岳阳市七中八年级数学(下)
岳阳市初中数学八年级下期中经典习题(培优专题)

一、选择题1.(0分)[ID:9928]按图(1)﹣(3)的方式摆放餐桌和椅子,照这样的方式维续摆放,如果摆放的餐桌为x张,摆放的椅子为y把,则y与x之间的关系式为( )A.y=6x B.y=4x﹣2C.y=5x﹣1D.y=4x+22.(0分)[ID:9914]下列函数中,是一次函数的是()A.11yx=+B.y=﹣2xC.y=x2+2 D.y=kx+b(k、b是常数)3.(0分)[ID:9902]估计26的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间4.(0分)[ID:9896]已知P(x,y)是直线y=1322x-上的点,则4y﹣2x+3的值为()A.3B.﹣3C.1D.05.(0分)[ID:9882]有一直角三角形纸片,∠C=90°BC=6,AC=8,现将△ABC按如图那样折叠,使点A与点B重合,折痕为DE,则CE的长为( )A.27B.74C.72D.46.(0分)[ID:9878]如图,在平行四边形ABCD中,AC、BD相交于点O,下列结论:①OA =OC;②∠BAD=∠BCD;③AC⊥BD;④∠BAD+∠ABC=180°中,正确的个数有()A.1个 B.2个 C.3个 D.4个7.(0分)[ID:9858]菱形ABCD中,AC=10,BD=24,则该菱形的周长等于()A.13B.52C.120D.2408.(0分)[ID:9854]如图,已知圆柱底面的周长为4dm,圆柱的高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A .42dmB .22dmC .25dmD .45dm9.(0分)[ID :9849]若x < 0,则2x x x-的结果是( ) A .0 B .-2 C .0或-2 D .210.(0分)[ID :9921]已知直角三角形中30°角所对的直角边长是23cm ,则另一条直角边的长是( )A .4cmB .43 cmC .6cmD .63 cm11.(0分)[ID :9918]如图所示,一次函数y =kx +b (k 、b 为常数,且k ≠0)与正比例函数y =ax (a 为常数,且a ≠0)相交于点P ,则不等式kx +b >ax 的解集是( )A .x >1B .x <1C .x >2D .x <212.(0分)[ID :9840]要使代数式23x -有意义,则x 的取值范围是( ) A .3x ≠ B .3x > C .3x ≥ D .3x ≤13.(0分)[ID :9835]如图,在Rt ABC △中,90B ∠=︒,6AB =,9BC =,将ABC △折叠,使点C 与AB 的中点D 重合,折痕交AC 于点M ,交BC 于点N ,则线段BN 的长为( )A .3B .4C .5D .614.(0分)[ID :9910]小明搬来一架 3.5 米长的木梯,准备把拉花挂在 2.8 米高的墙上,则梯脚与墙脚的距离为( )A .2.7 米B .2.5 米C .2.1 米D .1.5 米15.(0分)[ID :9909]下列二次根式中,最简二次根式是( )A 10B 12C 12D 8二、填空题16.(0分)[ID :10030]如图,已知在Rt △ABC 中,AB =AC =3√2,在△ABC 内作第1个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第2个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第3个内接正方形…,依次进行下去,则第2019个内接正方形的边长为_____.17.(0分)[ID :10024]小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分.18.(0分)[ID :10010]若由你选择一个喜欢的数值m ,使一次函数()2y m x m =-+的图象经过第一、二、四象限,则m 的值可以是___________.19.(0分)[ID :9985]如图,在矩形ABCD 中,AD=9cm ,AB=3cm ,将其折叠,使点D 与点B 重合,则重叠部分(△BEF)的面积为_________cm 2.20.(0分)[ID :9980]如图,已知正方形ABCD ,以BC 为边作等边△BCE ,则∠DAE 的度数是_____.21.(0分)[ID :9956]如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE ⊥BD ,垂足为点E ,若∠EAC =2∠CAD ,则∠BAE =__________度.22.(0分)[ID :9954]如图,菱形ABCD 的周长为20,点A 的坐标是(4,0),则点B 的坐标为_______.23.(0分)[ID :9939]在平面直角坐标系中,(1,0)(4,0)(0,3),A B C -、、若以A B C D 、、、为顶点的四边形是平行四边形,则D 点坐标是________________.24.(0分)[ID :9933]如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于点E ,F ,连接PB ,PD .若AE =2,PF =8.则图中阴影部分的面积为___.25.(0分)[ID :9971]如图,在矩形ABCD 中,AB =8,AD =6,E 为AB 边上一点,将△BEC 沿CE 翻折,点B 落在点F 处,当△AEF 为直角三角形时,BE =________.三、解答题26.(0分)[ID :10119]如图,BD 是▱ABCD 的对角线,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F ,求证:AE=CF .27.(0分)[ID :10108]如图,在44⨯的方格子中,ABC ∆的三个顶点都在格点上,(1)在图1中画出线段CD ,使CD CB ⊥,其中D 是格点,(2)在图2中画出平行四边形ABEC ,其中E 是格点.28.(0分)[ID :10106]如图,△ABC 中,D 、E 、F 分别在边BC 、AB 、AC 上,且 DE ∥AC ,DE=AF ,延长FD 到G ,使DG=DF ,求证:AG 和DE 互相平分.29.(0分)[ID :10074]D E 、分别是三角形ABC 的边AB AC 、的中点,O 是ABC 所在平面上的动点,连接OB OC 、,点G F 、分别是OB OC 、的中点,顺次连接点.D G F E 、、、(1)如图,当点O 在ABC 的内部时,求证:四边形DGFE 是平行四边形;(2)若四边形DGFE 是菱形,则OA 与BC 应满足怎样的关系?若四边形DGFE 是矩形,则OA 与BC 应满足怎样的关系?(直接写出答案,不需要说明理由)30.(0分)[ID :10050]观察下列各式及验证过程:11122323-=211121223232323-===⨯⨯ 1111323438⎛⎫-= ⎪⎝⎭2111131323423423438⎛⎫-=== ⎪⨯⨯⨯⨯⎝⎭ 11114345415⎛⎫-= ⎪⎝⎭21111414345345345415⎛⎫-=== ⎪⨯⨯⨯⨯⎝⎭ (1111456⎛⎫- ⎪⎝⎭验证.(2)针对上述各式反映的规律,写出用n (n 为自然数,且n ≥2)表示的等式,不需要证明.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.B3.D4.B5.B6.C7.B8.A9.D10.C11.D12.B13.B14.C15.A二、填空题16.3×122018【解析】【分析】首先根据勾股定理得出BC的长进而利用等腰直角三角形的性质得出DE的长再利用锐角三角函数的关系得出EIKI=PFEF=12即可得出正方形边长之间的变化规律得出答案即可【17.82【解析】【分析】设第三次考试成绩为x根据三次考试的平均成绩不少于80分列不等式求出x的取值范围即可得答案【详解】设第三次考试成绩为x∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少18.(答案不唯一满足均可)【解析】【分析】一次函数的图象经过第一二四象限列出不等式组求解即可【详解】解:一次函数的图象经过第一二四象限解得:m的值可以是1故答案为:1(答案不唯一满足均可)【点睛】此题主19.5cm2【解析】已知四边形ABCD是矩形根据矩形的性质可得BC=DC∠BCF=∠DCF=90°又知折叠使点D和点B重合根据折叠的性质可得C′F=CF在RT△BCF中根据勾股定理可得BC2+CF2=B20.15°【解析】【分析】由正方形的性质和等边三角形的性质可得∠DAB=∠ABC=90°AB=BC=BE∠EBC=60°可求∠BAE=75°即可得∠DAE的度数【详解】∵四边形ABCD是正方形∴∠DAB21.5°【解析】【分析】【详解】四边形ABCD是矩形AC=BDOA=OCOB=ODOA=OB═OC∠OAD=∠ODA∠OAB=∠OBA∠AOE=∠OAD+∠ODA=2∠OAD∠EAC=2∠CAD∠EAO22.(03)【解析】【分析】先根据菱形的性质确定菱形的长度再设B点的坐标为(0y)最后根据两点之间的距离公式即可求得B点的坐标【详解】解:设B点的坐标为(0y)根据菱形的性质得AB=20÷4=5;由两点23.(-53)(53)(3−3)【解析】【分析】作出图形分ABBCAC为对角线三种情况进行求解【详解】如图所示①AC为对角线时AB=5∴点D的坐标为(-53)②BC为对角线时AB=5∴点D的坐标为(5324.16【解析】【分析】作PM⊥AD于M交BC于N则有四边形AEPM四边形DFPM四边形CFPN四边形BEPN都是矩形可得S△PEB=S△PFD=8则可得出S阴【详解】作PM⊥AD于M 交BC于N则有四边25.3或6【解析】【分析】对直角△AEF中那个角是直角分三种情况讨论再由折叠的性质和勾股定理可BE的长【详解】解:如图若∠AEF=90°∵∠B=∠BCD=90°=∠AEF∴四边形BCFE是矩形∵将ABE三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】观察可得,第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子.第x张餐桌共有6+4(x-1)=4x+2,由此即可解答.【详解】有1张桌子时有6把椅子,有2张桌子时有10把椅子,10=6+4×1,有3张桌子时有14把椅子,14=6+4×2,∵多一张餐桌,多放4把椅子,∴第x张餐桌共有6+4(x-1)=4x+2.∴y与x之间的关系式为:y=4x+2.故选D.【点睛】本题考查了图形的变化类问题,注意结合图形进行观察,发现数字之间的运算规律,利用规律即可求得y与x之间的关系式.2.B解析:B【解析】A、y=1x+1不是一次函数,故错误;B、y=-2x是一次函数,故正确;C、y=x2+2是二次函数,故错误;D、y=kx+b(k、b是常数),当k=0时不是一次函数,故本选项错误,故选B.3.D解析:D【解析】【分析】寻找小于26的最大平方数和大于26的最小平方数即可.【详解】解:小于26的最大平方数为25,大于26的最小平方数为3656,故选择D.【点睛】本题考查了二次根式的相关定义.4.B解析:B【解析】【分析】根据点P(x,y)是直线y=1322x-上的点,可以得到y与x的关系,然后变形即可求得所求式子的值.【详解】∵点P(x,y)是直线y=1322x-上的点,∴y=13 22x-,∴4y=2x-6,∴4y-2x=-6,∴4y-2x+3=-3,故选B.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.5.B解析:B【解析】【分析】已知,∠C=90°BC=6,AC=8,由勾股定理求AB,根据翻折不变性,可知△DAE≌△DBE,从而得到BD=AD,BE=AE,设CE=x,则AE=8-x,在Rt△CBE中,由勾股定理列方程求解.【详解】∵△CBE≌△DBE,∴BD=BC=6,DE=CE,在RT△ACB中,AC=8,BC=6,∴.∴AD=AB-BD=10-6=4.根据翻折不变性得△EDA≌△EDB∴EA=EB∴在Rt△BCE中,设CE=x,则BE=AE=8-x,∴BE2=BC2+CE2,∴(8-x)2=62+x2,解得x=74.故选B.【点睛】此题考查了翻折变换的问题,找到翻折后图形中的直角三角形,利用勾股定理来解答,解答过程中要充分利用翻折不变性.6.C解析:C【解析】试题分析:根据平行四边形的性质依次分析各选项即可作出判断.∵平行四边形ABCD∴OA=OC,∠BAD=∠BCD,∠BAD+∠ABC=180°,但无法得到AC⊥BD故选C.考点:平行四边形的性质点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.7.B解析:B【解析】试题解析:菱形对角线互相垂直平分,∴BO=OD=12,AO=OC=5,13AB∴==,故菱形的周长为52.故选B.8.A解析:A【解析】【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度,圆柱底面的周长为4dm,圆柱高为2dm,2AB dm,2BC BC dm,22222448AC,22AC dm,∴这圈金属丝的周长最小为242AC dm.故选:A.【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.9.D解析:D【解析】∵x < 0,则2x=x x=-,∴2x xx-=()22x x x x xx x x---===.故选D.10.C解析:C【解析】如图,∵∠C=90°,∠B=30°,3,∴3cm,由勾股定理得:,故选C . 11.D解析:D【解析】分析:以函数的交点为分界线,然后看谁的图像在上面就是谁大.详解:根据函数图像可得:当x >2时,kx+b <ax ,故选C .点睛:本题主要考查的是不等式与函数之间的关系,属于中等难度题型.解决这个问题的关键就是看懂函数图像.12.B解析:B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】由题意得,x-3>0,解得x >3.故选:B .【点睛】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.13.B解析:B【解析】【分析】由折叠的性质可得DN CN =,根据勾股定理可求DN 的长,即可求BN 的长.【详解】 D 是AB 中点,6AB =,3AD BD ∴==,根据折叠的性质得,DN CN =,9BN BC CN DN ∴=-=-,在Rt DBN 中,222DN BN DB =+,22(9)9DN DN ∴=-+,5DN ∴=4BN ∴=,故选B .【点睛】本题考查了翻折变换,折叠的性质,勾股定理,熟练运用折叠的性质是本题的关键.解析:C【解析】【分析】仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.【详解】=2.1(米).故选C.【点睛】本题考查了勾股定理的应用.善于提取题目的信息是解题以及学好数学的关键.15.A解析:A【解析】【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,结合选项求解即可.【详解】A是最简二次根式,本选项正确.B=C2=A=不是最简二次根式,本选项错误.故选A.【点睛】本题考查了最简二次根式的知识,解答本题的关键在于掌握最简二次根式的概念,对各选项进行判断.二、填空题16.3×122018【解析】【分析】首先根据勾股定理得出BC的长进而利用等腰直角三角形的性质得出DE的长再利用锐角三角函数的关系得出EIKI=PFEF=12即可得出正方形边长之间的变化规律得出答案即可【解析:3×(12) 2018【解析】【分析】首先根据勾股定理得出BC的长,进而利用等腰直角三角形的性质得出DE的长,再利用锐角三角函数的关系得出EIKI =PFEF=12,即可得出正方形边长之间的变化规律,得出答案即【详解】∵在Rt △ABC 中,AB =AC =3√2, ∴∠B =∠C =45°,BC =√2AB =6,∵在△ABC 内作第一个内接正方形DEFG ;∴EF =EC =DG =BD ,∴DE =13BC =2, ∵取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形…依次进行下去,∴EIKI =PF EF=12, ∴EI =12KI =12HI ,∵DH =EI ,∴HI =12DE =(12)2﹣1×3, 则第n 个内接正方形的边长为:3×(12)n ﹣1. 故第2019个内接正方形的边长为:3×(12)2018. 故答案是:3×(12)2018.【点睛】考查了正方形的性质以及数字变化规律和勾股定理等知识,根据已知得出正方形边长的变化规律是解题关键.17.82【解析】【分析】设第三次考试成绩为x 根据三次考试的平均成绩不少于80分列不等式求出x 的取值范围即可得答案【详解】设第三次考试成绩为x∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少 解析:82【解析】【分析】设第三次考试成绩为x ,根据三次考试的平均成绩不少于80分列不等式,求出x 的取值范围即可得答案.【详解】设第三次考试成绩为x ,∵三次考试的平均成绩不少于80分,∴7286803x ++≥, 解得:82x ≥, ∴他第三次数学考试至少得82分,故答案为:82【点睛】本题考查了一元一次不等式的应用.熟练掌握求平均数的方法,根据不等关系正确列出不等式是解题关键.18.(答案不唯一满足均可)【解析】【分析】一次函数的图象经过第一二四象限列出不等式组求解即可【详解】解:一次函数的图象经过第一二四象限解得:m 的值可以是1故答案为:1(答案不唯一满足均可)【点睛】此题主 解析:(答案不唯一,满足02m <<均可)【解析】【分析】一次函数()2y m x m =-+的图象经过第一、二、四象限,列出不等式组200,m m -<⎧⎨>⎩求解即可.【详解】解:一次函数()2y m x m =-+的图象经过第一、二、四象限,200m m -<⎧⎨>⎩解得:02m <<m 的值可以是1.故答案为:1(答案不唯一,满足02m <<均可).【点睛】此题主要考查了一次函数图象,一次函数y kx b =+的图象有四种情况:①当0,0k b >>时,函数y kx b =+的图象经过第一、二、三象限;②当0,0k b ><时,函数y kx b =+的图象经过第一、三、四象限;③当0,0k b <>时,函数y kx b =+的图象经过第一、二、四象限;④当0,0k b <<时,函数y kx b =+的图象经过第二、三、四象限.19.5cm2【解析】已知四边形ABCD 是矩形根据矩形的性质可得BC=DC ∠BCF=∠DCF=90°又知折叠使点D 和点B 重合根据折叠的性质可得C′F=CF 在RT △BCF 中根据勾股定理可得BC2+CF2=B解析:5cm 2【解析】已知四边形ABCD 是矩形根据矩形的性质可得BC=DC ,∠BCF=∠DCF =90°,又知折叠使点D 和点B 重合,根据折叠的性质可得C′F=CF ,在RT △BCF 中,根据勾股定理可得BC2+CF2=BF2,即32+(9-BF)2=BF2,解得BF=5,所以△BEF的面积=12BF×AB=12×5×3=7.5.点睛:本题考查了翻折变换的性质,矩形的性质,勾股定理,熟记翻折前后两个图形能够重合找出相等的线段、相等的角是解题的关键.20.15°【解析】【分析】由正方形的性质和等边三角形的性质可得∠DAB=∠ABC=90°AB=BC=BE∠EBC=60°可求∠BAE=75°即可得∠DAE的度数【详解】∵四边形ABCD是正方形∴∠DAB解析:15°【解析】【分析】由正方形的性质和等边三角形的性质可得,∠DAB=∠ABC=90°,AB=BC=BE,∠EBC=60°,可求∠BAE=75°,即可得∠DAE的度数.【详解】∵四边形ABCD是正方形∴∠DAB=∠ABC=90°,AB=BC,∵△BEC是等边三角形∴BC=BE,∠EBC=60°∴AB=BE=BC,∠ABE=∠ABC﹣∠EBC=30°∴∠BAE=75°∴∠DAE=∠BAD﹣∠BAE=15°故答案为15°.【点睛】本题考查了正方形的性质,等边三角形的性质,熟记各性质并准确识图是解题的关键.21.5°【解析】【分析】【详解】四边形ABCD是矩形AC=BDOA=OCOB=ODOA=OB═OC∠OAD=∠ODA∠OAB=∠OBA∠AOE=∠OAD+∠ODA=2∠OA D∠EAC=2∠CAD∠EAO解析:5°【解析】【分析】【详解】四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAD+∠ODA=2∠OAD,∠EAC=2∠CAD,∴∠EAO=∠AOE,AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.22.(03)【解析】【分析】先根据菱形的性质确定菱形的长度再设B点的坐标为(0y)最后根据两点之间的距离公式即可求得B点的坐标【详解】解:设B点的坐标为(0y)根据菱形的性质得AB=20÷4=5;由两点解析:(0,3)【解析】【分析】先根据菱形的性质确定菱形的长度,再设B点的坐标为(0,y),最后根据两点之间的距离公式即可求得B点的坐标.【详解】解:设B点的坐标为(0,y),根据菱形的性质,得AB=20÷4=5;22(0-4)(y-0)5(y>0),解得y=3所以B点坐标为(0,3).故答案为(0,3).【点睛】本题考查了菱形的性质和两点间的距离公式,掌握菱形的性质和两点间的距离公式是解答本题的关键.23.(-53)(53)(3−3)【解析】【分析】作出图形分ABBCAC为对角线三种情况进行求解【详解】如图所示①AC为对角线时AB=5∴点D的坐标为(-53)②BC为对角线时AB=5∴点D的坐标为(53解析:(-5,3)、(5,3)、(3,−3)【解析】【分析】作出图形,分AB、BC、AC为对角线三种情况进行求解.【详解】如图所示,①AC为对角线时,AB=5,∴点D的坐标为(-5,3),②BC为对角线时,AB=5,∴点D的坐标为(5,3),③AB为对角线时,C平移至A的方式为向左平移1个单位,向下平移3个单位,∴点B 向左平移1个单位,向下平移3个单位得到点D的坐标为(3,−3),综上所述,点D的坐标是(-5,3)、(5,3)、(3,−3).故答案为:(-5,3)、(5,3)、(3,−3).【点睛】本题考查了坐标与图形的性质,平行四边形的判定,根据题意作出图形,注意要分情况进行讨论.24.16【解析】【分析】作PM⊥AD于M交BC于N则有四边形AEPM四边形DFPM四边形CFPN四边形BEPN都是矩形可得S△PEB=S△PFD=8则可得出S阴【详解】作PM⊥AD于M交BC于N则有四边解析:16【解析】【分析】作PM⊥AD于M,交BC于N,则有四边形AEPM、四边形DFPM、四边形CFPN、四边形BEPN都是矩形,可得S△PEB=S△PFD=8,则可得出S阴.【详解】作PM⊥AD于M,交BC于N,则有四边形AEPM、四边形DFPM、四边形CFPN、四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16.故答案是:16.【点睛】考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.25.3或6【解析】【分析】对直角△AEF中那个角是直角分三种情况讨论再由折叠的性质和勾股定理可BE的长【详解】解:如图若∠AEF=90°∵∠B=∠BCD=90°=∠AEF∴四边形BCFE是矩形∵将ABE解析:3或6【解析】【分析】对直角△AEF中那个角是直角分三种情况讨论,再由折叠的性质和勾股定理可BE的长.【详解】解:如图,若∠AEF=90°∵∠B=∠BCD=90°=∠AEF∴四边形BCFE是矩形∵将ABEC沿着CE翻折∴CB=CF∵四边形BCFE是正方形∴BE=BC-AD=6,如图,若∠AFE=90°∵将△BEC沿着CE翻折∴CB=CF=6,∠B=∠EFC=90°,BE=EF∵∠AFE+∠EFC=180°∴点A,点F,点C三点共线∴AC=√AB2+BC2=10∴AF=AC-CF=4∵AE2=AF2+EF2∴(8−BE)2=16+BE2∴BE=3,若∠EAF=90°,∵CD=8> CF=6∴点F不可能落在直线AD上∴.不存在∠EAF=90综上所述:BE=3或6故答案为:3或6【点睛】本题主要考查的是翻折的性质,矩形的性质,正方形的判定和性质,勾股定理,依据题意画出符合题意的图形是解题的关键.三、解答题26.详见解析.【解析】试题分析:根据平行四边形的性质可得AB=CD,AB∥CD,再由平行线的性质证得∠ABE=∠CDF,根据AE⊥BD,CF⊥BD可得∠AEB=∠CFD=90°,由AAS证得△ABE≌△CDF,根据全等三角形的性质即可证得结论.试题解析:证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF.考点:平行四边形的性质;全等三角形的判定及性质.27.(1)见解析;(2)见解析.【解析】【分析】,且点D是格点即可.(2)作一个△BEC与△BAC全等即可得出(1)过点C作CD CB图形.【详解】(1)解:如图,线段CD就是所求作的图形.(2)解:如图,ABEC就是所求作的图形【点睛】本题考查作图-应用与设计,平行四边形的判定等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.28.证明过程见解析.【解析】【分析】由一组对边平行且相等求解四边形AEGD是平行四边形,即可得出结论.【详解】证明:∵DE∥AC,DE=AF∴四边形AEDF是平行四边形∴AE=DF,AE∥DF∵DG=DF∴AE=DG∴四边形AEGD是平行四边形∴AG和DE互相平分【点睛】本题主要考查了平行四边形的判定. 应熟练掌握平行四边形的判定定理.29.(1)见解析;(2)OA=OB,OA BC ⊥【解析】【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE ∥BC 且DE =12BC ,GF ∥BC 且GF =12BC ,从而得到DE ∥GF ,DE =GF ,再利用一组对边平行且相等的四边形是平行四边形证明即可;(2)根据邻边相等的平行四边形是菱形,有一个角是直角的平行四边形是矩形解答.【详解】()1,D E 分别是,AB AC 的中点.1//,2DE BC DE BC ∴= ,G F 分别是,OB OC 的中点1//,2GF BC GF BC ∴= //,DE GF DE GF ∴=∴四边形DGFE 是平行四边形.()2若四边形DGFE 是菱形,则DG=GF ,由(1)中位线可知GF 平行且等于12BC,DG 平行且等于12AO ∴OA BC =若四边形DGFE 是矩形,则DG ⊥GF ,∵DG ∥AO,GF ∥BC∴OA BC ⊥【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及平行四边形与菱形的关系,熟记的定理和性质是解题的关键. 30.(1)见解析;(2)见解析.【解析】【分析】(1)类比题目中所给的运算方法即可解答;(2)观察题目所给的算式,根据算式总结出一般规律即可求解.【详解】(1====;(2=n为自然数,且n≥2) .【点睛】本题是阅读理解题,能够从所给的案例中找出相应的规律是解决该类题型的关键.。
湖南省岳阳市2023-2024学年八年级下学期开学考试数学试题

湖南省岳阳市2023-2024学年八年级下学期开学考试数学试题学校:___________姓名:___________班级:___________考号:___________ A.B.C.D.二、填空题三、解答题(1)尺规作图:求作AB 边的垂直平分线分别交AB ,AC 于点D 和点E ﹔(保留作图痕迹,不要求写出作图过程)(2)直接写出BCE V 的形状.22.如图,点B ,E ,C ,F 在一条直线上,AC 与DE 相交于点O ,AB =DE ,AB ∥DE ,BE =CF .(1)求证:AC DF ∥;(2)若65B ∠=︒,35F ∠=︒,求EOC ∠的度数.23.2021年12月,我市某区千亩“三月红”柑橘挂满枝头,采摘人员的需求也随之增多,为了尽快抢收成熟柑橘,某脱贫攻坚办公室紧急组织了一支志愿者服务队.某村种植合作社共需要采摘柑橘240吨,村民采摘40吨后,志愿者服务队加入一起采摘.已知志愿者服务队采摘的速度是村民采摘速度的1.5倍,从村民开始采摘到全部采摘完毕,一共用了15天.(1)求村民每天采摘柑橘多少吨?(2)已知合作社每天需要支出给村民劳务费2000元,志愿者服务队是义务劳动,不需支出劳务费,只需每天支出饮食费500元,问志愿者服务队加入后可帮助合作社节省多少元?24.等面积法是一种常用的、重要的数学解题方法.(1)如图1,在Rt ABC △中,90ACB ∠=︒,3BC =,4AC =,5AB =,CD AB ⊥,则CD 长为__________;(2)如图2,在ABC V 中,4AB =,2BC =,则ABC V 的高CD 与AE 的比是__________;(3)如图3,在ABC V 中,90C ∠=︒(A ABC ∠<∠),点D ,P 分别在边AB ,AC 上,且BP AP =,DE BP ⊥,DF AP ⊥,垂足分别为点E ,F .若5BC =,求DE DF +的值.25.【阅读理解】若x 满足()()4515200x x --=,求()()224515x x -+-的值. 解:设45x a -=,15x b -=,则()()4515200x x ab --==,()()451530a b x x +=-+-=,222222(45)(15)()2302200500x x a b a b ab -+-=+=+-=-⨯=,我们把这种方法叫做换元法.利用换元法达到简化方程的目的,体现了转化的数学思想.【解决问题】(1)若x 满足()()20550x x --=,则()()22205x x -+-=__________; (2)若x 满足()()2220222000244x x -+-=,求()()20222000x x --的值; (3)如图,在长方形ABCD 中,12cm AB =,点E ,F 是BC ,CD 上的点,8cm EC =,且BE DF x ==,分别以FC ,CB 为边在长方形ABCD 外侧作正方形CFGH 和CBMN ,若长方形CBQF 的面积为260cm ,求图中阴影部分的面积和.26.如图1,分别以ABC V 的两边,AB AC 为边作ABD △和ACE △,使得,,AB AD AE AC DAB EAC ==∠=∠.(1)求证:BE CD =;(2)过点A 分别作AF CD ⊥于点F ,AG BE ⊥于点G ,①如图2,连接FG ,请判断AFG V 的形状,并说明理由;②如图3,若CD 与BE 相交于点H ,且60DAB EAC ∠=∠=︒,试猜想,,AH CH HE 之间的数量关系,并证明.。
2020-2021学年湖南省岳阳市岳阳县八年级(下)期末数学试卷(附答案详解)

2020-2021学年湖南省岳阳市岳阳县八年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列既是轴对称图形又是中心对称图形的是()A. B.C. D.2.直线y=x−1的图象经过()A. 第二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第一、二、三象限3.在平面直角坐标系中,点P(−1,−2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.五边形的内角和为()A. 360°B. 540°C. 720°D. 900°5.菱形具有而平行四边形不一定具有的性质是()A. 两组对边分别平行B. 两组对角分别相等C. 对角线互相平分D. 对角线互相垂直6.顺次连接矩形四边中点所得的四边形一定是()A. 正方形B. 矩形C. 菱形D. 等腰梯形7.一个三角形的周长是36cm,则以这个三角形各边中点为顶点的三角形的周长是()A. 6cmB. 12cmC. 18cmD. 36cm8.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A. 5B. 7C. 10D. 39.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.10.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为()A. 32B. 3C. 1D. 43二、填空题(本大题共10小题,共30.0分)11.已知点P(−1,1)关于x轴的对称点Q的坐标为______.12.将直线y=3x向上平移3个单位,得到直线______.13.某班50位同学中,1月份出生的频率是0.30,这个班1月份出生的同学有______人.14.若正比例函数y=kx的图象经过点(1,2),则k=______.15.已知菱形ABCD的面积为24cm2,若对角线AC=6cm,则这个菱形的边长为______cm.16.已知△ABC的三边长分别为1,√3,2,则△ABC是______ 三角形.17.已知一次函数y=(1−m)x+1,当m______时,y随x的增大而增大.18.若点M(a−2,2a+3)是y轴上的点,则a的值为______ .19.如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN⊥AN,垂足为N,且AB=6,BC=10,MN=1.5,则△ABC的周长是______.20.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,M为斜边AB上一动点,过M作MD⊥AC,过M作ME⊥CB于点E,则线段DE的最小值为______.三、解答题(本大题共7小题,共60.0分)21.已知y是x的一次函数,且当x=4时,y=9;当x=6时,y=−1.(1)求这个一次函数的表达式;(2)当x=1时,求y的值.22.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.23.某校举行以“建党一百周年”为主题的图片制作比赛,赛后整理参赛同学的成绩,并制作成图表.分数段频数频率60≤x<70300.1570≤x<80m0.4580≤x<9060n90≤x<100200.1请根据图表提供的信息,解答下列问题.(1)求表中m和n所表示的数;(2)请在图中补全频数分别直方图;(3)若比赛成绩不低于80分可以获奖,则获奖率为多少?24.如图,在△ABC中,∠ACB=90°,D,E分别为AC,AB的中点,BF//CE交DE的延长线于点F.(1)求证:四边形ECBF是平行四边形;(2)当∠A=30°时,求证:四边形ECBF是菱形.25.如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.求:(1)两条对角线的长度;(2)菱形的面积.26.我国传统的计重工具--秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.下表中为若干次称重时所记录的一些数据.x(厘米)12471112y(斤)0.75 1.00 1.50 2.75 3.25 3.50(1)在上表x,y的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?27.如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时旋转90°,得到线段CQ,连接BP,DQ.(1)如图1,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图2,求证:BE⊥DQ;②如图3,若△BCP为等边三角形,判断△DEP的形状,并说明理由.答案和解析1.【答案】A【解析】解:A、是轴对称图形,也是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故选:A.结合选项根据轴对称图形与中心对称图形的概念求解即可.本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.2.【答案】C【解析】解:直线y=x−1与y轴交于(0,−1)点,且k=1>0,y随x的增大而增大,∴直线y=x−1的图象经过第一、三、四象限.故选:C.由y=x−1可知直线与y轴交于(0,−1)点,且y随x的增大而增大,可判断直线所经过的象限.本题考查了一次函数的性质.关键是根据图象与y轴的交点位置,函数的增减性判断图象经过的象限.3.【答案】C【解析】解:点P(−1,−2),由横纵坐标均为负数,则此点在第三象限.故选:C.根据第三象限的坐标特征进行判断.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).4.【答案】B【解析】解:五边形的内角和是(5−2)×180°=540°.故选B.n边形的内角和是(n−2)180°,由此即可求出答案.本题主要考查了多边形的内角和公式,是需要熟记的内容.5.【答案】D【解析】解:A、不正确,两组对边分别平行;B、不正确,两组对角分别相等,两者均有此性质正确,;C、不正确,对角线互相平分,两者均具有此性质;D、菱形的对角线互相垂直但平行四边形却无此性质.故选:D.根据菱形的特殊性质可知对角线互相垂直.此题主要考查了菱形的性质,关键是根据菱形对角线垂直及平行四边形对角线平分的性质的理解.6.【答案】C【解析】解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=12BD,同理FG=12BD,HG=12AC,EF=12AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:C.因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.7.【答案】C【解析】解:如图,点D、E、F分别是AB、AC、BC的中点,∴DE=12BC,DF=12AC,EF=12AB,∵原三角形的周长为36cm,则新三角形的周长为362=18(cm).故选C.由三角形的中位线定理可知,以三角形三边中点为顶点的三角形的周长是原三角形周长的一半.本题考查三角形的中位线,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.8.【答案】A【解析】解:作EF⊥BC于F,∵BE平分∠ABC,EF⊥BC,ED⊥AB,∴EF=DE=2,∴△BCE的面积=12×BC×EF=5.故选:A.作EF⊥BC于F,根据角平分线的性质定理得到EF=DE=2,根据三角形面积公式计算即可.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.9.【答案】B【解析】【分析】根据动点从点A出发,首先向点D运动,此时y不随x的增加而增大,当点P在DC上运动时,y随着x的增大而增大,当点P在CB上运动时,y不变,据此作出选择即可.本题考查了动点问题的函数图象,解决动点问题的函数图象问题关键是发现y随x的变化而变化的趋势.【解答】解:当点P由点A向点D运动,即0≤x≤4时,y的值为0;当点P在DC上运动,即4<x≤8时,y随着x的增大而增大;当点P在CB上运动,即8<x≤12时,y不变;当点P在BA上运动,即12<x≤16时,y随x的增大而减小.故选:B.10.【答案】A【解析】解:∵AB=3,AD=4,∴DC=3,∴AC=√32+42=5,根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E,设ED=x,则D′E=x,AD′=AC−CD′=2,AE=4−x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,22+x2=(4−x)2,解得:x=3,2故选:A.首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E= x,AD′=AC−CD′=2,AE=4−x,再根据勾股定理可得方程22+x2=(4−x)2,再解方程即可.此题主要考查了图形的翻着变换,以及勾股定理的应用,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.【答案】(−1,−1)【解析】解:点P(−1,1)关于x轴的对称点Q的坐标为:(−1,−1).故答案为:(−1,−1).利用关于x轴对称点的特征分析得出即可.此题主要考查了关于x轴对称点的特征,解题时,要注意:关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.12.【答案】y=3x+3【解析】解:将直线y=3x向上平移3个单位,得到直线:y=3x+3.故答案为y=3x+3.利用一次函数“上加下减”的平移规律即可得出答案.此题主要考查了一次函图象与平移变换,正确记忆平移规律“左加右减,上加下减”是解题关键.13.【答案】15【解析】解:50×0.30=15(人),故答案为:15..计算可得答案.根据频率的求法,频率=频数数据总和本题主要考查了频率的计算公式,是需要识记的内容.14.【答案】2【解析】解:∵正比例函数y=kx的图象经过点(1,2),∴2=k×1,即k=2.故答案为:2.由点(1,2)在正比例函数图象上,根据一次函数图象上点的坐标特征即可得出关于k的一元一次方程,解方程即可得出k值.本题考查了一次函数图象上点的坐标特征,解题的关键是得出2=k×1.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标利用一次函数图象上点的坐标特征求出一次函数的系数是关键.AC⋅BD,【解析】解:菱形ABCD的面积=12∵菱形ABCD的面积是24cm2,其中一条对角线AC长6cm,∴另一条对角线BD的长=8cm;边长是:√32+42=5cm.故答案为:5.根据菱形的面积等于对角线乘积的一半可求出另一条对角线BD的长.然后根据勾股定理即可求得边长.本题考查了菱形的性质.菱形被对角线分成4个全等的直角三角形,以及菱形的面积的计算,理解菱形的性质是关键.16.【答案】直角【解析】解:∵12+(√3)2=22,∴△ABC是直角三角形.故答案为:直角.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.17.【答案】<1【解析】解:当1−m>0时,y随x的增大而增大,所以m<1.故答案为:<1.根据一次函数的性质得1−m>0,然后解不等式即可.本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降;当b>0时,直线与y轴交于正半轴;当b<0时,直线与y轴交于负半轴.【解析】解:∵点M(a−2,2a+3)是y轴上的点,∴a−2=0,解得a=2.故答案为:2.根据y轴上点的横坐标为0列方程求解即可.本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.19.【答案】25【解析】解:延长线段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN,∵BN⊥AN,∴∠ANB=∠ANE=90°,在△ABN和△AEN中,{∠BAN=∠EAN AN=AN∠ANB=∠ANE,∴△ABN≌△AEN(ASA),∴AE=AB=6,BN=NE,又∵M是△ABC的边BC的中点,∴CE=2MN=2×1.5=3,∴△ABC的周长是AB+BC+AC=6+10+6+3=25,故答案为:25.延长线段BN交AC于E,从而构造出全等三角形(△ABN≌△AEN),进而证明MN是中位线,从而求出CE,AE的长.本题主要考查了三角形的中位线定理,全等三角形的判定.解决本题的关键是作出辅助线,利用全等三角形的性质证得BN=NE,进而应用三角形中位线定理解决问题.20.【答案】125【解析】解:连接CM ,如图所示:∵MD ⊥AC ,ME ⊥CB ,∴∠MDC =∠MEC =90°,∵∠C =90°,∴四边形CDME 是矩形,∴DE =CM ,∵∠C =90°,BC =3,AC =4,∴AB =√BC 2+AC 2=√32+42=5,当CM ⊥AB 时,CM 最短,此时△ABC 的面积=12AB ⋅CM =12BC ⋅AC ,∴CM 的最小值=BC⋅AC AB =125,∴线段DE 的最小值为125;故答案为:125.连接CM ,先证明四边形CDME 是矩形,得出DE =CM ,再由三角形的面积关系求出CM 的最小值,即可得出结果.本题考查了矩形的判定与性质、勾股定理、直角三角形面积的计算方法;熟练掌握矩形的判定与性质,并能进行推理论证与计算是解决问题的关键.21.【答案】解:(1)设这个一次函数的解析式为y =kx +b(k ≠0),∵当x =4时,y =9;当x =6时,y =−1,∴{4k +b =96k +b =−1, 解得:{k =−5b =29, 故这个一次函数的解析式为y =−5x +29;(2)把x =1代入y =−5x +29中得:y =−5+29=24.【解析】(1)首先设出这个一次函数的解析式为y=kx+b(k≠0),再利用待定系数法即可求得;(2)把x=1代入y=−5x+29中计算出y的值即可.此题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,一次函数的性质,关键是求出一次函数的解析式.22.【答案】证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠DFC=90°,∠DFC+∠FDC=90°,∴∠EFB=∠DFC,∵BE=CF,∴△BEF≌△CFD,∴BF=CD.【解析】欲证明BF=CD,只要证明△BEF≌△CFD;本题考查矩形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.=200,23.【答案】解:(1)样本容量=300.15所以m=200×0.45=90,=0.3;n=60200(2)如图:(3)读图表可得比赛成绩不低于80分的人数为60+20=80,故获奖率为80200×100%=40%.【解析】(1)利用第1组的频率与频数可计算出样本容量,根据根据频率的意义分别计算出m和n的值;(2)根据(1)的结果,可以补全直方图;(3)由图表可得比赛成绩80分以上的人数,除以总人数即可得答案.本题考查了频数(率)分布直方图:会从频数分布直方图获取信息.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.【答案】证明:(1)∵D,E分别为边AC,AB的中点,∴DE//BC,即EF//BC.又∵BF//CE,∴四边形ECBF是平行四边形;(2)∵∠ACB=90°,∠A=30°,E为AB的中点,∴CB=12AB,CE=12AB,∴CB=CE,又由(1)知,四边形ECBF是平行四边形,∴四边形ECBF是菱形.【解析】此题主要考查了平行四边形的判定以及菱形的判定,利用平行四边形的判定以及菱形的判定是解题关键.(1)利用三角形中位线定理及平行四边形的判定证明即可;(2)利用菱形的判定证明即可.25.【答案】解:(1)∵四边形ABCD是菱形,∴AB=BC,AC⊥BD,AD//BC,∴∠ABC+∠BAD=180°,∵∠ABC与∠BAD的度数比为1:2,∴∠ABC=13×180°=60°,∴∠ABO=12∠ABC=30°,∴AB =2cm ,∴OA =12AB =1cm , ∴OB =√AB 2−OA 2=√3,∴AC =2OA =2cm ,BD =2OB =2√3cm ;(2)S 菱形ABCD =12AC ⋅BD =12×2×2√3=2√3(cm 2).【解析】(1)由在菱形ABCD 中,∠ABC 与∠BAD 的度数比为1:2,周长是8cm ,可求得△ABO 是含30°角的直角三角形,AB =2cm ,继而求得AC 与BD 的长;(2)由菱形的面积等于其对角线积的一半,即可求得答案.此题考查了菱形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.26.【答案】解:(1)观察图象可知:x =7,y =2.75这组数据错误.(2)设y =kx +b ,把x =1,y =0.75,x =2,y =1代入可得{k +b =0.752k +b =1, 解得{k =14b =12, ∴y =14x +12,当x =16时,y =4.5,答:秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤.【解析】本题考查一次函数的应用,待定系数法等知识,解题的关键是理解题意,灵活运用所学知识解决问题(2)设函数关系式为y=kx+b,利用待定系数法解决问题即可.27.【答案】(1)证明:∵∠BCD=90°,∠PCQ=90°,∴∠BCP=∠DCQ,在△BCP和△DCQ中,{BC=CD∠BCP=∠DCQ PC=QC,∴△BCP≌△DCQ(SAS);(2)①如图b,∵△BCP≌△DCQ,∴∠CBF=∠EDF,又∠BFC=∠DFE,∴∠DEF=∠BCF=90°,∴BE⊥DQ;②∵△BCP为等边三角形,∴∠BCP=60°,∴∠PCD=30°,又CP=CD,∴∠CPD=∠CDP=75°,又∠BPC=60°,∠CDQ=60°,∴∠EPD=180°−∠CPD−∠CPB=180°−75°−60=45°,同理:∠EDP=45°,∴△DEP为等腰直角三角形.【解析】本题考查了正方形的性质、三角形全等的判定和性质以及旋转的性质,掌握正方形的四条边相等、四个角都是直角,旋转的性质证明三角形全等是解题的关键.(1)根据旋转的性质证明∠BCP=∠DCQ,得到△BCP≌△DCQ;(2)①根据全等的性质和对顶角相等即可得到答案;②根据等边三角形的性质和旋转的性质求出∠EPD=45°,∠EDP=45°,判断△DEP的形状.。
岳阳市八年级数学下册第四单元《一次函数》检测卷(包含答案解析)

一、选择题BC=,动点P沿折线BCD从点B开始运动到点1.如图,在矩形ABCD中,3AB=,4D,设点P运动的路程为x,ADP△的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.2.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A.B.C.D.3.甲,乙两车分别从A,B两地同时出发,相向而行.乙车出发2h后休息,当两车相遇时,两车立即按原速度继续向目的地行驶.设甲车行驶的时间为x(h),甲,乙两车到B地的距离分别为y1(km),y2(km),y1,y2关于x的函数图象如图.下列结论:①甲车的速度是45akm/h;②乙车休息了0.5h;③两车相距a km时,甲车行驶了53h.正确的是( )A.①②B.①③C.②③D.①②③4.已知56a=-,56b=+,则一次函数y=(a+b)x+ab的图象大致为()A.B.C.D.5.如图,直线443y x=+与x轴,y轴分别交于A,B两点,点C在OB上,若将ABC沿AC折叠,使点B恰好落在x轴上的点D处,则点C的坐标是()A.(0,1)B.20,3⎛⎫⎪⎝⎭C.30,2⎛⎫⎪⎝⎭D.(0,2)6.下表反映的是某地区用电量x(千瓦时)与应交电费y(元)之间的关系:用电量x(千瓦时)1234······应交电费y(元)0.55 1.1 1.65 2.2······x y x y x②用电量每增加1千瓦时,应交电费增加0.55元;③若用电量为8千瓦时,则应交电费4.4元;④若所交电费为2.75元,则用电量为6千瓦时,其中正确的有()A.4个B.3个C.2个D.1个7.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x分钟,船舱内积水量为y吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y与x的函数关系,下列说法中:①修船共用了38分钟时间;②修船过程中进水速度是排水速度的3倍;③修船完工后的排水速度是抢修过程中排水速度的4倍;④最初的仅进水速度和最后的仅排水速度相同,其中正确的信息判断是()A.①②B.②③C.②④D.③④8.如图,边长为2的正方形ABCD中,点P从点A出发沿路线A B C D→→→匀速运动至点D停止,已知点P的速度为1,运动时间为t,以P.A.B为项点的三角形面积为S,则S与t之间的函数图象可能是()A .B .C .D .9.若点P 在一次函数31y x =-+的图象上,则点P 一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限 10.一个一次函数的图象与直线112y x =-平行,与x 轴、y 轴的交点分别为A ,B ,并且过点(1,5)--,则在线段AB 上(包括端点A ,B )横、纵坐标都是整数的点有( ) A .4个 B .5个C .6个D .7个 11.甲、乙两辆汽车分别从A 、B 两地同时出发,沿同一条公路相向而行,乙车出发2h 后休息,与甲车相遇后,继续行驶.设甲、乙两车与B 地的距离分别为()y km 甲、()y km 乙,甲车行驶的时间为(h)x ,y 甲、y 乙与x 之间的函数图象如图所示,结合图象下列说法不正确的是( )A .甲车的速度是80/km hB .乙车休息前的速度为100/km hC .甲走到200km 时用时2.5hD .乙车休息了1小时 12.若函数y =(k ﹣3)x+k 2﹣9是正比例函数,则( )A .k≠3B .k =±3C .k =3D .k =﹣3 二、填空题13.如图,在平面直角坐标系中,过点C (0,6)的直线AC 与直线OA 相交于点A (4,2),动点M 在直线AC 上,且△OMC 的面积是△OAC 的面积的14,则点M 的坐标为_____.14.函数1y x =-中自变量x 的取值范围是________. 15.已知一次函数y kx b =+的图象与直线1y x =-+平行,且经过点(8,2),那么b 的值是________.16.如果直线y=2x+3与直线y=3x ﹣2b 的交点在y 轴上,那么b 的值为___.17.如图,直线y ax b =+与x 轴交于A 点(4,0),与直线y mx =交于B 点(2,)n ,则关于x 的一元一次方程ax b mx -=的解为___________.参考答案18.在平面直角坐标系中,直线2y x =+和直线2y x b =-+的交点的横坐标为m .若13m -≤<,则实数b 的取值范围为____.19.请写出一个符合下列要求的一次函数的表达式:_______.①函数值y 随自变量x 增大而增大;②函数的图像经过第二象限.20.已知一个一次函数的图象过点(1,2)-,且y 随x 的增大而减小,则这个一次函数的解析式为__________.(只要写出一个)三、解答题21.已知直线l 1:y =kx+b 经过点A (12,2)和点B (2,5). (1)求直线l 1的表达式;(2)求直线l 1与坐标轴的交点坐标.22.如图,在平面直角坐标系中,O 为坐标原点,一次函数y kx b =+与x 轴交于点A ,与y 轴交于点(0,4)B ,与正比例函数3y x =-交于点(1,)C m -.(1)求直线AB 的函数表达式.(2)在y 轴上找点P ,使OCP △为等腰三角形,直接写出所有满足条件的P 点坐标. (3)在直线AB 上找点Q ,使得78COQ APB S S =,求点Q 的坐标.23.慧慧和甜甜上山游玩,慧慧乘坐缆车,甜甜步行,两人相约在山顶的缆车终点会合,已知甜甜行走到缆车终点的路程是缆车到山顶的线路长的2倍,慧慧在甜甜出发后50分才乘上缆车,缆车的平均速度为180米/分.设甜甜出发x分后行走的路程为y 米.图中的折线表示甜甜在整个行走过程中y随x的变化关系.(1)甜甜行走的总路程是______米,她途中休息了______分.(2)分别求出甜甜在休息前和休息后所走的路程段上的步行速度.(3)当慧慧到达缆车终点时,甜甜离缆车终点的路程是多少.24.书籍是人类进步的台阶.为了鼓励全民阅读,某图书馆开展了两种方式的租书业务:一种是使用租书卡,另一种是使用会员卡,图中1l,2l分别表示使用租书卡和会员卡时每本书的租金y(元)与租书时间x(天)之间的关系.(1)直接写出用租书卡和会员卡时每本书的租金y(元)与租书时间x(天)之间的函数关系式;(2)小红准备租某本名著50天,选择哪种租书方式比较合算?小明准备花费90元租书,选择哪种租书方式比较合算?25.某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式如图所示.(1)第20天的总用水量为多少米3?(2)当20x ≥时,求y 与x 之间的函数关系式;(3)种植时间为多少天时,总用水量达到3500米3.26.某单位急需用车,但又不准备买车,他们准备和一个个体车主或一个出租车公司其中的一家签定月租车合同,设汽车每月行驶x 千米,应付给个体车主的月费用是1y 元,应付给出租车公司的月租费用是2y 元,1y ,2y 分别与x 之间的函数关系图象如图,观察图象回答下列问题:(1)求1y ,2y 分别与x 之间的函数关系式;(2)每月行驶的路程等于多少时,租两家的费用相同?(3)如果这个单位估计每月行驶的路程为2400千米,那么这个单位租哪一家的车合算,并说明理由?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分别求出04x ≤≤、47x <<时函数表达式,即可求解.【详解】解:由题意当04x ≤≤时,如题图,1134622y AD AB =⨯⨯=⨯⨯=,当47x <<时,如下图,11(7)414222y PD AD x x =⨯⨯=⨯-⨯=-.故选:D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.2.A解析:A【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn 的符号,然后根据m 、n 同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【详解】解:①当mn >0,m ,n 同号,同正时y =mx +n 过1,3,2象限,同负时过2,4,3象限;②当mn <0时,m ,n 异号,则y =mx +n 过1,3,4象限或2,4,1象限.故选:A .【点睛】此题主要考查一次函数与正比例函数的图象判断,解题的关键是熟知一次函数的图象与性质.3.A解析:A【分析】根据速度=路程÷时间即可算出甲的速度,由此可判断①,甲乙相遇时甲走路程为2akm ,计算出时间可判断②,分甲乙相遇前和相遇后两个时间段考虑甲乙相距akm 时的时间,可判断③.【详解】解:由函数图象可知,甲5小时到达,速度为4/5a km h ,故①正确; 甲与乙相遇时,时间为42 2.545a a h a -=,所以乙休息了2.520.5h -=,②正确;乙的速度为:2/2a akm h =,在2小时时,甲乙相距4242255a a a akm --⋅=, ∴在2小时前,若两车相距a km 时,445a a a a t t -=⋅+⋅,解得53t h =, 当两车相遇后,即2.5小时后,若两车相距a km 时,44(0.5)5a a a a t t +=⋅-+⋅, 解得5518t h =, ∴两车相距a km 时,甲车行驶了53h 或5518h ,故③错误; 故选:A .【点睛】本题考查一次函数的应用.解答此类问题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.4.C解析:C【分析】计算a +b 和ab 的值 ,根据一次函数的性质,可以得到该函数图象经过哪几个象限,本题得以解决.【详解】解:∵a ++0>,ab==10-<, ∴该函数的图象经过第一、三、四象限,故选:C .【点睛】本题考查一次函数的图象,二次根式的混合运算,解答本题的关键是明确题意,利用一次函数的性质解答. 5.C解析:C【分析】先求得点A 、B 的坐标分别为:(﹣3,0)、(0,4),由此可求得AB =5,再根据折叠可得AD =AB =5,故OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,CD =BC =4﹣m ,根据222CO OD CD +=列出方程求解即可.【详解】解:∵直线y =43x +4与x 轴、y 轴分别交于A 、B 两点, ∴当x =0时,y =4;当y =0时,x =﹣3,则点A 、B 的坐标分别为:A (﹣3,0)、B (0,4),∴AO =3,BO =4,∴在Rt ABC 中,AB =5,∵折叠, ∴AD =AB =5,CD =BC ,∴OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,BC =4﹣m ,∴CD =BC =4﹣m ,在Rt COD 中,222CO OD CD +=,即2222(4)m m +=-,解得:m =32, 故点C (0,32), 故选:C .【点睛】本题考查的是一次函数图象上点的坐标特征,题目将图象的折叠和勾股定理综合考查,难度适中.6.B解析:B【分析】根据一次函数的定义,由自变量的值求因变量的值,以及由因变量的值求自变量的值,判断出选项的正确性.【详解】解:通过观察表格发现:每当用电量增加1千瓦时,电费就增加0.55,∴y 是x 的一次函数,故①正确,②正确,设y kx b =+,根据表格,当1x =时,0.55y =,当2x =时, 1.1y =,0.552 1.1k b k b +=⎧⎨+=⎩,解得0.550k b =⎧⎨=⎩, ∴0.55y x =,当8x =时,0.558 4.4y =⨯=,故③正确,当 2.75y =时,0.55 2.75x =,解得5x =,故④错误.故选:B .【点睛】本题考查一次函数的应用,解题的关键是掌握一次函数的实际意义和对应函数值的求解. 7.D解析:D【分析】当0≤x≤10时,可求出修船时的进水速度,当10≤x≤26时,可求出修船时的出水速度从而判断①②,当x≥26时,可求出修船后的出水速度,即可判断③,进而可判断④.【详解】有图像可知:第10分钟时,进水速度减小,即第10分钟开始修船,第26分钟时不再进水,即第26分钟停止修船,所以修船共用了16分钟时间,故①错误;当0≤x≤10时,进水速度=40÷10=4(吨/分),当10≤x≤26时,应进水:4×16=64(吨),实际进水:88-40=48(吨),则排水速度=(64-48)÷16=1(吨/分),所以修船过程中进水速度是排水速度的4倍,故②错误;当x≥26时,排水速度=88÷(48-26)=4(吨/分),所以修船完工后的排水速度是抢修过程中排水速度的4倍,故③正确;由当0≤x≤10时,进水速度=40÷10=4(吨/分),x≥26时,排水速度=88÷(48-26)=4(吨/分),可知:最初的仅进水速度和最后的仅排水速度相同,故④正确.故选D【点睛】本题主要考查函数图像,掌握函数图像上点的坐标的实际意义,是解题的关键. 8.C解析:C【分析】需分0≤t≤2、2<t≤4、4<t≤6三种情况分别分析即可.【详解】解:当0≤t≤2时,P 在AB 上运动,P .A .B 为项点的三角形AB 边上的高为0,即面积s=0;当2<t≤4时,P 在BC 上运动,P .A .B 为项点的三角形AB 边上的高为逐渐增大,即面积s 逐渐增大;当4<t≤6时,P 在DC 上运动,P .A .B 为项点的三角形AB 边上的高恒为2,即面积s 为1222⨯⨯=2; 综上可以发现C 满足题意.故答案为C .【点睛】本题主要考查的是动点图象问题,弄清楚不同时间段、函数图象和图形的对应关系成为解答本题的关键.9.C解析:C【分析】根据一次函数图象与系数的关系解答.【详解】∵一次函数31y x =-+中,k=-3<0,b=1>0,∴一次函数的图象经过第一、二、四象限,∵点P 在一次函数31y x =-+的图象上,∴点P 一定不在第三象限,故选:C .【点睛】此题考查一次函数图象与系数的关系: k>0,b>0时,直线经过第一、二、三象限; k>0,b<0时,直线经过第一、三、四象限; k<0;b>0时,直线经过第一、二、四象限; k<0,b<0时,直线经过第二、三、四象限.10.B解析:B【分析】 首先根据一次函数的图象与直线112y x =-平行,图象经过点(-1,-5),用待定系数法求出函数关系式,然后求出A 、B 两点的坐标,最后根据所求点满足在线段AB 上(包括端点A 、B ),且横、纵坐标都是整数,得出结果;【详解】 一次函数的图象与直线112y x =-平行,设此直线为12y x b =+, 过点(-1,-5), ∴把此点代入,得152b -=-+, 解得92b , ∴此直线为1922y x =-. 当0x =时,92y =-; 0y =时,19022x =-,解得x=9, 故A(9,0),B(0,92-). 由直线的解析式可知,只要x 是奇数时,y 即为整数,而从9到0共有5个奇数,即1,3,5,7,9,故在线段AB 上(包括端点A ,B )横、纵坐标都是整数的点有5个.故选:B .【点睛】本题考查了一次函数平行的特点,列出方程,求出未知数,再根据题意求解;11.D解析:D【分析】根据题意和函数图象可以判断题目中的各个选项是否正确,从而可以解答本题;【详解】解:由图象可得,甲车的速度为:400580/km h ÷=,故A 正确;乙车休息前行驶的速度为:2002100/km h ÷=,故B 正确;甲车与乙车相遇时,甲车行驶的时间为:(400200)80 2.5h -÷=,故C 正确;乙车休息的时间为2.520.5h -=,故D 错误.故选:D .【点睛】本题考查一次函数的应用,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答;12.D解析:D【分析】形如(0)y kx k =≠的函数是正比例函数,根据定义解答.【详解】解:∵y =(k ﹣3)x+k 2﹣9是正比例函数,∴k 2﹣9=0,且k ﹣3≠0,解得:k =﹣3,故选:D.【点睛】此题考查正比例函数的定义:形如(0)y kx k =≠的函数是正比例函数,熟记定义是解题的关键.二、填空题13.(15)或(-17)【分析】利用待定系数法求出直线AC 的解析式得到OCOB 的长设M 的坐标为用OC 作底用含m 的式子表示和的面积利用已知条件求得m 的值即可得到M 的坐标【详解】设直线AC 的解析式为:解得:解析:(1,5)或(-1,7)【分析】利用待定系数法求出直线AC 的解析式,得到OC 、OB 的长.设M 的坐标为(),6m m -+,用OC 作底,用含m 的式子表示OMC 和OAC 的面积,利用已知条件14OMC OAC S S =△△求得m 的值,即可得到M 的坐标.【详解】设直线AC 的解析式为:y kx b =+()()064,2C A ,,642b k b =⎧∴⎨+=⎩,解得:16k b =-⎧⎨=⎩∴直线AC 的解析式为:6y x =-+∴B 点的坐标为:()6,0M 在直线AC 上∴设M 点坐标(),6m m -+在OMC 中,OC=6,M 到OC 的距离1h m = ∴1116322OMC S OC h m m =⋅⋅=⨯⋅= 在OAC 中,OC=6,A 到OC 的距离24h = ∴211641222OAC S OC h =⋅⋅=⨯⨯= 14OMC OAC S S =13124m ∴=⨯ 1m =11m =或21m =-M ∴的坐标为(1,5)或(-1,7).故答案为:(1,5)或(-1,7).【点睛】本题考查了待定系数法求一次函数解析式及三角形的面积求法.利用待定系数法求解一次函数解析式:①设出一次函数解析式的一般形式;②把已知条件代入解析式,得到关于待定系数的方程组;③解方程组,求出待定系数的值,代入解析式得到一次函数解析式. 14.且【分析】根据二次根式的性质和分式的意义被开方数大于或等于0分母不等于0可以求出x 的范围【详解】根据题意得:x≥0解得:且故答案为:且【点睛】本题考查了函数自变量的取值范围问题函数自变量的范围一般从解析:0x ≥且1x ≠【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】y =,根据题意得:x≥0 10≠,解得:0x ≥且1x ≠.故答案为:0x ≥且1x ≠.【点睛】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15.10【分析】根据两条直线平行比例系数k 相同求出k=-1把点代入即可求b【详解】解:因为一次函数的图象与直线平行所以k=-1把点代入得解得b=10故答案为:10【点睛】本题考查了一次函数图象互相平行时解析:10【分析】根据两条直线平行,比例系数k 相同,求出k=-1,把点(8,2)代入即可求b .【详解】解:因为一次函数y kx b =+的图象与直线1y x =-+平行,所以k=-1,把点(8,2)代入y x b =-+,得28b =-+,解得,b=10,故答案为:10.【点睛】本题考查了一次函数图象互相平行时,比例系数的关系和待定系数法求解析式,解题关键是知道两条直线平行时比例系数k 相同.16.【分析】先求出y=2x+3与y 轴交点坐标为(03)代入y=3x ﹣2b 即可求得答案【详解】令y=2x+3中x=0解得y=3∴直线y=2x+3与y 轴交点为(03)将(03)代入y=3x ﹣2b 中得-2b= 解析:32- 【分析】先求出y=2x+3与y 轴交点坐标为(0,3),代入y=3x ﹣2b ,即可求得答案.【详解】令y=2x+3中x=0,解得y=3,∴直线y=2x+3与y 轴交点为(0,3),将(0,3)代入y=3x ﹣2b 中,得-2b=3,解得b=32-, 故答案为:32-. 【点睛】此题考查一次函数与坐标轴的交点坐标,掌握交点坐标的计算方法是解题的关键. 17.【分析】首先根据两直线交于点B 可联立方程组求出x 的值在通过求得x 即可得解;【详解】∵∴解得:∵直线与直线交于点∴由得:∴∴关于x 的一元一次方程的解为:故答案是:【点睛】本题主要考查了一次函数的图像性 解析:2x =-【分析】首先根据两直线交于点B ,可联立方程组求出x 的值,在通过ax b mx -=求得x ,即可得解;【详解】∵y ax b y mx =+⎧⎨=⎩, ∴ax b mx +=, 解得:b x m a=-, ∵直线y ax b =+与直线y mx =交于B 点(2,)n , ∴2bm a =-,由ax b mx -=,得:b x m a =--, ∴2bx m a =-=--, ∴关于x 的一元一次方程ax b mx -=的解为:2x =-.故答案是:2x =-.【点睛】 本题主要考查了一次函数的图像性质,准确分析计算是解题的关键.18.【分析】求出两直线交点的横坐标m 代入求出b 的取值范围即可【详解】解:根据题意得解得∴∵∴∴故答案为:【点睛】此题主要考查了直线交点问题构造方程求交点是解答本题的关键解析:111b -≤<【分析】求出两直线交点的横坐标m ,代入13m -≤<,求出b 的取值范围即可.【详解】解:根据题意得,22x x b +=-+, 解得,23b x -=, ∴23b m -= ∵13m -≤< ∴2133b --≤< ∴111b -≤<故答案为:111b -≤<【点睛】此题主要考查了直线交点问题,构造方程求交点是解答本题的关键.19.(答案不唯一保证即可)【分析】根据题意和一次函数的性质可以写出符合要求的一个一次函数本题得以解决【详解】解:∵一次函数的函数值y 随自变量x 增大而增大∴k >0∵函数的图象经过第二象限∴b >0∴符合下列 解析:23y x =+(答案不唯一,保证0k >,0b >即可)【分析】根据题意和一次函数的性质,可以写出符合要求的一个一次函数,本题得以解决.【详解】解:∵一次函数的函数值y 随自变量x 增大而增大,∴k >0,∵函数的图象经过第二象限,∴b >0,∴符合下列要求的一次函数的表达式可以是23y x =+,故答案为:23y x =+(答案不唯一).【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答. 20.y=-x+1(答案不唯一)【分析】设一次函数的解析式为y=kx+b 根据一次函数的性质得k <0取k=-1然后把(-12)代入y=-x+b 可求出b 【详解】解:设一次函数的解析式为y=kx+b ∵y 随x 的增解析:y=-x+1.(答案不唯一)【分析】设一次函数的解析式为y=kx+b ,根据一次函数的性质得k <0,取k=-1,然后把(-1,2)代入y=-x+b 可求出b .【详解】解:设一次函数的解析式为y=kx+b ,∵y 随x 的增大而减小,∴k 可取-1,把(-1,2)代入y=-x+b 得1+b=2,解得b=1,∴满足条件的解析式可为y=-x+1.故答案为y=-x+1.(答案不唯一)【点睛】本题考查了一次函数y=kx+b 的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.三、解答题21.(1)y =2x+1;(2)(0,1)和(﹣12,0) 【分析】(1)由待定系数法可求得直线l 1的解析式;(2)令x=0可求得其与y 轴的交点坐标,令y=0,可求得其与x 轴的交点坐标.【详解】解:(1)∵直线l 1:y=kx+b 经过点A (12,2)和点B (2,5). ∴12225k b k b ⎧+=⎪⎨⎪+=⎩,解得21k b =⎧⎨=⎩, 即y=2x+1;(2)令x=0,则y=1;令y=0,则x=-12, ∴直线l 1与坐标轴的交点坐标为(0,1)和(-12,0). 【点睛】本题考查待定系数法求一次函数的解析式,一次函数的上点的坐标特征,熟练掌握待定系数法是解题的关键.22.(1)4y x =+;(2)12345(0,(0,6),0,3P P P P ⎛⎫⎪⎝⎭;(3)513,22Q ⎛⎫ ⎪⎝⎭或91,22Q ⎛⎫-- ⎪⎝⎭. 【分析】 (1)由题意易得()1,3C -,然后把点B 、C 的坐标代入y kx b =+求解即可;(2)由题意易得可分①当OC OP =时,②当C 为等腰OCP △的顶点时,则C 在OP 的中垂线上,③当P 为等腰OCP △的顶点时设(0,)P a ,进而根据等腰三角形的性质进行求解即可;(3)过Q 作x 轴平行线交CO 于点D ,设(,4)Q m m +,则4,43m D m +⎛⎫-+ ⎪⎝⎭,由题意可得8AOB S =△,进而可得()12COQ c o SQD y y =⋅-,然后可得441433m +=,进而求解即可.【详解】解:(1)由题意得: 3y x =-过 (1,)C m -,3(1)3m ∴=-⨯-=,(1,3)C ∴-,∵直线:AB y kx b =+过(0,4),(1,3)B C -,代入可得43b k b =⎧⎨=-+⎩,解得14k b =⎧⎨=⎩, ∴直线AB 的解析式为4y x =+;(2)①当O 为等腰OCP △的顶点时,则OC OP =,(OC ==OP ∴=12(0,P P ∴. ②当C 为等腰OCP △的顶点时,则C 在OP 的中垂线上,C ∴的纵坐标为OP 纵坐标的中点,3(0,6)P ∴.③当P 为等腰OCP △的顶点时设(0,)P a ,22CP OP ∴=,22a ∴=,解得53a =,综上所述12345(0,(0,6),0,3P P P P ⎛⎫ ⎪⎝⎭;(3)4y x =+与x 轴交于点A , (4,0)A ∴-, 1144822AOB A B S x y ∴=⨯⨯=⨯⨯=,778COQ AOB S S ==,过Q 作x 轴平行线交CO 于点D ,设(,4)Q m m +,则4,43m D m +⎛⎫-+ ⎪⎝⎭, ()12COQ c o S QD y y ∴=⋅-, 14323m m +=⨯+⨯, 143723m m +∴⨯+⨯=, 441433m +∴=, 441433m +∴=或441433m +=-, 解得52m =或92m =-, 513,22Q ⎛⎫∴ ⎪⎝⎭或91,22Q ⎛⎫-- ⎪⎝⎭. 【点睛】本题主要考查一次函数与几何的综合,熟练掌握一次函数的性质及等腰三角形的性质是解题的关键.23.(1)3600,20;(2)休息前65米/分,休息后55米/分(3)1100米【分析】根据图象获取信息:(1)甜甜到达山顶用时80分钟,中途休息了20分钟,行程为3600米;(2)休息前30分钟行走1950米,休息后30分钟行走(3600﹣1950)米.(3)求慧慧到达缆车终点的时间,计算甜甜行走路程,求离缆车终点的路程.【详解】解:(1)根据图象知:甜甜行走的总路程是3600米,她途中休息了20分钟.故答案为 3600,20;(2)甜甜休息前的速度为:1950=6530(米/分), 甜甜休息后的速度为:360019501650=553030-=(米/分); (3)慧慧所用时间:360018002=10180180=(分), 甜甜比慧慧迟到80﹣50﹣10=20(分),∴慧慧到达终点时,甜甜离缆车终点的路程为20551100⨯=米【点睛】此题考查函数及其图象的应用,从图象中获取相关信息是关键.此题第3问难度较大. 24.(1)10.3y x =,2200.2y x =+;(2)当50x =时,选择使用租书卡比较合算,当90y =时,选择会员卡比较合算.【分析】(1)利用待定系数进行求解即可;(2)分别算出当50x =时y 的值,与当90y =时x 的值,然后选择符合题意的即可.【详解】(1)设l 1的函数解析式为y 1=k 1x ,将x=200,y=60代入y 1=k 1x 得:60=200k 1,解得k 1=0.3,∴设l 1的函数解析式为:10.3y x =,设l 2的函数解析式为y 2=k 2x+b 2,将x=0,y=20与x=200,y=60分别代入y 2=k 2x+b 2得:2222020060b k b =⎧⎨+=⎩, 解得220.220k b =⎧⎨=⎩, ∴l 2的函数解析式为2200.2y x =+;(2)当50x =时,10.35015y =⨯=,2200.25030y =+⨯=,∴12y y <,∴选择使用租书卡比较合算;当90y =时,1300x =,2350x =,∴12x x <,∴选择会员卡比较合算.【点睛】本题主要考查一次函数的实际应用,解此题的关键在于根据一次函数图象利用待定系数法确定函数关系式.25.(1)500米3;(2)y=150x-2500;(3)40天【分析】(1)看x=20时,所对应的函数值是多少即可;(2)设出一次函数解析式,把(20,500),(30,2000)代入一次函数解析式,求得k ,b 的值即可;(3)把y=3500代入(2)得到的一次函数解析式,求得x 的值即可.【详解】解:(1)当x=20时,y=500,所以,第20天的总用水量为500米3;(2)设所求的函数解析式为y=kx+b ,把(20,500),(30,2000)代入一次函数解析式得:20500302000k b k b +⎧⎨+⎩==, 解得:1502500k b ⎧⎨-⎩==, ∴y=150x-2500;(3)当y=3500时,150x-2500=3500,解得,x=40答:时间为40天时,总用水量达到3500米3.【点睛】考查一次函数的应用;用待定系数法求得一次函数解析式是常用的解题方法.26.(1)143y x =,2210003y x =+;(2)当每月行驶1500千米时,租两家的费用相同;(3)当每月行驶的路程为2400千米时,选择出租车公司合算.【分析】 (1)1y 是正比例函数,2y 是一次函数,利用待定系数法求解即可;(2)根据函数图象分析即可;(3)当路程为2400千米时,求出1y ,2y ,比较大小即可;【详解】解:(1)设11y k x =,根据题意,得120001500k =,解得143k =, ∴143y x =, 设22y k x b =+,根据题意,得,1000b =,①220001500k b =+②,将①代入②得223=k , ∴2210003y x =+; (2)当每月行驶1500千米时,租两家的费用相同. (3)当2400x =时,14240032003y =⨯=(元), 222400100026003y =⨯+=(元),12y y >, 所以,当每月行驶的路程为2400千米时,选择出租车公司合算.【点睛】本题主要考查了一次函数的应用,准确分析计算是解题的关键.。
湖南省岳阳市岳阳县2023-2024学年八年级下学期期中数学试题

湖南省岳阳市岳阳县2023-2024学年八年级下学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图标中,其文字上方的图案是中心对称图形的是( )A .B .C .D . 2.下列各组数,可以作为直角三角形的三边长的是( )A .2,2,3B .3,4,6C .5,12,15D .6,8,10 3.如图,AC BC ⊥,AD BD ⊥,AC AD =,则判定Rt Rt ABC ABD V V ≌的依据是( )A .SASB .SSSC .HLD .无法确定 4.一个多边形的每一个外角都是72︒,则这个多边形是( )A .三角形B .五边形C .六边形D .七边形 5.如图,将长为16cm 的橡皮筋放置在水平面上,固定两端A 和B ,然后把中点C 垂直向上拉升6cm 至点D ,则橡皮筋被拉长了( )A .4cmB .6cmC .8cmD .10cm 6.在ABCD Y 中,240B D ∠∠︒+= ,那么∠A 的度数是( )A .60°B .80°C .100°D .120°7.若一个n 边形从一个顶点最多能引出5条对角线,则n 是( )A .7B .8C .9D .108.对于四边形的以下说法:其中正确的个数有( )①对角线互相平分的四边形是平行四边形;②对角线相等且互相平分的四边形是矩形;③对角线垂直且互相平分的四边形是菱形;④顺次连结对角线相等的四边形各边的中点所得到的四边形是矩形.A .1个B .2个C .3个D .4个9.如图,将边长为8cm 的正方形纸片ABCD 折叠,使点D 落在BC 边的中点E 处,折痕为MN ,则线段CN 的长是( )A .3cmB .4cmC .5cmD .6cm10.如图,矩形ABCD 中,2AB =,1BC =,将矩形ABCD 绕顶点C 顺时针旋转90︒,得到矩形EFCG ,连接AE ,取AE 的中点H ,连接DH ,则DH 的长为( )A .1 BC D .2二、填空题11.ABC V 中,90C ∠=︒,35A ∠=︒,则B ∠= .12.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 .13.三角形三边长为6、8、10,那么最长边上的高为 .14.正方形的对角线长为8,则面积为 .15.如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点.若513AB AC ==,,则四边形ABOM 的周长为 .16.如图,在ABC V 中,9015ACB B ∠=︒∠=︒,,DE 垂直平分AB ,交BC 于点E ,3AC =,则ABE S V 的值是 .17.如图所示的方格纸中,点A ,B ,C 都在方格线的交点上,则ACB =∠ °.18.如图,在正方形ABCD 中,4AB =,E 为对角线AC 上与A ,C 不重合的一个动点,过点E 作EF AB ⊥于点F ,EG BC ⊥于点G ,连接DE ,FG ,下列结论:①DE FG =;②DE FG ^;③BGF ADE ∠=∠;④FG 的最小值为,其中正确的结论是 .(只填序号)三、解答题19.如图,在网格中,不用量角器和刻度尺,画出已知图形关于点O 的中心对称图形.20.如图,在平行四边形ABCD 中,点E ,F 分别在AB 、CD 上,AE =CF ,且DF =BF ; 求证:四边形DEBF 为菱形.21.阅读小明和小红的对话,解决下列问题.(1)这个“多加的锐角”是 °.(2)小明求的是几边形的内角和?22.为贯彻《关于全面加强新时代大中小学劳动教育的意见》的方针政策,帮助同学们更好地理解劳动的价值与意义,培养学生的劳动情感、劳动能力和劳动品质,学校给八(1)班、八(2)班各分一块三角形形状的劳动试验基地.(1)当班主任测量出八(1)班试验基地的三边长分别为5m ,12m ,13m 时,一边的小明很快给出这块试验基地的面积.你求出的面积为______2m .(2)八(2)班的劳动实践基地的三边长分别为15m AB =,14m BC =,13m AC =如图),你能帮助他们求出面积吗?23.如图,在Rt ACB V 中,90C ∠=︒,BE 平分ABC ED ∠,垂直平分AB 于点D ,若9AC =,求AE 的长.24.如图,在Rt ABC △中,90C ∠=︒,延长CB 至D ,使得BD CB =,过点A ,D 分别作AE BD ∥,DE BA ∥,AE 与DE 相交于点E .下面是两位同学的对话:请你选择一位同学的说法,并进行证明. 25.一种千斤顶利用了四边形的不稳定性. 如图,其基本形状是一个菱形,中间通过螺杆连接,转动手柄可改变A DC ∠的大小(菱形的边长不变),从而改变千斤顶的高度(即A 、C 之间的距离).若AB=40cm ,当A DC ∠从60︒变为120︒时,千斤顶升高了多少.26.(1)用数学的眼光观察.如图,在四边形ABCD 中,AD BC =,P 是对角线BD 的中点,M 是AB 的中点,N 是DC 的中点,求证:PMN PNM ∠=∠.(2)用数学的思维思考.如图,延长图中的线段AD 交MN 的延长线于点E ,延长线段BC 交MN 的延长线于点F ,求证:AEM F ∠=∠.(3)用数学的语言表达.如图,在ABC V 中,AC AB <,点D 在AC 上,AD BC =,M 是AB 的中点,N 是DC 的中点,连接MN 并延长,与BC 的延长线交于点G ,连接GD ,若60ANM ∠=︒,试判断CGD △的形状,并进行证明.。
湖南省岳阳市八年级下学期数学期末考试试卷(五四制)

湖南省岳阳市八年级下学期数学期末考试试卷(五四制)姓名:________ 班级:________ 成绩:________一、填空题 (共10题;共11分)1. (1分)二元一次方程组的解是________2. (1分)已知不等式3(x﹣2)+5<4(x﹣1)+6的最小整数解为方程2x﹣ax=3的解,则代数式的值为________.3. (1分)如图,点B、E、C、F在一条直线上,AB∥DE,BE=CF,请添加一个条件________ (只需填一个),使△ABC≌△DEF.4. (1分) (2019七上·大庆期末) 如图,△ABC和△BDE都是等边三角形,A、B、D三点共线.下列结论:①AE =CD;②BF=BG;③△BFG是等边三角形;④∠AHC=60°.其中正确的有________(只填序号).5. (1分)(2017·玄武模拟) 如图,在⊙O的内接六边形ABCDEF中,∠A+∠C=220°,则∠E=________°.6. (1分) (2020七上·南浔期末) 2019年的《最强大脑》节目中,有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为________和________。
7. (1分) AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,△ABD与△ACD的周长之差为________cm.8. (1分) (2017七下·兴隆期末) 不等式组的整数解________.9. (1分)在△ABC中,∠A﹣∠B=10°,,则∠C=________10. (2分) (2017七下·揭西期末) 如图,△ABC中,AD是高,AE是∠BAC的平分线,∠B=70°,∠DAE=18°,则∠C的度数是________。
八年级期终考试数学试题

岳阳市七中八年级期终考试数学试题题号 1 2 3 4 5 6 7 8 答案一、选择题(每小题3分 共24分) 1、下列等式正确的是( ).A.-9-=3B. -9=±3C.327-=-3D.-364-=-42、线段CD 是由线段AB 平移得到的。
点A (–1,4)的对应点为C (4,7),则点B (– 4,– 1)的对应点D 的坐标为( ) A .(2,9) B .(5,3) C .(1,2) D .(– 9,– 4)3、一次函数y =-3x -2的图象不经过 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4、已知一次函数y=3x -b 的图象经过点P(1,1),则该函数图象必经过点( )A.(-1,1)B.(2,2)C.(-2,2)D.(2,-2)5、已知点A1(-5,y )和点B2(-4,y )都在直线7y x b =-+上,则1y 与2y 的大小关系为( )A.>12y yB.=12y yC.<12y yD.不能确定6、 在ABC △和A B C 111△中,已知1A A ∠=∠,11AB A B =,在下列说法中,错误的是( ) A.如果增加条件11AC A C =,那么111ABC A B C △≌△(SAS ) B.如果增加条件11BC B C =,那么111ABC A B C △≌△(SAS ) C.如果增加条件1B B ∠=∠,那么111ABC A B C △≌△(ASA ) D.如果增加条件1C C ∠=∠,那么111ABC A B C △≌△(AAS )7、一次跳远比赛中,成绩在4.05米以上的人有8人,频率为0.4,则参加比赛的共有( ).A. 10人 B. 20人 C. 30人 D. 40人8、一个三角形的三边长分别为15,20,25,则这个三角形最大边上的高为( )A.10B.12C.24D.48二、填空题(每小题3分 共24分)9、16的平方根是____________,算术平方根是___________;10、点A 在x 轴上,位于原点的右侧,距离坐标原点5个单位长度,则此点的坐标为 ;点B 在y 轴上,位于原点的下方,距离坐标原点5个单位长度,则此点的坐标为 ;点C 在y 轴左侧,在x 轴下方,距离每个坐标轴都是5个单位长度,则此点的坐标为 。
岳阳市八年级下学期数学期末考试试卷

岳阳市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分) (2018八上·惠山期中) 下列二次根式中,最简二次根式为()A .B .C .D .2. (2分) (2017八上·涪陵期中) 下列图形是轴对称图形的是()A .B .C .D .3. (2分)甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有()A . 4个B . 3个C . 2个D . 1个4. (2分)已知甲、乙两组数据的平均数分别是=80,=90,方差分别是S甲2=10,S乙2=5,比较这两组数据,下列说法正确的是()A . 甲组数据较好B . 乙组数据较好C . 甲组数据比较整齐D . 乙组数据的波动较小5. (2分) (2020九上·岐山期末) 如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是()A . 四边形AEDF是平行四边形B . 若∠BAC=90°,则四边形AEDF是矩形C . 若AD⊥BC且AB=AC,则四边形AEDF是菱形D . 若AD平分∠BAC,则四边形AEDF是矩形6. (2分)一次函数y=x图象向下平移2个单位长度再向右平移3个单位长度后,对应函数关系式是()A . y=2x -8B . y=xC . y=x+2D . y=x-57. (2分)(2017·荆州) 为了解某班学生双休户外活动情况,对部分学生参加户外活动的时间进行抽样调查,结果如下表:户外活动的时间(小时)1236学生人数(人)2242则关于“户外活动时间”这组数据的众数、中位数、平均数分别是()A . 3、3、3B . 6、2、3C . 3、3、2D . 3、2、38. (2分) (2016八下·宜昌期中) 在△ABC中,AB=1,AC= ,BC=2,则这个三角形是()A . 锐角三角形B . 直角三角形C . 钝角三角形D . 等腰三角形9. (2分)下列命题中,①三角形的外心是三角形三边垂直平分线的交点;②函数y=(1﹣a)x2﹣4x+6与x轴只有一个交点,则a=;③半径分别为1和2的两圆相切,则圆心距为3;④若对于任意x>1的实数,都有ax>1成立,则a≥1.其中正确的个数有()A . 1个B . 2个C . 3个D . 4个10. (2分)(2017·普陀模拟) 在学校举办的“中华诗词大赛”中,有11名选手进入决赛,他们的决赛成绩各不相同,其中一名参赛选手想知道自己是否能进入前6名,他需要了解这11名学生成绩的()A . 中位数B . 平均数C . 众数D . 方差11. (2分) (2017八下·重庆期中) 如图,菱形ABCD中,∠B=60°,AB=2cm,E、F分别是BC、CD的中点,连接AE、EF、AF,则△AEF的周长为()A . 2 cmB . 3 cmC . 4 cmD . 3cm12. (2分)已知一组数据1,7,10,8,x,6,0,3,若,则x应等于()A . 6B . 5C . 4D . 213. (2分)已知函数y=mx与y=在同一直角坐标系中的图象大致如图,则下列结论正确的是()A . m>0,n>0B . m>0,n<0C . m<0,n>0D . m<0,n<014. (2分)(2018·遵义模拟) 如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是()A . 7B . 8C . 9D . 1015. (2分) (2015八下·滦县期中) 一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h (厘米)与燃烧时间t(时)的函数关系的图像是()A .B .C .D .16. (2分) (2015八下·沛县期中) 如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A . 4B . 3C . 2D . 1二、填空题 (共4题;共4分)17. (1分)(2018·洪泽模拟) 若式子在实数范围内有意义,则x的取值范围是________.18. (1分)请把命题“有两个角相等的三角形是等腰三角形”改写成“如果…,那么…”的表述形式:________19. (1分)小明参加了某电视台招聘记者的三项素质测试,成绩如下:采访写作70分,计算机操作60分,创意设计88分,如果采访写作、计算机操作和创意设计的成绩按4:1:3计算,则他的素质测试平均成绩为________ 分.20. (1分) (2016八下·广州期中) 如图,在等边△ABC的外侧作正方形ABDE,AD与CE交于F,则∠ABF 的度数为________.三、解答题 (共6题;共59分)21. (5分) (2017八下·万盛期末) 计算:.22. (10分) (2017八下·长春期末) 如图,在平面直角坐标系中,直线y=2x+3与y轴交于点A,直线y=kx ﹣1与y轴交于点B,与直线y=2x+3交于点C(﹣1,n).(1)求n、k的值;(2)求△ABC的面积.23. (7分)(2016·南京) 某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的成绩,得到下列统计图.(1)求该校九年级学生本次数学测试成绩的平均数;(2)下列关于本次数学测试说法正确的是()A . 九年级学生成绩的众数与平均数相等B . 九年级学生成绩的中位数与平均数相等C . 随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D . 随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数24. (10分)(2017·盐城模拟) 如图,直线AB交⊙O于C、D两点,CE是⊙O的直径,CF平分∠ACE交⊙O于点F,连接EF,过点F作FG∥ED交AB于点G.(1)求证:直线FG是⊙O的切线;(2)若FG=4,⊙O的半径为5,求四边形FGDE的面积.25. (15分) (2019八下·苏州期中) 如图,正方形ABCO的边OA、OC在坐标轴上,点B的坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连接CH、CG.(1)求证:△CBG≌△CDG;(2)求∠HCG的度数;并判断线段HG、OH、BG之间的数量关系,说明理由;(3)连接BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H 的坐标;如果不能,请说明理由.26. (12分)(2018·龙东) 某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:(1)甲车间每天加工大米________吨,a=________.(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?参考答案一、选择题 (共16题;共32分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题 (共4题;共4分)17-1、18-1、19-1、20-1、三、解答题 (共6题;共59分)21-1、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何用空间向量求解二面角
万立勇
(河南省信阳市新县高中,465550)
求解二面角大小的方法很多,诸如定义法、三垂线法、垂面法、射影法、向量法等若干种。
而这些方法中最简单易学的就是向量法,但在实际教学中本人发现学生利用向量法求解二面角还是存在一些问题,究其原因应是对向量法的源头不尽了解。
本文就简要介绍有关这类问题的处理方法,希望对大家有所帮助。
在立体几何中求二面角可归结为求两个向量的夹角问题.对于空间向量→a 、→
b ,有cos <→
a ,→
b >=→
→→
→⋅⋅|
|||b a b
a .利用这一结论,我们可以较方便地处理立体几何中二面角
的问题.
例1 (2005年全国高考理科试题) 在四棱锥V-ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD .求 面VAD 与面VDB 所成的二面角的大小.
证明: 建立如图空间直角坐标系,并设正方形边 长为1,依题意
得AB −−→
= (0,1,0),是面VAD 的法向量, 设n →
= (1,y ,z)是面VDB 的法向量,则
0,0.n VB n VB →−−→→−−→
⎧⋅=⎪⎨⎪⋅=⎩
⇒1,3y z =-⎧⎪
⎨=-
⎪⎩⇒n →= (1,-1
,-3
)。
∴cos <AB −−→,n →
>
||||
AB n
AB n −−→→
−−→→
⋅⋅=
-
7
, 又由题意知,面VAD 与面VDB
所成的二面角为锐角,所以其大小为
例2 (2004年全国高考四川、云南、吉林、黑龙江理科数学试题)如图,直三棱柱ABC —A 1B 1C 1中,∠ACB =90︒,AC=1,CB=2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1
的中点为M .
⑴求证CD ⊥平面BDM ;
⑵求面B 1BD 与面CBD 所成二面角的大小. 解:⑴略
⑵如图,以C 为原点建立坐标系.设BD 中点为G ,连结B 1G ,则依
G(
4
,14,1
4),BD −−→
= (
-2,12,12),1B G −−→= (
-4,-34,14),
∴BD −−→·1B G −−→
= 0,∴BD ⊥B 1G .
又CD ⊥BD ,∴CD −−→
与1B G −−→
的夹角θ等于所求二面角的平面角.
∴ cos θ=
11||||
CD B G CD B G −−→−−→
−−→
−−→
⋅⋅=
所以所求二面角的大小等于π-
例3 (2004年天津高考理工试题)如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F .求二面角C —PB —D 的大小
解:如图所示建立空间直角坐标系,D 为坐标原点,设a DC =
设点F 的坐标为000()x y z ,,,PA −−→
=PB λ−−→
,则
000()()x y z a a a a λ-=-,,,,.
从而000(1)x a y a z a λλλ===-,,.所以
B
B 1
C 1
A 1
C
A
D
M
PE −−→
=00011
(,
,)(,(),())2222
a a x y z a a a λλλ---=---. 由条件EF ⊥PB 知,PE −−→
·PB −−→
= 0,即0)21()21
(222=---+-a a a λλλ,解得3
1=λ.
∴点F 的坐标为2()333a a a ,,,且()366
a a a PE −−→=--,,,2()333a a a
FD −−→=---,,,
∴PB −−→
·FD −−→
222
20333
a a a =--+=,即FD PB ⊥,故EFD ∠是二面角C —PB —D 的平面角.
∵PE −−→
·FD −−→
=222291896a a a a =-+=
,且||PE −−→==
,
||FD −−→
==,
∴2
1cos 2
||||
a PE FD
EFD PE FD −−→−−→
−−→−−→
⋅∠=
=
=
,∴3π
=∠EFD .
所以,二面角C —PB —D 的大小为3
π
.
例4 已知三棱柱OAB —1O A 1B 1中,平面11O OBB ⊥平面OAB ,∠AOB =︒90,∠OB O 1=︒60,且OB =1OO = 2,OA =3,求二面角1O —AB —O 的大小.
解:以O 为原点,分别以OA ,OB 所在的直线为x ,y 轴,过O 点且与平面AOB 垂直的直线为z 轴,建立空间直角坐标系.如图,则O (0,0,0),1O (0,1,3),A(3,0,0),1A (3,1,3),B(0,2,0).
∴−→−1AO = (-3,1,3),−→
−AB = (-3,2,0).
显然−→
−OZ 为平面AOB 的法向量,取→
1n = (0,0,1),设平面AB O 1的法向量为→
2n = (x ,y ,z),则
→
2n ·−→
−1AO = 0,→
2n ·−→
−AB = 0.
即⎪⎩⎪⎨⎧=+-=++-0
23033y x z y x ,令y =3,x = 2,z = 1,则→
2n = (2,3,1).
∴cos <→1n ,→
2n >=
|
|||2121→
→
→
→
⋅⋅n n n n =
2
21=
42,即<→1n ,→2n >= arccos 4
2
. 故二面角1O —AB —O 的大小为arccos
4
2
.。