数值分析矩阵特征值特征向量计算解析
数值分析第3章矩阵特征值与特征向量的计算

工程实践中有许多问题,如桥梁或建筑物的振动,机械
机件、飞机机翼的振动, 及一些稳定性分析和相关分析可 转化为求矩阵特征值与特征向量的问题。
设A (aij )nn是n阶方阵, 如果数 和 n 维非零向量x满足 Ax x,则称 为 A 的一个特征值, x称为矩阵A对应 于的特征向量。
(2)在正交相似变换下,矩阵元素的平方和不变。设A (aij )nn ,
n
n
U为正交矩阵,记B U T AU (bij )nn ,则
ai2j
bi2j
i, j1
i, j1
Jacobi方法的基本思路:通过一次正交变换,将A中一对非
零的非对角元素化成零,并且使得非对角元素的平方和减少。
反复进行上述过程,使变换后的矩阵的非对角元素的平方和
2a pq
(
/
4)则有a
(1) pq
a(1) qp
1
0 1 0.93
1 0 0 0.93 1
0
0
1
0
0
0.93
1
0 1/ 0.93 1 0
0 0.93 1/ 0.93
按算法迭代3次, 3.0000954,与准确值3的误差小于10-4,u
(1, 0.9992431, 0.9991478)T 与准确值(1, -1,1)T比较,残差 r 0.001.
空间中的二维坐标旋转矩阵。
坐标旋转矩阵U pq ( )是正交矩阵.
设A为实对称矩阵,且apq aqp 0,若记
A(1)
U
T pq
AU
pq
(ai(j1) )
aaq((p1q1p))
a pp a pp
cos2 aqq sin2 sin2 aqq cos2
矩阵特征值与特征向量计算

矩阵特征值与特征向量计算在数学中,矩阵是一种非常基础而且重要的概念,它可以被看做是一种线性变换的表示。
在矩阵中,特征值和特征向量是两个非常重要的概念,它们在运用矩阵进行计算、测量和定量分析时扮演着至关重要的角色。
一、矩阵特征值的计算方法特征值是一个矩阵的固有属性,它表示在进行线性变换时,各个方向上对应的比例因子,具有很重要的几何意义。
计算一个矩阵的特征值需要使用到线性代数的基础知识和运算。
对于一个n阶方阵A,如果存在一个非零向量x和一个标量λ,使得Ax=λx,则λ是矩阵A的一个特征值,而x是对应的特征向量。
在实际计算中,我们首先需要求解方程det(A-λI)=0,其中I是指n阶单位矩阵。
这个方程的解即为矩阵A的特征值,它们可以是实数或复数。
当然,在计算特征值时,使用一些优化的方法可以更快地得出结果,例如使用特征值分析法或雅可比方法。
二、矩阵特征向量的计算方法在获得了矩阵的特征值之后,我们可以通过简单的代数运算来计算它们对应的特征向量。
设λ为矩阵A的一个特征值,x为一个对应的特征向量,我们有以下等式:(A-λI)x=0这可以被看做是一个齐次线性方程组,将它转化成矩阵形式,我们得到以下方程:(A-λI)X=0其中X=[x1,x2,...,xn]为特征向量的矩阵形式。
对于特征向量矩阵X,我们需要求解出它的非零解。
这需要使用到线性代数的基本技巧,例如高斯消元法或LU分解等。
三、矩阵特征值和特征向量的应用矩阵特征值和特征向量的应用非常广泛,从计算机科学到物理学、化学、经济学、金融学等各个领域都有它们的应用。
以下是几个主要的应用领域:1. 机器学习和人工智能在机器学习和人工智能中,特征值和特征向量经常用于降维和数据分析。
通过分析一个数据矩阵的特征值和特征向量,我们可以找到它们对应的主要特征,从而对大型数据进行有效的分析和处理。
2. 物理学和化学在物理学和化学中,特征值和特征向量可以用于计算量子力学、分析分子结构、电子轨道等问题。
特征向量和特征值问题的数学分析方法

特征向量和特征值问题的数学分析方法在数学领域中,特征向量和特征值是矩阵论中非常重要的概念。
它们在线性代数、数值计算和物理学等学科中都有广泛的应用。
本文将重点介绍特征向量和特征值问题的数学分析方法,帮助读者深入理解这一概念并掌握解决相关问题的技巧。
一、特征向量和特征值的定义在矩阵论中,给定一个n阶方阵A,如果存在非零向量x使得Ax = λx成立,其中λ是一个常数,则称向量x为矩阵A的特征向量,常数λ为对应的特征值。
特征向量表示了在矩阵作用下方向不变的向量,特征值则表示了此方向上的伸缩比例。
特征向量和特征值往往以矩阵的形式表示,特征向量矩阵X(包含了每一个特征向量)和特征值矩阵Λ(对角线元素为特征值,其余元素为零)满足AX = XΛ的关系。
由此可见,特征向量是通过矩阵A左乘特征向量矩阵获得的。
二、求解特征向量和特征值的方法1. 特征多项式法通过求解特征多项式可以得到矩阵的特征值。
特征多项式由方阵A 减去λI得到,其中I为单位矩阵。
求解特征多项式的根,即可得到特征值λ。
2. 特征向量分解法对于已知的特征值,我们可以通过代入方程Ax = λx来求解特征向量。
由于特征向量是在一系列相似矩阵中共享的,因此可以通过类似对角化的过程获取一组特征向量。
3. 幂法幂法是一种数值迭代的方法,用于求解最大的特征值和相应的特征向量。
它的基本思想是通过不断迭代一个向量,使其趋近于矩阵A的特征向量。
幂法迭代过程中,向量的模长不断增大,最终收敛到最大特征值所对应的特征向量。
4. QR方法QR方法是一种求解特征值和特征向量的迭代算法。
该方法通过将矩阵A分解成QR的形式,并迭代QR的乘积,得到逼近矩阵的特征值和特征向量。
QR方法相对于幂法更加稳定和快速,是较常用的数值方法之一。
三、特征向量和特征值问题的应用特征向量和特征值在许多学科中都有广泛应用。
在线性代数中,它们用于矩阵相似和矩阵的对角化。
在数值计算中,特征向量和特征值问题与矩阵的谱半径和谱条件数相关联,对于解决线性方程组和最优化问题具有重要意义。
特征值和特征向量计算的数值方法

特征值和特征向量计算的数值方法在数学和计算机科学领域中,特征值和特征向量是非常重要的概念。
特征值和特征向量的计算有许多不同的数值方法,本文将介绍其中一些常见的数值方法,并分析它们的优劣和适用范围。
一、特征值和特征向量的定义在矩阵理论中,给定一个n×n的矩阵A,如果存在一个非零向量v和一个标量λ,使得Av=λv,那么称v为矩阵A的特征向量,λ为矩阵A的特征值。
特征值和特征向量的计算可以帮助我们理解矩阵的性质以及解决一些实际问题。
二、幂法幂法是计算特征值和特征向量的常用数值方法之一。
幂法的基本思想是通过多次迭代,逐渐逼近矩阵的特征值和特征向量。
具体操作如下:1. 初始化一个非零向量b0;2. 进行迭代计算:bi+1 = A * bi / ||A * bi||;3. 取出近似特征向量的最后一列:v = bn;4. 进行迭代计算特征值:λ = (Av)T * v / (vT * v)。
幂法的主要优点是简单易懂,且只需要进行矩阵向量乘法和内积计算。
然而,幂法仅能求取具有最大特征值的特征向量,而且对于存在多个特征值相等的情况并不适用。
三、反幂法反幂法是幂法的一种改进方法,用于求取矩阵A的最小特征值和对应的特征向量。
反幂法的基本步骤如下:1. 初始化一个非零向量b0;2. 进行迭代计算:bi+1 = (A - μI)^-1 * bi / ||(A - μI)^-1 * bi||;3. 取出近似特征向量的最后一列:v = bn;4. 进行迭代计算特征值:λ = (Av)T * v / (vT * v)。
反幂法的改进之处在于引入了矩阵的逆运算,通过使用矩阵A减去一个合适的常数μ乘以单位矩阵来实现。
反幂法适用于矩阵A的特征值接近于μ的情况。
四、QR方法QR方法也是一种常用的特征值计算方法,它适用于求解所有特征值以及对应的特征向量。
QR方法的基本思想是将一个矩阵分解为正交矩阵Q和上三角矩阵R的乘积,然后迭代地将矩阵A转化为更接近上三角形的形式。
矩阵特征值与特征向量的计算方法

矩阵特征值与特征向量的计算方法矩阵是一个广泛应用于线性代数、微积分和物理学等领域的数学对象。
在许多问题中,矩阵和线性变换起着重要作用,并且特征值与特征向量是矩阵理论中的两个核心概念。
本文将介绍矩阵特征值与特征向量的定义、性质以及计算方法。
一、特征值与特征向量的定义给定一个n阶矩阵A,如果存在一个非零向量x,使得A与x的线性组合仍然是x的倍数,即有Ax = λx其中λ为常数,称λ为A的特征值,x为对应于λ的特征向量。
从几何意义上理解,特征向量是不被矩阵变换影响方向,只被影响长度的向量。
特征值则是描述了矩阵变换对于特定方向上的伸缩倍数。
二、特征值与特征向量的性质1. 特征向量构成的向量空间没有零向量。
证明:设x为A的特征向量,有Ax=λx,则A(cx) =cAx=cλx=λ(cx),即A的任意常数倍(cx)仍是x的倍数,因此cx也是A的特征向量。
特别地,对于λ≠0时,x/λ也是A的特征向量。
2. A的特征值的个数不超过n个。
证明:考虑特征值λ1, λ2,…,λt,对应于各自的特征向量x1,x2,…,xt。
利用向量线性无关性可得,至少存在一个向量y不属于x1,x2,…,xt的张成空间内,此时Ay不能被表示成λ1x1,λ2x2,…,λtxt的线性组合,因此Ay与y方向没有重合部分,由此可得λ1, λ2,…,λt最多就是n个。
3. 如果特征向量x1,x2,…,xt彼此不共线,则它们就可以作为Rn空间的一组基。
证明:设x1,x2,…,xt是不共线的特征向量,考虑它们张成的向量空间V,在此空间中,A的作用就是对向量做伸缩变换,且Λ(xj) = λj。
对于每个向量y ∈ V,y可以表示成如下形式:y = c1x1 + c2x2 + ··· + ctxt由于x1,x2,…,xt构成V的基,因此c1,c2,…,ct唯一确定了向量y。
因此,对于任意的向量y,可以得到:Ay = A(c1x1 + c2x2 + ··· + ctxt)= c1Ax1 + c2Ax2 + ··· + ctAxt= λ1c1x1 + λ2c2x2 + ··· + λtctxt由于{x1,x2,…,xt}是V的一组基,c1,c2,…,ct是唯一确定的,因此Ay也被唯一确定了。
特征值与特征向量矩阵特征值与特征向量的求解方法

特征值与特征向量矩阵特征值与特征向量的求解方法特征值和特征向量是线性代数中重要的概念,广泛应用于许多领域,如物理学、工程学和计算机科学等。
在本文中,我们将探讨特征值和特征向量的定义、求解方法及其在实际问题中的应用。
一、特征值与特征向量的定义特征值是一个矩阵所具有的与矩阵的线性变换性质有关的一个数值,特征向量是对应于特征值的非零向量。
对于一个n阶矩阵A,如果存在一个非零向量x和一个数λ,使得满足Ax=λx,那么λ就是矩阵A的一个特征值,x是对应于特征值λ的特征向量。
二、求解特征值与特征向量的方法有几种方法可以求解特征值和特征向量,其中比较常用的是特征多项式法和迭代法。
1. 特征多项式法特征多项式法是通过求解特征方程的根来得到特征值。
对于一个n阶矩阵A,其特征多项式定义为det(A-λI)=0,其中I是n阶单位矩阵,det表示行列式运算。
将特征多项式置为零,可以得到n个特征值λ1,λ2,...,λn。
将每个特征值代入原矩阵A-λI,解线性方程组(A-λI)x=0,就可以得到对应的特征向量。
2. 迭代法迭代法是通过不断迭代矩阵的特征向量逼近实际的特征向量。
常用的迭代方法包括幂法、反幂法和Rayleigh商迭代法。
幂法是通过不断迭代向量Ax的归一化来逼近特征向量,其基本原理是向量Ax趋近于特征向量。
反幂法是幂法的反向操作,通过求解(A-λI)y=x逼近特征向量y。
Rayleigh商迭代法是通过求解Rayleigh商的最大值来逼近特征向量,其中Rayleigh商定义为R(x)=x^T Ax/(x^T x),迭代公式为x(k+1)=(A-λ(k)I)^(-1)x(k),其中λ(k)为Rayleigh商的最大值。
三、特征值与特征向量的应用特征值与特征向量在实际问题中有广泛的应用。
其中,特征值可以用于判断矩阵是否可逆,当且仅当矩阵的所有特征值均不为零时,矩阵可逆。
特征向量可用于描述矩阵的稳定性和振动状态,如在结构工程中可以通过求解特征值和特征向量来分析物体的固有频率和振动模态。
矩阵的特征值与特征向量认识矩阵的特征值与特征向量的计算方法

矩阵的特征值与特征向量认识矩阵的特征值与特征向量的计算方法矩阵在数学与物理等领域中起着重要的作用,而矩阵的特征值与特征向量是矩阵理论中的重要概念。
本文将介绍矩阵的特征值与特征向量的定义与性质,并探讨了计算矩阵特征值与特征向量的方法。
一、矩阵的特征值与特征向量的定义在介绍矩阵的特征值与特征向量之前,我们先来了解一下矩阵的基本概念。
矩阵是由若干个数按照一定的规则排列成的矩形阵列。
矩阵可以表示成一个二维数组,其中的元素用于表示矩阵中的各个数值。
矩阵的特征值与特征向量是对矩阵进行分析与求解时非常有用的工具。
特征值可以理解为矩阵在某个方向上的缩放因子,而特征向量则表示在特征值对应的方向上的向量。
对于一个n阶矩阵A,如果存在一个非零向量X,使得AX=λX,其中λ是一个常数,那么称λ为矩阵A的特征值,X为矩阵A对应于特征值λ的特征向量。
特征值与特征向量的定义虽然比较抽象,但是通过对矩阵进行相应的计算可以得到具体的数值结果。
二、计算特征值与特征向量的方法1. 特征值的计算方法计算特征值的方法之一是通过求解矩阵特征方程来完成。
对于一个n阶矩阵A,其特征方程可以表示为det(A-λI)=0,其中det表示矩阵的行列式,I是单位矩阵,λ是特征值。
解特征方程可以得到矩阵的特征值。
由于特征方程是一个n次多项式方程,所以一般情况下可以得到n个特征值。
特征值的个数与矩阵的阶数相等。
2. 特征向量的计算方法计算特征值后,我们可以通过特征值来求解特征向量。
对于特征值λ,我们需要求解矩阵(A-λI)X=0的非零解,其中X是特征向量。
解特征向量的过程可以通过高斯消元法或者矩阵的初等变换来完成,得到的非零解即为特征向量。
三、特征值与特征向量的性质矩阵的特征值与特征向量具有一些重要的性质,这些性质在矩阵理论与应用过程中都具有重要作用。
1. 特征值和特征向量的对应关系对于一个n阶矩阵A,它有n个特征值与n个相应的特征向量。
特征值与特征向量是一一对应的关系,即每个特征值对应一个特征向量。
矩阵特征值与特征向量的求法

矩阵特征值与特征向量的求法一、矩阵特征值与特征向量的定义矩阵特征值(eigenvalue)是指一个矩阵在某个非零向量上的线性变换结果等于该向量的常数倍,这个常数就是该矩阵的特征值。
而对应于每个特征值,都有一个非零向量与之对应,这个向量就是该矩阵的特征向量(eigenvector)。
二、求解矩阵特征值与特征向量的方法1. 特征多项式法通过求解矩阵A减去λI(其中λ为待求解的特征值,I为单位矩阵)的行列式det(A-λI)=0来求解其特征值。
然后将每个特征值代入到(A-λI)x=0中,即可求得对应的特征向量x。
2. 幂法幂法是一种迭代方法,通过不断地将A作用于一个初始向量x上,并将结果归一化,最终得到收敛到最大(或最小)特征值所对应的特征向量。
具体步骤如下:(1) 选取任意一个非零初始向量x;(2) 将Ax除以x中最大元素得到新的向量y=A*x/max(x);(3) 将y归一化得到新的向量x=y/||y||;(4) 重复步骤2-3,直到收敛。
3. QR分解法QR分解是将矩阵A分解为Q和R两个矩阵的乘积,其中Q是正交矩阵(即Q^T*Q=I),R是上三角矩阵。
通过不断地对A进行QR分解,并将得到的Q和R相乘,最终得到一个上三角矩阵T。
T的对角线元素就是A的特征值,而对应于每个特征值,都可以通过反推出来QR分解中的Q所对应的特征向量。
4. Jacobi方法Jacobi方法也是一种迭代方法,通过不断地施加相似变换将A转化为对角矩阵D。
具体步骤如下:(1) 选取任意一个非零初始矩阵B=A;(2) 找到B中绝对值最大的非对角元素b(i,j),记其位置为(i,j);(3) 构造Givens旋转矩阵G(i,j,k),使其作用于B上可以消去b(i,j),即B=G^T*B*G;(4) 重复步骤2-3,直到所有非对角元素均趋近于0。
三、总结以上介绍了求解矩阵特征值与特征向量的四种方法:特征多项式法、幂法、QR分解法和Jacobi方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂法的加速:原点平移法
带位移的幂法
令 B = A – pI,则 B 的特征值为:i - p
选择适当的 p 满足: (1) | 1 p || j p | ( j = 2, ... , n )
(2) max j p 2 2 jn 1 p 1
则由改进的幂法生成的向量满足
lim
k
uk
x1 , x1
lim
k
vk
1
13
举例
例:用改进的幂法计算下面矩阵的主特征值和对应的特征向量
1.0 1.0 0.5 A 1.0 1.0 0.25
0.5 0.25 2.0
14
幂法的加速
幂法的收敛速度取决于 r 2 的大小 1
假设:(1) |1| |2| … |n-1| > |n| > 0
(2) 对应的 n 个线性无关特征向量为:x1, x2, ..., xn
A-1 的特征值为:
1
1
1
2
1 1
n1 n
对应的特征向量仍然为 x1, x2, ..., xn
反幂法:对矩阵 A-1 使用幂法
n
(1) 任取一个非零向量 v0,要求满足 (x1,v0) 0 (2) 对 k = 1, 2, ... ,直到收敛,计算
uk
vk , vk
pk
(uk , Auk ) (uk , uk )
vk1 A pk I 1 uk
21
几点注记
带位移的反幂法中需要计算 vk1 A pk I 1 uk A pk I vk1 uk
lim
k
uk
xn , xn
lim
k
vk
1
n
18
反幂法的加速
反幂法的收敛速度取决于 r n 的大小 n1
当 r 接近于 1 时,反乘幂法收敛会很慢!
可以使用原点平移法对反幂法进行加速
问题:如何选择参数 p ?
离 n 越近越好(但不能相等)
19
幂法的Rayleigh商加速
1
注:幂法的收敛速度取决于 2 的大小 1
10
幂法
幂法中存在的问题
vk 1k化
vk1 Avk
uk
vk , vk
vk1 Auk
lim
k
uk
x1 x1
11
幂法
1 的计算
uk
vk Akv0
vk vk 1
Akv0
Auk
Ak 1v0 Akv0
k1 1
1 x1
n
i
i2
i 1
k 1
xi
1k
1 x1
n
i
i2
i 1
k
xi
lim
定理 设 A 是 n 阶实对称矩阵,其特征值为
1 2 n
对应的特征向量 x1, x2, ..., xn 满足:( xi , x j ) ij ,
使用改进的乘幂法计算 A 的按模最大特征值 1 时, uk 的
Rayleigh商给出了 1 的较好的近似,即
( Auk (uk ,
k
vk
1
12
改进的幂法
改进的幂法
(1) 任取一个非零向量 v0,要求满足 (x1,v0) 0
(2) 对 k = 1, 2, ... ,直到收敛,计算
uk
vk , vk
vk1 Auk
定理:设 A 有 n 个线性无关的特征向量,其特征值满足
1 2 3 n
1 ( j =1, 2, ... , n )
Avk 1vk
vk 为 1 的近似特征向量
9
幂法的收敛性
定理:设 A 有 n 个线性无关的特征向量,其特征值满足
1 2 3 n
则由幂法生成的向量满足
lim
k
vk
1k
1x1,
lim (vk1 ) j k (vk ) j
6
幂法
幂法(乘幂法,幂迭代)
计算矩阵的主特征值(按模最大)及其特征向量
假设:(1) |1| > |2| … |n| 0
(2) 对应的 n 个线性无关特征向量为:x1, x2, ..., xn
计算过程: (1) 任取一个非零向量 v0,要求满足 (x1,v0) 0 (2) 对 k = 1, 2, ... ,直到收敛,计算
用幂法计算矩阵 B 的主特征值:1 - p
保持主特征值 加快收敛速度
15
举例
例:用带位移的幂法计算下面矩阵的主特征值和对应的特征向
量,取 p=0.75
1.0 1.0 0.5 A 1.0 1.0 0.25
0.5 0.25 2.0
16
反幂法
反幂法
计算矩阵的按模最小的特征值及其特征向量
17
反幂法
反幂法
(1) 任取一个非零向量 v0,要求满足 (x1,v0) 0
(2) 对 k = 1, 2, ... ,直到收敛,计算
uk
vk , vk
vk1 A1uk
定理:设 A 有 n 个线性无关的特征向量,其特征值满足
1 2 n1 n 0
则由反幂法生成的向量满足
2
2 1
k
x2
n
n 1
k
xn
1k1 x1
2 1
越小,收敛越快
8
幂法的收敛性
当 k 充分大时,有
vk 1k1 x1 vk1 1k11 x1
vk1 1vk
又 vk1 Avk
vk1 j vk j
vk Avk1
7
幂法的收敛性
收敛性分析 设 v0 1x1 2 x2 n xn (1 0) v1 Av0 11x1 22 x2 nn xn
vk
Avk1
11k x1
k
22
x2
k
nn
xn
1k
1 x1
, uk ) uk )
1
O
2 1
2k
证:
uk
Aku0 , max( Aku0 )
vk1
Ak1u0 max( Aku0)
n
( Auk , uk ) (uk , uk )
( Ak1u0, Aku0 ) ( Aku0, Aku0 )
5
Rayleigh 商
定理:设 A 是 n 阶实对称矩阵,其特征值为 1 2 n
则对任意非零向量 x,有
n
( Ax, x) (x, x)
1
且
1
max x0
( Ax, x) (x, x)
,
n
min x0
( Ax, x) (x, x)
R( x) ( Ax, x) 称为矩阵 A 关于 x 的 Rayleigh 商。 (x, x)
4
圆盘定理
设 A=(aij)Rnn ,记
Di C
n
| aii |
aij
j1, ji
i=1, 2, ... , n
Gerschgorin 圆盘
定理:(Gerschgorin 圆盘定理) 设 是 A 的特征值,则
n
Di
i 1
若有 m 个圆盘互相连通,且与其它圆盘都不相连,则这 m 个圆盘内恰好包含 m 个特征值。
2 2k1 ii
i 1 n
i2i2 k
i 1
1
O
2 1
2k
20
Rayleigh 商加速
Rayleigh 商加速
lim
k
uk
xn xn
lim
k
(uk , Auk ) (uk , uk )
( xn, Axn ) ( xn, xn )
数值分析
第八章 矩阵特征值计算
—— 幂法与反幂法
1
本章内容
特征值基本性质 幂法与反幂法 正交变换与矩阵分解 QR 方法
2
本讲内容
特征值基本性质 幂法 幂法的加速 反幂法
3
特征值性质
特征值与特征向量
A x = x ( C, x 0 )
性质 (1) Ax x ( A I )x ( )x (2) Ax x Ak x k x (3) B P 1AP, Ax x By y, y P 1x (4) 若 A 对称,则存在正交矩阵 Q,使得 QT AQ diag(1, 2, , n )
带位移的反幂法可以用于计算任何一个特征值 k
将参数 p 取为 k 附近
若已知特征值,计算特征向量时,可使用带位移的反幂法
令 p 足够靠近 k
22