2;∵这组数据的平均数是(2+2+2+4+5)÷5=3,∴方差是:15[(2−3)2+(2−3)2+(2−3)2+(4−3)2+(5−3)2]=1.1.故答案为2,2,1.1.【题目点拨】本题考查了中位数、众数与方差的定义,解题的关键是熟练的掌握中位数、众数与方差的定义.12、2 a1 -【解题分析】分析:依据等式的基本性质依次移项、合并同类项、系数化为1即可得出答案.详解:移项,得:ax﹣x=1,合并同类项,得:(a﹣1)x=1.∵a≠1,∴a﹣1≠0,方程两边都除以a﹣1,得:x=21a-.故答案为x=21 a-.点睛:本题主要考查解一元一次方程的能力,熟练掌握等式的基本性质及解一元一次方程的基本步骤是解题的关键.13、2【解题分析】解:如图,过D点作DG⊥AC,垂足为G,过A点作AH⊥BC,垂足为H,∵AB=AC,点E为BD的中点,且AD=23 AB,∴设BE=DE=x,则AD=AF=1x.∵DG⊥AC,EF⊥AC,∴DG ∥EF ,∴AE DE =AF GF ,即5x x =4x GF ,解得4GF=x 5. ∵DF ∥BC ,∴△ADF ∽△ABC ,∴DF AD =BC AB ,即DF 4x =66x ,解得DF=1. 又∵DF ∥BC ,∴∠DFG=∠C ,∴Rt △DFG ∽Rt △ACH ,∴DF GF =AC HC ,即4x 45=6x 3,解得25x =2. 在Rt △ABH中,由勾股定理,得9AH ====. ∴ABC 11S BC AH 692722∆=⋅⋅=⨯⨯=. 又∵△ADF ∽△ABC ,∴22ADF ABC S DF 44S BC 69∆∆⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ∴ADF 4S 27=129∆=⨯ ∴ABC ADF DBCF S S S 271215∆∆=-=-=四边形.故答案为:2.14、AC=BD .【解题分析】试题分析:添加的条件应为:AC=BD ,把AC=BD 作为已知条件,根据三角形的中位线定理可得,HG 平行且等于AC 的一半,EF 平行且等于AC 的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG 和EF 平行且相等,所以EFGH 为平行四边形,又EH 等于BD 的一半且AC=BD ,所以得到所证四边形的邻边EH 与HG 相等,所以四边形EFGH 为菱形.试题解析:添加的条件应为:AC=BD .证明:∵E ,F ,G ,H 分别是边AB 、BC 、CD 、DA 的中点,∴在△ADC 中,HG 为△ADC 的中位线,所以HG ∥AC 且HG=12AC ;同理EF ∥AC 且EF=12AC ,同理可得EH=12BD , 则HG ∥EF 且HG=EF ,∴四边形EFGH 为平行四边形,又AC=BD ,所以EF=EH ,∴四边形EFGH 为菱形.考点:1.菱形的性质;2.三角形中位线定理.15、(【解题分析】过点C 作CE ⊥AB ,DF ⊥AB ,垂足分别为:E ,F ,得到两个直角三角形和一个矩形,在Rt △AEF 中利用DF 的长,求得线段AF 的长;在Rt △BCE 中利用CE 的长求得线段BE 的长,然后与AF 、EF 相加即可求得AB 的长.【题目详解】解:如图所示:过点C 作CE ⊥AB ,DF ⊥AB ,垂足分别为:E ,F ,∵坝顶部宽为2m ,坝高为6m ,∴DC=EF=2m ,EC=DF=6m ,∵α=30°,∴BE=63tan30EC =︒(m ), ∵背水坡的坡比为1.2:1, ∴ 1.2 1.21DF AF AF ==, 解得:AF=5(m ),则3(3)m ,故答案为(3m .【题目点拨】本题考查了解直角三角形的应用,解题的关键是利用锐角三角函数的概念和坡度的概念求解.16、①②④【解题分析】①根据ASA 可证△BOE ≌△COF ,根据全等三角形的性质得到BE=CF ,根据等弦对等弧得到AE BF = ,可以判断①;②根据SAS 可证△BOG ≌△COH ,根据全等三角形的性质得到∠GOH=90°,OG=OH ,根据等腰直角三角形的判定得到△OGH 是等腰直角三角形,可以判断②;③通过证明△HOM ≌△GON ,可得四边形OGBH 的面积始终等于正方形ONBM 的面积,可以判断③;④根据△BOG ≌△COH 可知BG=CH ,则BG+BH=BC=4,设BG=x ,则BH=4-x ,根据勾股定理得到GH=22BG BH +()224x x +- ,可以求得其最小值,可以判断④.【题目详解】解:①如图所示,∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,∴∠BOE=∠COF ,在△BOE 与△COF 中,OB OC BOE COF OE OF =⎧⎪∠=∠⎨⎪=⎩,∴△BOE ≌△COF ,∴BE=CF ,∴AE BF = ,①正确;②∵OC=OB ,∠COH=∠BOG ,∠OCH=∠OBG=45°,∴△BOG ≌△COH ;∴OG=OH ,∵∠GOH=90°,∴△OGH 是等腰直角三角形,②正确.③如图所示,∵△HOM ≌△GON ,∴四边形OGBH 的面积始终等于正方形ONBM 的面积,③错误;④∵△BOG ≌△COH ,∴BG=CH ,∴BG+BH=BC=4,设BG=x ,则BH=4-x ,则22BG BH +()224x x +-,∴其最小值为2,④正确.故答案为:①②④【题目点拨】考查了圆的综合题,关键是熟练掌握全等三角形的判定和性质,等弦对等弧,等腰直角三角形的判定,勾股定理,面积的计算,综合性较强.17、下降【解题分析】根据抛物线y=3x 2+2x 图像性质可得,在对称轴的左侧部分是下降的.【题目详解】解:∵在232y x x =+中,30a =>,∴抛物线开口向上,∴在对称轴左侧部分y 随x 的增大而减小,即图象是下降的,故答案为下降.【题目点拨】本题考查二次函数的图像及性质.根据抛物线开口方向和对称轴的位置即可得出结论.三、解答题(共7小题,满分69分)18、 (1)y=2x-,y=−x−1;(2)x<−2或0<x<1 【解题分析】(1)利用点A 的坐标可求出反比例函数解析式,再把B (1,n )代入反比例函数解析式,即可求得n 的值,于是得到一次函数的解析式;(2)根据图象和A,B 两点的坐标即可写出一次函数的值大于反比例函数的值的x 的取值范围.【题目详解】(1)∵A(−2,1)在反比例函数y=m x的图象上, ∴1=2m -,解得m=−2. ∴反比例函数解析式为y=2x-, ∵B(1,n)在反比例函数上,∴n=−2,∴B 的坐标(1,−2), 把A(−2,1),B(1,−2)代入y=kx+b 得122k b k b =-+⎧⎨-=+⎩解得:11k b =-⎧⎨=-⎩ ∴一次函数的解析式为y=−x−1;(2)由图像知:当x<−2或0<x<1时,一次函数的值大于反比例函数的值.【题目点拨】本题考查了反比例函数与一次函数的交点问题,属于简单题,熟悉函数图像的性质是解题关键.19、(1)y 是x 的一次函数,y=-30x+1(2)w=-30x 2+780x -31(3)以3元/个的价格销售这批许愿瓶可获得最大利润4元【解题分析】(1)观察可得该函数图象是一次函数,设出一次函数解析式,把其中两点代入即可求得该函数解析式,进而把其余两点的横坐标代入看纵坐标是否与点的纵坐标相同.(2)销售利润=每个许愿瓶的利润×销售量.(3)根据进货成本可得自变量的取值,结合二次函数的关系式即可求得相应的最大利润.【题目详解】解:(1)y 是x 的一次函数,设y=kx+b ,∵图象过点(10,300),(12,240),∴10k b 30012k b 240+=⎧⎨+=⎩,解得k 30b 600=-⎧⎨=⎩.∴y=-30x +1. 当x=14时,y=180;当x=16时,y=120,∴点(14,180),(16,120)均在函数y=-30x+1图象上.∴y 与x 之间的函数关系式为y=-30x+1.(2)∵w=(x -6)(-30x +1)=-30x 2+780x -31,∴w 与x 之间的函数关系式为w=-30x 2+780x -31.(3)由题意得:6(-30x+1)≤900,解得x≥3.w=-30x 2+780x -31图象对称轴为:()780x 13230=-=⨯-. ∵a=-30<0,∴抛物线开口向下,当x≥3时,w 随x 增大而减小.∴当x=3时,w 最大=4.∴以3元/个的价格销售这批许愿瓶可获得最大利润4元.20、解:原式=1x 2+【解题分析】 试题分析:先将括号里面的通分后,将除法转换成乘法,约分化简.然后代x 的值,进行二次根式化简.解:原式=()()2x 2x 4x 2x 11x 1x 1x 1x 2x 2x 2----÷=⋅=---+-+. 当x1时,原式3===. 21、112【解题分析】解方程组322ax by x y +=⎧⎨+=⎩,根据条件确定a 、b 的范围,从而确定满足该条件的结果个数,利用古典概率的概率公式求出方程组只有一个解的概率.【题目详解】∵322ax by x y +=⎧⎨+=⎩, 得26023202b x b a a y b a -⎧⎪⎪-⎨-⎪⎪-⎩=>=< 若b >2a ,332b a ⎧⎪⎨⎪⎩>> 即a=2,3,4,5,6 b=4,5,6符合条件的数组有(2,5)(2,6)共有2个,若b <2a ,332b a ⎧⎪⎨⎪⎩<< 符合条件的数组有(1,1)共有1个,∴概率p=1+21=3612.故答案为:1 12.【题目点拨】本题主要考查了古典概率及其概率计算公式的应用.22、(1),;(2)8;(3)或.【解题分析】试题分析:(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;(2)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解;(3)根据函数的图象和交点坐标即可求解.试题解析:解:(1)∵OB=4,OE=2,∴BE=2+4=1.∵CE⊥x轴于点E,tan∠ABO==,∴OA=2,CE=3,∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(﹣2,3).∵一次函数y=ax+b的图象与x,y轴交于B,A两点,∴,解得:.故直线AB的解析式为.∵反比例函数的图象过C,∴3=,∴k=﹣1,∴该反比例函数的解析式为;(2)联立反比例函数的解析式和直线AB的解析式可得:,可得交点D的坐标为(1,﹣1),则△BOD的面积=4×1÷2=2,△BOC的面积=4×3÷2=1,故△OCD的面积为2+1=8;(3)由图象得,一次函数的值大于反比例函数的值时x的取值范围:x<﹣2或0<x<1.点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.23、7.6 m.【解题分析】利用CD及正切函数的定义求得BC,AC长,把这两条线段相减即为AB长【题目详解】解:由题意,∠BDC=45°,∠ADC=50°,∠ACD=90°,CD=40 m.∵在Rt△BDC中,tan∠BDC=.∴BC=CD=40 m.∵在Rt△ADC中,tan∠ADC=.∴.∴AB≈7.6(m).答:旗杆AB的高度约为7.6 m.【题目点拨】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键.24、(1)补全图形如图1所示,见解析,∠BEC=60°;(2)BE=2DE,见解析;(3)∠MAC=90°.【解题分析】(1)根据轴对称作出图形,先判断出∠ABD=∠ADB=y,再利用三角形的内角和得出x+y即可得出结论;(2)同(1)的方法判断出四边形ABCD是菱形,进而得出∠CBD=30°,进而得出∠BCD=90°,即可得出结论;(3)先作出EF=2BE,进而判断出EF=CE,再判断出∠CBE=90°,进而得出∠BCE=30°,得出∠AEC=60°,即可得出结论.【题目详解】(1)补全图形如图1所示,根据轴对称得,AD=AC,∠DAE=∠CAE=x,∠DEM=∠CEM.∵△ABC是等边三角形,∴AB=AC,∠BAC=60°.∴AB=AD.∴∠ABD=∠ADB=y.在△ABD中,2x+2y+60°=180°,∴x+y=60°.∴∠DEM=∠CEM=x+y=60°.∴∠BEC=60°;(2)BE=2DE,证明:∵△ABC是等边三角形,∴AB=BC=AC,由对称知,AD=AC,∠CAD=2∠CAM=60°,∴△ACD是等边三角形,∴CD=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,且∠BAD=2∠CAD=120°,∴∠ABC=60°,∴∠ABD=∠DBC=30°,由(1)知,∠BEC=60°,∴∠ECB=90°.∴BE=2CE.∵CE=DE,∴BE=2DE.(3)如图3,(本身点C,A,D在同一条直线上,为了说明∠CBD=90°,画图时,没画在一条直线上)延长EB至F使BE=BF,∴EF=2BE,由轴对称得,DE=CE,∵DE=2BE,∴CE=2BE,∴EF=CE,连接CF,同(1)的方法得,∠BEC=60°,∴△CEF是等边三角形,∵BE=BF,∴∠CBE=90°,∴∠BCE=30°,∴∠ACE=30°,∵∠AED=∠AEC,∠BEC=60°,∴∠AEC=60°,∴∠MAC=180°﹣∠AEC﹣∠ACE=90°.【题目点拨】此题是三角形综合题,主要考查了等边三角形的判定和性质,轴对称的性质,等腰三角形的性质,三角形的内角和定理,作出图形是解本题的关键.。
中考数学复习《圆》专题训练-附带有答案

中考数学复习《圆》专题训练-附带有答案一、选择题1.下列有关圆的一些结论:①平分弧的直径垂直于弧所对的弦;②平分弦的直径垂直于弦;③在同圆或等圆中,相等的弦所对的圆周角相等;④同弧或等弧所对的弦相等,其中正确的有()A.①④B.②③C.①③D.②④2.在同一平面内,已知⊙O的半径为3cm,OP=4cm,则点P与⊙O的位置关系是()A.点P在⊙O圆外B.点P在⊙O上C.点P在⊙O内D.无法确定3.如图,AB是⊙O的直径,C是⊙O上一点.若∠BOC=66°()A.66°B.33°C.24°D.30°4.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠CDA=118°,则∠C的度数为()A.32°B.33°C.34°D.44°5.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=26°,则∠D等于()A.26°B.48°C.38°D.52°6.如图,四边形ABCD内接于⊙O,∠C=100°,那么∠A是()A.60°B.50°C.80°D.100°7.如图,AB为⊙O的直径,C是⊙O上的一点,若∠BCO=35°,AO=2,则AC⌢的长度为()A.29πB.59πC.πD.79π8.如图,点A、B、C、D、E都是⊙O上的点AC⌢=AE⌢,∠D=130°则∠B的度数为()A.130°B.128°C.115°D.116°二、填空题9.半径为6的圆上,一段圆弧的长度为3π,则该弧的度数为°.10.如图,在△ABC中,∠ACB= 130°,∠BAC=20°,BC=2.以C为圆心,CB为半径的圆交AB于点D,则BD的长为.11.如图,⊙O是△ABC的外接圆,BC是⊙O的直径,AB=AC.∠ABC的平分线交AC于点D,交⊙O于点E,连结CE.若CE= √2,则BD的长为.12.如图,四边形ABCD为⊙O的内接四边形,若∠ADC=85°,则∠B=.13.如图,在△ABC中∠ACB=90°,O为BC边上一点CO=2.以O为圆心,OC为半径作半圆与AB边交π,则阴影部分的面积为.于E,且OE⊥AB.若弧CE的长为43三、解答题14.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,OD交AC于点E,OD∥BC(1)求证:AD=CD;(2)若AC=8,DE=2,求BC的长.15.如图,AB是⊙O的直径,F为⊙O上一点,AC平分∠FAB交⊙O于点C.过点C作CD⊥AF交AF的延长线于点D.(1)求证:CD是⊙O的切线.(2)若DC=3,AD=9,求⊙O半径.⌢上一点,AG与DC的延长线交于点F.16.已知,如图,AB是⊙O的直径,弦CD⊥AB于点E,G是AC(1)如CD=8,BE=2,求⊙O的半径长;(2)求证:∠FGC=∠AGD.17.如图,在△ABC中AB=AC,以底边BC为直径的⊙O交两腰于点D,E .(1)求证:BD=CE;⌢的长.(2)当△ABC是等边三角形,且BC=4时,求DE18.如图,在△ABC中,经过A,B两点的⊙O与边BC交于点E,圆心O在BC上,过点O作OD⊥BC交⊙O 于点D,连接AD交BC于点F,且AC=FC.(1)试判断AC与⊙O的位置关系,并说明理由;(2)若FC=√3,CE=1.求图中阴影部分的面积(结果保留π).参考答案1.A2.A3.B4.C5.C6.C7.D8.C9.9010.2√311.2√212.95°π13.4√3−4314.(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OD∥BC∴∠AEO=∠ACB=90°⌢=CD⌢∴AD∴AD=CD;(2)解:∵OD⊥AC,AC=8AC=4∴AE=12设⊙O的半径为r∵DE=2∴OE=OD﹣DE=r﹣2在Rt△AEO中,AE2+OE2=AO2∴16+(r﹣2)2=r2解得:r=5∴AB=2r=10在Rt△ACB中,BC=√AB2−AC2=√102−82=6∴BC的长为6.15.(1)证明:连接OC∵AC平分∠FAB∴∠FAC=∠CAO∵AO=CO∴∠ACO=∠CAO∴∠FAC=∠ACO∴AD∥OC∵CD⊥AF∴CD⊥OC∵OC为半径∴CD是⊙O的切线;(2)解:过点O作OE⊥AF于EAF,∠OED=∠EDC=∠OCD=90°∴AE=EF=12∴四边形OEDC为矩形∴CD=OE=3,DE=OC设⊙O的半径为r,则OA=OC=DE=r∴AE=9﹣r∵OA2﹣AE2=OE2∴r2﹣(9﹣r)2=32解得r=5.∴⊙O半径为5.16.(1)解:连接OC.设⊙O的半径为R.∵CD⊥AB∴DE=EC=4在Rt △OEC中,∵OC2=OE2+EC2∴R2=(R−2)2+42解得R=5.(2)解:连接AD∵弦CD⊥AB̂ = AĈ∴AD∴∠ADC=∠AGD∵四边形ADCG是圆内接四边形∴∠ADC=∠FGC∴∠FGC=∠AGD.17.(1)证明:∵AB=AC∴∠B=∠C⌢=BE⌢∴CD⌢=CE⌢∴BD∴BD=CE;(2)解:连接OD、OE∵△ABC 是等边三角形∴∠B =∠C =60°∴∠COD =120°∴∠COD +∠BOE =∠COE +∠DOE +∠BOD +∠DOE =240° ∴∠DOE =240°−180°=60°∵BC =4∴⊙O 的半径为 2∴DE ⌢ 的长 =60π×2180=2π3 .18.(1)解:AC 与⊙O 的相切,理由如下∵AO =DO∴∠D =∠OAD∵CF =CA∴∠CAF =∠CFA又∵∠CFA =∠OFD∴∠CAF =∠OFD∵OD ⊥BC∴∠OFD +∠ODF =90°∴∠CAF +∠OAF =90°∴OA ⊥AC∵OA 是半径∴AC 是⊙O 的切线∴ AC 与⊙O 的相切;(2)解:过A 作AM ⊥BC 于M ,如图设OA=OE=r∵FC=√3,CE=1在Rt△CAO中AO=r,AC=FC=√3,OC=OE+EC=r+1AO2+AC2=OC2∴r2+(√3)2=(r+1)2解得r=1∴OC=OE+EC=2∴AO=12 OC∴∠C=30°∴∠AOC=60°∴∠AOB=180−∠AOC=120°在Rt△CAM中AM=12AC=12FC=√32∴S△AOB=12⋅OB⋅AM=12×1×√32=√34∴S扇形AOB=120360π×1=π3∴S阴影部分=S△AOB−S扇形AOB=π3−√34.。
山东省滨州市2021中考数学第六章圆第二节与圆有关的位置关系习题

山东省滨州市2021中考数学第六章圆第二节与圆有关的位置关系习题内部文件,版权追溯第二节与圆有关的位置关系姓名:课程:时间:分钟1.(2021湘西州中考)已知⊙o的半径为5cm,圆心o到直线l的距离为5cm,则直线l与⊙o的位置关系为()a、交叉点B.相切C.分离D.无法确定2.(2021改编题)设⊙o的半径为3,点o到直线l的距离为d,若直线l与⊙o至少有一个公共点,则d应满足的条件是()a、 d=3b.d≤3c.d<3d.d>33.(2021改编题)如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()a、三条中线的交点△ ABC B.三条垂直线的交点△ ABC C.三条角平分线的交点△ ABC D.直线的交点,其中△ ABC位于4.(2021深圳中考)如图,一把直尺,60°的直角三角板和光盘如图摆放,a为60°角与直尺交点,ab=3,则光盘的直径是()a、 3b.33c.6d.635.(2021重庆中考a卷)如图,已知ab是⊙o的直径,点p在ba的延长线上,pd与⊙o相切于点d,过点b作pd的垂线交pd的延长线于点c,若⊙o的半径为4,bc=6,则pa的长为()一a.4b.23c.3d.2.56.(2022年泰州高中入学考试)如图所示,AB是⊙ o、 C点就是重点⊙ o、切交点C是AB在点D的延长线。
如果∠ 那么a=32°∠ d=度7.(2021连云港中考)如图,ab是⊙o的弦,点c在过点b的切线上,且oc⊥oa,oc 交ab于点p.已知∠oab=22°,则∠ocb=__________.8.(2022年湖州高中入学考试)如图所示,已知内接圆⊙ 哦△ ABC与点D处的BC 侧相切,连接ob和OD,如果∠ ABC=40°,指∠ 生化需氧量是____9.(2021娄底中考)如图,已知半圆o与四边形abcd的边ad,ab,bc都相切,切点分别为d,e,c,半径oc=1,则aebe=______.10.(2022年适应问题)众所周知,如图所示,AB是⊙ o、 AC是弦,直线EF是弦的切线⊙ o通过C点,∠ BAC=∠ CAD(1)验证:ad⊥ EF;(2)若∠b=30°,ab=12,求ad的长.二11.(2021常德中考)如图,已知⊙o是等边三角形abc的外接圆,点d在圆上,在cd 的延长线上有一点f,使df=da,ae∥bc交cf于点e.(1)求证:ea是⊙o的切线;(2)求证:bd=cf.12.(2022年重庆市高中入学考试B卷)如图所示,∠ a=30°英寸△ ABC,点O是边AB上的一个点,点O为中心,点ob为半径⊙ o在D点与AC相切,并连接到BD。
山东省滨州市中考数学复习 第六章 圆 第20讲 与圆有关的位置关系课件.pptx

解:(1)证明:∵点E是△ABC的内心, ∴∠BAD=∠CAD,∠ABE=∠CBE. ∵∠CBD=∠CAD, ∴∠BAD=∠CBD. 又∵∠BED=∠ABE+∠BAD, ∠EBD=∠CBE+∠CBD, ∴∠BED=∠EBD. ∴ED=BD. (2)如图,连接CD. ∵∠BAC=90°, ∴BC是⊙O的直径. ∴∠BDC=90°. ∵⊙O的直径为6, ∴BC=6. ∵E为△ABC的内切圆的圆心, ∴∠BAD=∠CAD. ∴BD=CD.
∴CD⊥AD.
∴OE∥CD.
∴∠EFD=∠OEF.
∵OE=OF,
∴∠OEF=∠OFE.
∴∠OFE=∠EFD.
∴FE平分∠BFD.
(2)∵∠C=90°,
∴BF是⊙O的直径.
14
∵AB∥OE∥CD,BO=FO,
15
2.[2012·滨州,21,8分]如图,PA,PB是⊙O的切线,A,B为切 点,AC是⊙O的直径,∠P=50°,求∠BAC的度数.
12
技法点拨►(1)内心是三角形内切圆的圆心,是三角形角平分线 的交点,到各边的距离相等.有关内心的计算可以把三角形的 各个顶点与内心相连,则把三角形分成三个三角形,三个三角 形有相等的高就是内切圆的半径,因而可以根据三角形的面积 公式求解;(2)一般三角形的三边分别a,b,c,面积是S,则内 切圆的半径
第六章 圆 第20讲 与圆有关的位置关系
1
考点梳理过关 考点1 点与圆的位置关系
2
考点2 直线与圆的位置关系
提示►注意这里的d是指圆心到直线的垂线段的长度,而不是到直
线任意点的长度.
3
考点3 切线的性质与判定 6年5考
4
拓展►(1)证明切线有两种方法:①切线的判定定理,通过定 理转化为证明垂直问题;②由切线的定义或圆心到直线的距离 d与圆的半径r的大小关系,判定一条直线是圆的切线,转化为 证明线段相等问题.(2)当所证直线经过圆上的点已知时,用 判定定理;当直线经过圆上的点未知时,证明d=r. 考点4 反证法
2024年山东省滨州市中考数学试题+答案详解

2024年山东省滨州市中考数学试题+答案详解(试题部分)温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分120分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共24分)一、选择题:本大题共8个小题,每小题3分,满分24分.每小题只有一个选项符合题目要求. 1. 12−的绝对值是( )A. 2B. 12 C. 12− D. 2−2. 如图,一个三棱柱无论怎么摆放,其主视图不可能是( )A. B.C. D.3. 数学中有许多精美的曲线,以下是“悬链线”“黄金螺旋线”“三叶玫瑰线”和“笛卡尔心形线”.其中不是轴对称图形的是( )A. B.C. D.4. 下列运算正确的是( )A. ()336n n =B. 22(2)4a a −=−C. 824x x x ÷=D. 23m m m ⋅=5. 若点()12,N a a −在第二象限,那么a 的取值范围是( ) A. 12a > B. 12a < C. 102a << D. 102a ≤< 6. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:某同学分析上表后得出如下结论:①这些运动员成绩的平均数是1.65;②这些运动员成绩的中位数是1.70;③这些运动员成绩的众数是1.75.上述结论中正确的是( )A. ②③B. ①③C. ①②D. ①②③7. 点()11,M x y 和点()22,N x y 在反比例函数223k k y x−+=(k 为常数)的图象上,若120x x <<,则120y y ,,的大小关系为( )A. 120y y <<B. 120y y >>C. 120y y <<D. 120y y >>8. 刘徽(今山东滨州人)是魏晋时期我国伟大的数学家,中国古典数学理论的奠基者之一,被誉为“世界古代数学泰斗”.刘徽在注释《九章算术》时十分重视一题多解,其中最典型的是勾股容方和勾股容圆公式的推导,他给出了内切圆直径的多种表达形式.如图,Rt ABC △中,90C ∠=︒,,,AB BC CA 的长分别为,,c a b .则可以用含,,c a b 的式子表示出ABC 的内切圆直径d ,下列表达式错误的是( )A. d a b c =+−B. 2ab d a b c =++C. d =D. |()()|d a b c b =−−第Ⅱ卷(非选择题共96分)二、填空题:本大题共8个小题,每小题3分,满分24分.9. 若分式11x −在实数范围内有意义,则x 的取值范围是_____.10.小的整数是___________.11. 将抛物线2y x =−先向右平移1个单位长度,再向上平移2个单位长度,则平移后抛物线的顶点坐标为____________.12. 一副三角板如图1摆放,把三角板AOB 绕公共顶点O 顺时针旋转至图2,即AB OD ∥时,1∠的大小为____________︒.13. 如图,在ABC 中,点D ,E 分别在边,AB AC 上.添加一个条件使ADE ACB ∽,则这个条件可以是____________.(写出一种情况即可)14. 如图,四边形ABCD 内接于⊙O ,若四边形AOCD 是菱形,∠B 的度数是______.15. 如图,四边形AOBC 四个顶点的坐标分别是(1,3)A −,(0,0)O ,(3,1)B −,(5,4)C ,在该平面内找一点P ,使它到四个顶点的距离之和PA PO PB PC +++最小,则P 点坐标为____________.16. 如图,在边长为1的正方形网格中,点A ,B 均在格点上.(1)AB 的长为____________;(2)请只用..无刻度的直尺,在如图所示的网格中,画出以AB 为边的矩形ABCD ,使其面积为263,并简要说明点C ,D 的位置是如何找到的(不用证明):____________. 三、解答题:本大题共8个小题,满分72分.解答时请写出必要的演推过程.17. 计算:()11222−⎫⎛+−⨯−− ⎪⎝⎭ 18. 解方程:(1)21132x x −+=; (2)240x x −=.19. 欧拉是历史上享誉全球的最伟大的数学家之一,他不仅在高等数学各个领域作出杰出贡献,也在初等数学中留下了不凡的足迹.设a ,b ,c 为两两不同的数,称()()()()()()()0,1,2,3n n nn a b c P n a b a c b c b a c a c b =++=−−−−−−为欧拉分式. (1)写出0P 对应的表达式;(2)化简1P 对应的表达式.20. 某校劳动实践基地共开设五门劳动实践课程,分别是A :床铺整理,B :衣物清洗,C :手工制作、D :简单烹饪、E :绿植栽培;课程开设一段时间后,季老师采用抽样调查的方式在全校学生中开展了“我最喜欢的劳动实践课程”为主题的问卷调查.根据调查所收集的数我进行整理、绘制了如下两幅不完整的统计图.根据图中信息,请回答下列问题:(1)请将条形统计图补充完整,并直接写出“手工制作”对应的扇形圆心角度数;(2)若该校共有1800名学生,请你估计全校最喜欢“绿植栽培”的学生人数;(3)小兰同学从B ,C ,D 三门课程中随机选择一门参加劳动实践,小亮同学从C ,D ,E 三门课程中随机选择一门参加劳动实践,求两位同学选择相同课程的概率.21. 【问题背景】某校八年级数学社团在研究等腰三角形“三线合一”性质时发现:①如图,在ABC 中,若AD BC ⊥,BD CD =,则有B C ∠=∠;②某同学顺势提出一个问题:既然①正确,那么进一步推得AB AC =,即知AB BD AC CD +=+,若把①中的BD CD =替换为AB BD AC CD +=+,还能推出B C ∠=∠吗?基于此,社团成员小军、小民进行了探索研究,发现确实能推出B C ∠=∠,并分别提供了不同的证明方法.小军小民ADB 与△【问题解决】(1)完成①的证明;(2)把②中小军、小民的证明过程补充完整.22. 春节期间,全国各影院上映多部影片,某影院每天运营成本为2000元,该影院每天售出的电影票数量y (单位:张)与售价x (单位:元/张)之间满足一次函数关系(3080x ≤≤,且x 是整数),部分数据如下表所示:(1)请求出y 与x 之间的函数关系式;(2)设该影院每天的利润(利润=票房收入-运营成本)为w (单位:元),求w 与x 之间的函数关系式;(3)该影院将电影票售价x 定为多少时,每天获利最大?最大利润是多少?如图1,ABC 中,点D ,E ,F 分别在三边BC CA AB ,,上,且满足DF AC DE AB ,∥∥.23. ①求证:四边形AFDE 为平行四边形;②若AB BD AC DC=,求证:四边形AFDE 为菱形; 24. 把一块三角形余料MNH (如图2所示)加工成菱形零件,使它的一个顶点与MNH △的顶点M 重合,另外三个顶点分别在三边MN NH HM ,,上,请在图2上作出这个菱形.(用尺规作图,保留作图痕迹,不写作法.)25. 【教材呈现】现行人教版九年级下册数学教材85页“拓广探索”第14题: ABC 中,)【得出结论】sin sin sin a b c A B C==. 【基础应用】在ABC 中,75B ∠=︒,45C ∠=︒,2BC =,利用以上结论求AB 的长;【推广证明】 进一步研究发现,sin sin sin a b c A B C==不仅在锐角三角形中成立,在任意三角形中均成立,并且还满足2sin sin sin a b c R A B C===(R 为ABC 外接圆的半径). 请利用图1证明:2sin sin sin a b c R A B C===.【拓展应用】如图2,四边形ABCD 中,2AB =,3BC =,4CD =,90B C ∠=∠=︒.求过A ,B ,D 三点的圆的半径.2024年山东省滨州市中考数学试题+答案详解(答案详解)温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分120分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共24分)一、选择题:本大题共8个小题,每小题3分,满分24分.每小题只有一个选项符合题目要求.1.12−的绝对值是()A. 2B. 12C.12− D. 2−【答案】B【解析】【分析】本题考查了绝对值,根据数轴上某个数与原点的距离叫做这个数的绝对值的定义进行求解即可.【详解】解:∵11 22−=,∴12−的绝对值是12,故选:B.2. 如图,一个三棱柱无论怎么摆放,其主视图不可能是()A. B.C. D.【答案】A【解析】【分析】本题考查了物体的三视图,根据三棱柱的表面由2个三角形,1个正方形,2个矩形构成即可判断求解,掌握三棱柱的结构特点是解题的关键.【详解】解:∵三棱柱的表面由2个三角形,1个正方形,2个矩形构成,∴其主视图可能是三角形或正方形或矩形,不可能是圆,故选:A.3. 数学中有许多精美的曲线,以下是“悬链线”“黄金螺旋线”“三叶玫瑰线”和“笛卡尔心形线”.其中不是轴对称图形的是()A. B.C. D.【答案】B【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进行判断即可.【详解】解:A,C,D选项中的图形都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;B选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形.故选:B.4. 下列运算正确的是( )A. ()336n n =B. 22(2)4a a −=−C. 824x x x ÷=D. 23m m m ⋅=【答案】D【解析】【分析】本题考查了幂的运算.根据幂的乘方运算、积的乘方运算、同底数幂的乘法运算、同底数幂的除法运算逐项验证即可得到答案.【详解】解:A 、()3396n n n =≠,本选项不符合题意;B 、222(2)44a a a −=≠−,本选项不符合题意;C 、8264x x x x ÷=≠,本选项不符合题意;D 、23m m m ⋅=,本选项符合题意;故选:D .5. 若点()12,N a a −在第二象限,那么a 的取值范围是( ) A. 12a > B. 12a < C. 102a << D. 102a ≤< 【答案】A【解析】【分析】本题考查各象限内的点的坐标特点,解一元一次不等式组.根据点()12,N a a −在第二象限可得不等式组1200a a −<⎧⎨>⎩,求解即可. 【详解】解:∵点()12,N a a −在第二象限,∴1200a a −<⎧⎨>⎩, 解得:12a >. 故选:A .6. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:某同学分析上表后得出如下结论:①这些运动员成绩的平均数是1.65;②这些运动员成绩的中位数是1.70;③这些运动员成绩的众数是1.75.上述结论中正确的是( )A. ②③B. ①③C. ①②D. ①②③ 【答案】A【解析】【分析】本题考查了平均数、中位数、众数.根据平均数、中位数、众数的意义求解即可.【详解】解:①这些运动员成绩的平均数是()12 1.53 1.62 1.653 1.74 1.751 1.8 1.615⨯+⨯+⨯+⨯+⨯+⨯=,原说法不正确;②这些运动员成绩的中位数是从小到大排列第8个数为1.70,原说法正确;③这些运动员成绩出现最多的是1.75,则的众数是1.75,原说法正确.故选:A .7. 点()11,M x y 和点()22,N x y 在反比例函数223k k y x −+=(k 为常数)的图象上,若120x x <<,则120y y ,,的大小关系为( )A. 120y y <<B. 120y y >>C. 120y y <<D. 120y y >>【答案】C【解析】【分析】本题考查了反比例函数的性质,利用配方法可得()2223120k k k −+=−+>,进而得到反比例函数的图象分布在一、三象限,0x >时,0y >,0x <时,0y <,据此即可求解,利用配方法得到()2223120k k k −+=−+>是解题的关键.【详解】解:∵()2223120k k k −+=−+>, ∴反比例函数的图象分布在一、三象限,0x >时,0y >,0x <时,0y <,∵120x x <<,∴120y y <<,故选:C .8. 刘徽(今山东滨州人)是魏晋时期我国伟大的数学家,中国古典数学理论的奠基者之一,被誉为“世界古代数学泰斗”.刘徽在注释《九章算术》时十分重视一题多解,其中最典型的是勾股容方和勾股容圆公式的推导,他给出了内切圆直径的多种表达形式.如图,Rt ABC △中,90C ∠=︒,,,AB BC CA 的长分别为,,c a b .则可以用含,,c a b 的式子表示出ABC 的内切圆直径d ,下列表达式错误的是( )A. d a b c =+−B. 2ab d a b c =++C. d =D. |()()|d a b c b =−−【答案】D【解析】【分析】如图,设E F G 、、为切点,连接OC OD OE OF 、、、,则OE AC ⊥,再结合切线长定理可判定A ,再结合三角形的面积可判定B ,再由d a b c =+−,结合完全平方公式与勾股定理可判断C ,通过举反例可得D 错误.【详解】解:如图,设E F G 、、为切点,连接OC OD OE OF 、、、,则OE AC ⊥,OD BC ⊥,OF AB ⊥,2d OD OE OF ===,由切线长定理得,AE AF =,CE CD =,BD BF =,∵90ACB OEC ODC ∠=∠=∠=︒,CE CD =,∴四边形ODCE 是正方形, ∴2d CE CD OD ===, ∴2d AE b =−,2d BD a =−,∴2d BF a =−, ∴22d d AF c a c a ⎛⎫=−−=−+ ⎪⎝⎭, ∵AE AF =, ∴22d d b c a −=−+, ∴d a b c =+−,故A 正确,不合题意;∵ABC BOC AOC AOB S S S S =++△△△△, ∴11112222222d d d ab a b c =⨯+⨯+⨯, ∴2ab ad bd cd =++ ∴2ab d a b c=++,故B 正确,不合题意; ∵d a b c =+−,∴()22d a b c =+− 222222a b c ab ac bc =+++−−,∵222+=a b c ,222222d c ab ac bc ∴=+−−()()22c c a b c a =−−−()()2c a c b =−−,∵0d >,d ∴=C 正确;令3a =,4b =,5c =,3452d a b c ∴=+−=+−=,而()()()()34541a b c b −−=−⨯−=,|()()|d a b c b ∴≠−−,故D 错误;故选D【点睛】本题考查的是三角形的内切圆的性质,勾股定理的应用,分解因式的应用,举反例的应用,切线长定理的应用,掌握基础知识并灵活应用是解本题的关键.第Ⅱ卷(非选择题共96分)二、填空题:本大题共8个小题,每小题3分,满分24分.9. 若分式11x−在实数范围内有意义,则x的取值范围是_____.【答案】x≠1【解析】【分析】分式有意义的条件是分母不等于零.【详解】∵分式11x−在实数范围内有意义,∴x−1≠0,解得:x≠1故答案为x≠1.【点睛】此题考查分式有意义的条件,解题关键在于分母不等于零使得分式有意义.10.小的整数是___________.【答案】2或3【解析】的大小,然后确定范围在其中的整数即可.【详解】2<,323<<<小的整数为2或3,故答案为:2或3【点睛】本题考查了无理数的估算和大小比较,掌握无理数估算的方法是正确解答的关键.11. 将抛物线2y x=−先向右平移1个单位长度,再向上平移2个单位长度,则平移后抛物线的顶点坐标为____________.【答案】()1,2【解析】【分析】本题考查了二次函数的图象与几何变换和二次函数的性质.根据“上加下减,左加右减”的规律进行解答即可.【详解】解:由抛物线2y x =−先向右平移1个单位长度,再向上平移2个单位长度,根据“上加下减,左加右减”规律可得抛物线是()212y x =−−+,∴顶点坐标是()1,2故答案为:()1,2.12. 一副三角板如图1摆放,把三角板AOB 绕公共顶点O 顺时针旋转至图2,即AB OD ∥时,1∠的大小为____________︒.【答案】75【解析】【分析】本题考查了的平行线的性质,三角形的外角性质.由AB OD ∥,推出45BOD B ∠=∠=︒,再利用三角形的外角性质即可求解.【详解】解:∵AB OD ∥,∴45BOD B ∠=∠=︒,∴1453075BOD D ∠=∠+∠=︒+︒=︒,故答案为:75.13. 如图,在ABC 中,点D ,E 分别在边,AB AC 上.添加一个条件使ADE ACB ∽,则这个条件可以是____________.(写出一种情况即可)【答案】ADE C ∠=∠或AED B ∠=∠或AD AE AC AB= 【解析】 【分析】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.利用有两组角对应相等的两个三角形相似添加条件.【详解】解:DAE CAB ∠=∠,∴当ADE C ∠=∠时,ADE ACB ∽.当AED B ∠=∠时,ADE ACB ∽. 当AD AE AC AB=时,ADE ACB ∽. 故答案为:ADE C ∠=∠或AED B ∠=∠或AD AE AC AB =. 14. 如图,四边形ABCD 内接于⊙O ,若四边形AOCD 是菱形,∠B 的度数是______.【答案】60°##60度【解析】【分析】根据圆内接四边形的性质得到∠B +∠D =180°,根据菱形的性质,圆周角定理列式计算即可.【详解】解:∵四边形ABCD 内接于⊙O ,∴∠B +∠D =180°,∵四边形OACD 是菱形,∴∠AOC =∠D ,由圆周角定理得,∠B =12∠AOC , ∴∠B +2∠B =180°,解得,∠B =60°,故答案为:60°.【点睛】本题考查的是圆内接四边形的性质,菱形的性质,掌握圆内接四边形的对角互补是解题的关键. 15. 如图,四边形AOBC 四个顶点的坐标分别是(1,3)A −,(0,0)O ,(3,1)B −,(5,4)C ,在该平面内找一点P ,使它到四个顶点的距离之和PA PO PB PC +++最小,则P 点坐标为____________.【答案】108,99⎛⎫⎪⎝⎭##181,99⎛⎫ ⎪⎝⎭ 【解析】 【分析】本题考查了一次函数的应用,两点之间线段最短.连接AB OC 、相交于点P ,根据“两点之间线段最短”知PA PO PB PC +++最小,利用待定系数法求得直线AB 和OC 的解析式,联立即可求解.【详解】解:连接AB OC 、相交于点P ,根据“两点之间线段最短”知PA PO PB PC +++最小,设直线AB 的解析式为y kx b =+,则有331k b k b −+=⎧⎨+=−⎩, 解得12k b =−⎧⎨=⎩, ∴直线AB 的解析式为2y x =−+,设直线OC 的解析式为y mx =,则有45m =, 解得45m =, ∴直线OC 的解析式为45y x =, 联立得425x x =−+,解得109x=,则4108599y=⨯=,∴P点坐标为108,99⎛⎫ ⎪⎝⎭,故答案为:108,99⎛⎫ ⎪⎝⎭.16. 如图,在边长为1的正方形网格中,点A,B均在格点上.(1)AB的长为____________;(2)请只用..无刻度的直尺,在如图所示的网格中,画出以AB为边的矩形ABCD,使其面积为263,并简要说明点C,D的位置是如何找到的(不用证明):____________.【答案】①. ②. 取点,E F,得到正方形ABEF,AF交格线于点C,BE交格线于点D,连接DC,得到矩形ABCD,即为所求.【解析】【分析】本题考查了网格与勾股定理,勾股定理的逆定理,矩形的性质与判定,掌握勾股定理是解题的关键.(1)根据勾股定理直接计算即可求解;(2)取点,E F,得到正方形ABEF,AF交格线于点D,BE交格线于点C,连接DC,得到矩形ABCD,即为所求.【详解】(1)AB==(2)取点,E F,则AF AB===ABEF,∴正方形ABEF13=,AF交格线于点D,BE交格线于点C,连接DC ,得到矩形ABCD ,∵DG FH , ∴23AD AG AF AH ==,∴23AD AF BC ===,∴矩形ABCD 263=, 如图,矩形ABCD ,即为所求..故答案为:取点,E F ,得到正方形ABEF ,AF 交格线于点D ,BE 交格线于点C ,连接DC ,得到矩形ABCD ,即为所求.三、解答题:本大题共8个小题,满分72分.解答时请写出必要的演推过程.17. 计算:()11222−⎫⎛+−⨯−− ⎪⎝⎭ 【答案】0【解析】【分析】本题考查了实数的混合运算,根据实数的运算法则和运算律即可求解,掌握据实数的运算法则和运算律是解题的关键. 【详解】解:原式13122=+−, 13122=−+, =11−+,0=.18. 解方程:(1)21132x x −+=; (2)240x x −=.【答案】(1)5x =(2)10x =,24x =.【解析】【分析】本题主要考查了解一元一次方程和一元二次方程,解题的关键是熟练掌握解方程的一般步骤,准确计算.(1)先去分母,再去括号,然后移项并合并同类项,最后系数化为1即可得解;(2)用因式分解法,解一元二次方程即可.【小问1详解】 解:21132x x −+=, 去括号得:()()22131x x −=+,去括号得:4233x x −=+,移项合并同类项得:5x =;【小问2详解】解:240x x −=,分解因式得:()40x x −=,∴0x =或40x −=,解得:10x =,24x =.19. 欧拉是历史上享誉全球的最伟大的数学家之一,他不仅在高等数学各个领域作出杰出贡献,也在初等数学中留下了不凡的足迹.设a ,b ,c 为两两不同的数,称()()()()()()()0,1,2,3n n nn a b c P n a b a c b c b a c a c b =++=−−−−−−为欧拉分式. (1)写出0P 对应的表达式;(2)化简1P 对应的表达式.【答案】(1)()()()()()()0111P a b a c b c b a c a c b =++−−−−−−(2)10P =【解析】 【分析】本题考查分式的化简求值,弄清欧拉公式的特点,利用分式的加减法计算是解题的关键. (1)将0n =代入欧拉公式即可;(2)将1n =代入欧拉公式化简计算即可.【小问1详解】解:当0n =时,()()()()()()0000a b c P a b a c b c b a c a c b =++−−−−−− ()()()()()()111a b a c b c b a c a c b =++−−−−−− 【小问2详解】 ()()()()()()1a b c P a b a c b c b a c a c b =++−−−−−− ()()()()()()a b a c b c a b a c b c a b c =−+−−−−−− ()())()()()(a b c b a c c a b a b a c b c =−−−−−−+− ()()()ab ac ab bc ca b c b c bc a a =−−−−−−++ ()()()ab ac ab bc ca b c b c bc a a =−−−−−−++ 0=.20. 某校劳动实践基地共开设五门劳动实践课程,分别是A :床铺整理,B :衣物清洗,C :手工制作、D :简单烹饪、E :绿植栽培;课程开设一段时间后,季老师采用抽样调查的方式在全校学生中开展了“我最喜欢的劳动实践课程”为主题的问卷调查.根据调查所收集的数我进行整理、绘制了如下两幅不完整的统计图.根据图中信息,请回答下列问题:(1)请将条形统计图补充完整,并直接写出“手工制作”对应的扇形圆心角度数;(2)若该校共有1800名学生,请你估计全校最喜欢“绿植栽培”的学生人数;(3)小兰同学从B,C,D三门课程中随机选择一门参加劳动实践,小亮同学从C,D,E三门课程中随机选择一门参加劳动实践,求两位同学选择相同课程的概率.【答案】(1)补充条形统计图见解析;“手工制作”对应的扇形圆心角度数为72︒;(2)估计全校最喜欢“绿植栽培”的学生人数为540人;(3)甲乙两位同学选择相同课程的概率为:29.【解析】【分析】(1)根据选择“E”的人数及比例求出总人数,总人数乘以D占的比例求得“D”的人数,总人数减去其他类别的人数求得“A”的人数,据此即可将条形统计图补充完整,再用360度乘以“C”占的比例即为“手工制作”对应的扇形圆心角度数;(2)利用样本估计总体思想求解;(3)通过列表或画树状图列出所有等可能的情况,再从中找出符合条件的情况数,再利用概率公式计算.【小问1详解】解:参与调查的总人数为:3030%100÷=(人),“D”的人数10025%25⨯=(人),“A”的人数1001020253015−−−−=(人),“手工制作”对应的扇形圆心角度数2036072 100⨯︒=︒,补充条形统计图如图:【小问2详解】解:180030%540⨯=(人),因此估计全校最喜欢“绿植栽培”的学生人数为540人;【小问3详解】解:画树状图如下:由图可知,共有9种等可能的情况,其中两位同学选择相同课程的情况有2种, 因此甲乙两位同学选择相同课程的概率为:29. 【点睛】本题考查条形统计图、扇形统计图、利用样本估计总体、利用画树状图或者列表法求概率等,解题的关键是将条形统计图与扇形统计图的信息进行关联,掌握画树状图或者列表法求概率的原理. 21. 【问题背景】某校八年级数学社团在研究等腰三角形“三线合一”性质时发现:①如图,在ABC 中,若AD BC ⊥,BD CD =,则有B C ∠=∠;②某同学顺势提出一个问题:既然①正确,那么进一步推得AB AC =,即知AB BD AC CD +=+,若把①中的BD CD =替换为AB BD AC CD +=+,还能推出B C ∠=∠吗?基于此,社团成员小军、小民进行了探索研究,发现确实能推出B C ∠=∠,并分别提供了不同的证明方法.小军小民 ADB 与△【问题解决】(1)完成①的证明;(2)把②中小军、小民的证明过程补充完整.【答案】(1)见解析 (2)见解析【解析】【分析】题目主要考查全等三角形的判定和性质,勾股定理解三角形,理解题意,作出辅助线,综合运用这些知识点是解题关键.(1)根据题意利用全等三角形的判定和性质即可证明;(2)小军证明:分别延长,DB DC 至E ,F 两点,使得,BE AB CF AC ==,根据全等三角形的判定和性质得出E F ∠∠=,再由等边对等角及三角形的外角性质即可证明;小民证明:利用勾股定理得出AD ==,AD ==AB BD AC CD −=−,然后求和得出AB AC =,即可证明.【小问1详解】证明:∵AD BC ⊥,∴90ADB ADC ∠∠==︒, 在Rt ADB 与Rt ADC 中,90AD AD ADB ADC BD CD ∠∠=⎧⎪==︒⎨⎪=⎩,∴()SAS Rt ADB Rt ADC ≌,∴B C ∠=∠;【小问2详解】小军证明:分别延长,DB DC 至E ,F 两点,使得,BE AB CF AC ==,如图所示:∵AB BD AC CD +=+,∴BE BD CF CD +=+即DE DF =,∵AD BC ⊥,∴90ADB ADC ∠∠==︒,在Rt ADE 与Rt ADF 中,90AD AD ADB ADC ED FD ∠∠=⎧⎪==︒⎨⎪=⎩,∴()SAS Rt ADE Rt ADF ≌,∴E F ∠∠=,∵,BE AB CF AC ==,∴E EAB F FAC ∠∠∠∠===,∴,E EAB ABC F FAC ACB ∠∠∠∠∠∠+=+=,∴ABC ACB ∠∠=;小民:证明:∵AD BC ⊥.∴ADB 与ADC △均为直角三角形,根据勾股定理,AD ==,AD ==∵AB BD AC CD +=+①,∴AB BD AC CD −=−②,+①②得:AB AC =,∴B C ∠=∠.22. 春节期间,全国各影院上映多部影片,某影院每天运营成本为2000元,该影院每天售出的电影票数量y (单位:张)与售价x (单位:元/张)之间满足一次函数关系(3080x ≤≤,且x 是整数),部分数据如下表所示:(1)请求出y 与x 之间的函数关系式;(2)设该影院每天的利润(利润=票房收入-运营成本)为w (单位:元),求w 与x 之间的函数关系式;(3)该影院将电影票售价x 定为多少时,每天获利最大?最大利润是多少?【答案】(1)()43243080y x x =−+≤≤(2)()2432420003080w x x x =−+−≤≤ (3)定价40元/张或41元/张时,每天获利最大,最大利润是4560元【解析】【分析】本题是一次函数与二次函数的应用,解题的关键是得出函数解析式,并熟练掌握二次函数的性质. (1)设y 与x 之间的函数关系式为y kx b =+,根据待定系数法代入求解即可;(2)“利润=票房收入-运营成本”可得函数解析式;(2)将函数解析式配方成顶点式,由3080x ≤≤,且x 是整数,结合二次函数的性质求解可得.【小问1详解】解:设y 与x 之间的函数关系式为y kx b =+,则1644012450k b k b =+⎧⎨=+⎩,解得4324k b =−⎧⎨=⎩, ∴y 与x 之间的函数关系式()43243080y x x =−+≤≤;【小问2详解】由题意得:22000(4324)200043242000w xy x x x x =−=−+−=−+−,即w 与x 之间的函数关系式为:()2432420003080w x x x =−+−≤≤.【小问3详解】()2281432420004()456130802w x x x x =−+−=−−+≤≤, x 是整数,且 3080x ≤≤,∴ 当40x =或41时,w 取得最大值,最大值为4560.价格低更能吸引顾客,定价40元/张或41元/张时,每天获利最大,最大利润是4560元.如图1,ABC 中,点D ,E ,F 分别在三边BC CA AB ,,上,且满足DF AC DE AB ,∥∥.23. ①求证:四边形AFDE 为平行四边形;②若AB BD AC DC=,求证:四边形AFDE 为菱形; 24. 把一块三角形余料MNH (如图2所示)加工成菱形零件,使它的一个顶点与MNH △的顶点M 重合,另外三个顶点分别在三边MN NH HM ,,上,请在图2上作出这个菱形.(用尺规作图,保留作图痕迹,不写作法.)【答案】23. ①见解析;②见解析24. 见解析【解析】【分析】本题考查了平行四边形的判定定理、菱形的判定定理、尺规作图,熟练掌握相关判定定理是解题的关键.(1)①DF AC DE AB ,∥∥,即可证明四边形AFDE 为平行四边形;②由DF AC DE AB ,∥∥,可得DF BD AC BC =,DE CD AB BC=,即DF BC AC BD ⋅=⋅, DE BC AB CD ⋅=⋅,再由AB BD AC DC=,得AB DC AC BD ⋅=⋅,因此DF DE =,进而即可证明四边形AFDE 为菱形; (2)作NMH ∠的角平分线,交NH 于点P ,作MP 的垂直平分线,交MN 于点D ,交MH 于点E ,则四边形MDPE 是菱形.【23题详解】①证明:DF AC DE AB ∥,∥,∴四边形AFDE 为平行四边形;②DF AC ∥,DF BD AC BC∴=, 即DF BC AC BD ⋅=⋅DE AB ∥,DE CD AB BC∴=, 即DE BC AB CD ⋅=⋅, 又AB BD AC DC =, AB DC AC BD ∴⋅=⋅,DF DE ∴=,由①知四边形AFDE 为平行四边形,∴四边形AFDE 为菱形;【24题详解】如图,菱形MDPE 即为所求.∵MP 平分NMH ∠,∴DMP EMP ∠=∠,∵DE 是MP 的垂直平分线,∴DM DP =,EM EP =,∴DMP DPM ∠=∠,=EMP EPM ∠∠,∴DPM EMP ∠=∠,EPM DMP ∠=∠,∴DP ME ∥,EP DM ∥,∴四边形MDPE 是平行四边形,∵DM DP =,∴平行四边形MDPE 是菱形.25. 【教材呈现】现行人教版九年级下册数学教材85页“拓广探索”第14题: ABC 中,)【得出结论】sin sin sin a b c A B C==. 【基础应用】在ABC 中,75B ∠=︒,45C ∠=︒,2BC =,利用以上结论求AB 的长;【推广证明】 进一步研究发现,sin sin sin a b c A B C==不仅在锐角三角形中成立,在任意三角形中均成立,并且还满足2sin sin sin a b c R A B C ===(R 为ABC 外接圆的半径). 请利用图1证明:2sin sin sin a b c R A B C===.【拓展应用】如图2,四边形ABCD 中,2AB =,3BC =,4CD =,90B C ∠=∠=︒.求过A ,B ,D 三点的圆的半径.【答案】教材呈现:见解析;基础应用:AB =;推广证明:见解析;拓展应用:R =. 【解析】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
要题随堂演练
1.(2018·遵义中考)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为( ) A .60π B .65π C .78π
D .120π
2.(2018·黄石中考)如图,AB 是⊙O 的直径,点D 为⊙O 上一点,且∠ABD=30°,BO =4,则BD ︵
的长为( )
A.23π
B.43π C .2π D.83
π
3.(2018·威海中考)如图,在正方形ABCD 中,AB =12,点E 为BC 的中点,以CD 为直径作半圆CFD ,点F 为半圆的中点,连接AF ,EF ,图中阴影部分的面积是( )
A .18+36π
B .24+18π
C .18+18π
D .12+18π
4.(2018·南宁中考)如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB =2,则莱洛三角形的面积(即阴影部分面积)为( )
A .π+ 3
B .π- 3
C .2π- 3
D .2π-2 3
5.(2018·乌鲁木齐中考)将半径为12,圆心角为120°的扇形围成一个圆锥的侧面,则此圆锥的底面圆的半径为.
6.(2018·重庆中考B卷)如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是 (结果保留π).
7.(2018·青岛中考)如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE,OF,则图中阴影部分的面积是.
8.(2018·烟台中考)如图,点O为正六边形ABCDEF的中心,点M为AF中点.以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF.把扇形MON 的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1,将扇形DEF以同样方法围成的圆锥的底面半径记为r2.则r1∶r2=.
9.如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.
(1)求证:AD平分∠BAC;
(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).
参考答案
1.B 2.D 3.C 4.D
5.4 6.8-2π 7.723-43π 8.3
2
9.(1)证明:如图,
∵BC 是⊙O 的切线,D 为切点, ∴OD⊥B C.
又∵AC⊥BC,∴OD∥AC, ∴∠ADO =∠CAD. 又∵OD=OA , ∴∠ADO=∠OAD,
∴∠CAD=∠OAD,即AD 平分∠BAC.
(2)解:如图,连接ED. ∵∠BAC=60°,OE =OA , ∴△OAE 为等边三角形, ∴∠AOE=60°,∴∠ADE=30°. 又∵∠OAD=1
2∠BAC=30°,
∴∠A DE =∠OAD, ∴ED∥AO, ∴S △AED =S △OED ,
∴S 阴影=S 扇形ODE =60×π×4360=2
3π.。