2017-2018学年重庆市渝北区七年级(上)期末数学试卷(含解析)
重庆市七年级上册数学期末试题及答案解答

重庆市七年级上册数学期末试题及答案解答一、选择题1.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x =2.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .33.下列每对数中,相等的一对是( )A .(﹣1)3和﹣13B .﹣(﹣1)2和12C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)34.一个角是这个角的余角的2倍,则这个角的度数是( ) A .30 B .45︒C .60︒D .75︒5.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+= D .6352x x --=6.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM的长( ) A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm7.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .18.15( ) A .1,2B .2,3C .3,4D .4,59.如图,将长方形ABCD 绕CD 边旋转一周,得到的几何体是( )A .棱柱B .圆锥C .圆柱D .棱锥10.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x 元,根据题意可列方程为( ) A .300-0.2x =60B .300-0.8x =60C .300×0.2-x =60D .300×0.8-x =6011.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( ) A .2或2.5 B .2或10C .2.5D .212.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( ) A .0mB .0.8mC .0.8m -D .0.5m -13.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离14.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 中点个数有 ( ) ①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB .A .1个B .2个C .3个D .4个15.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )A .1685B .1795C .2265D .2125二、填空题16.一个角的余角等于这个角的13,这个角的度数为________. 17.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.18.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.19.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.20.多项式2x 3﹣x 2y 2﹣1是_____次_____项式. 21.|-3|=_________;22.某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个a 斤重的西瓜卖A 元,一个b 斤重的西瓜卖B 元时,一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫⎪⎝⎭元,已知一个12斤重的西瓜卖21元,则一个18斤重的西瓜卖_____元. 23.当a=_____时,分式13a a --的值为0. 24.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______.25.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.26.把(a ﹣b )看作一个整体,合并同类项:3()4()2()-+---a b a b a b =_____. 27.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.28.五边形从某一个顶点出发可以引_____条对角线.29.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______30.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.三、压轴题31.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?32.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________. (2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.33.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇? (2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.34.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B点出发以每秒2个单位长度向左匀速运动,当点Q达到A点时,点P,Q停止运动.(1)填空:a=,b=;(2)求运动了多长时间后,点P,Q第一次相遇,以及相遇点所表示的数;(3)求当点P,Q停止运动时,点P所在的位置表示的数;(4)在整个运动过程中,点P和点Q一共相遇了几次.(直接写出答案)35.射线OA、OB、OC、OD、OE有公共端点O.(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD重合).探求:射线OC从OA转到OD的过程中,图中所有锐角的和的情况,并说明理由.36.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A,B在数轴上分别对应的数为a,b(a<b),则AB的长度可以表示为AB=b-a.请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A点,再向右移动3个单位长度到达B点,然后向右移动5个单位长度到达C点.(1)请你在图②的数轴上表示出A,B,C三点的位置.(2)若点A以每秒1个单位长度的速度向左移动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t秒.①当t=2时,求AB和AC的长度;②试探究:在移动过程中,3AC-4AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.37.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.38.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b+3a)2=0.(1)求A,B两点之间的距离;(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)②求甲乙两小球到原点距离相等时经历的时间.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】把32x=-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是.【详解】解:A中、把32x=-代入方程得左边等于右边,故A对;B中、把32x=-代入方程得左边不等于右边,故B错;C中、把32x=-代入方程得左边不等于右边,故C错;D中、把32x=-代入方程得左边不等于右边,故D错.故答案为:A.【点睛】本题考查方程的解的知识,解题关键在于把x值分别代入方程进行验证即可. 2.C解析:C【解析】【分析】根据AC比BC的14多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】解:设BC=x,∴AC=14x+5∵AC+BC=AB∴x+14x+5=30,解得:x=20,∴BC=20,AC=10,∴BC=2AC,故①成立,∵AP=2t,BQ=t,当0≤t≤15时,此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点∴MB=12BP=15﹣t∵QM=MB+BQ,∴QM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,不符合t>30,综上所述,当PB=12BQ时,t=12或20,故③错误;故选:C.【点睛】本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.3.A解析:A【解析】【分析】根据乘方和绝对值的性质对各个选项进行判断即可.【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等.故选A.4.C解析:C【解析】【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解.【详解】解:根据题意列方程的:2(90°-α)=α,解得:α=60°.故选:C.【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).5.C解析:C 【解析】 【分析】方程两边都乘以2,再去括号即可得解. 【详解】3532x x --= 方程两边都乘以2得:6-(3x-5)=2x , 去括号得:6-3x+5=2x , 故选:C. 【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.6.C解析:C 【解析】 【分析】应考虑到A 、B 、C 三点之间的位置关系的多种可能,即点C 在点A 与B 之间或点C 在点B 的右侧两种情况进行分类讨论. 【详解】①如图1所示,当点C 在点A 与B 之间时,∵线段AB=10cm ,BC=4cm , ∴AC=10-4=6cm . ∵M 是线段AC 的中点, ∴AM=12AC=3cm , ②如图2,当点C 在点B 的右侧时, ∵BC=4cm , ∴AC=14cmM 是线段AC 的中点, ∴AM=12AC=7cm . 综上所述,线段AM 的长为3cm 或7cm . 故选C . 【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.7.B解析:B【解析】【分析】根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果.【详解】解:由题意可得,当x=1时,第一次输出的结果是4,第二次输出的结果是2,第三次输出的结果是1,第四次输出的结果是4,第五次输出的结果是2,第六次输出的结果是1,第七次输出的结果是4,第八次输出的结果是2,第九次输出的结果是1,第十次输出的结果是4,……,∵2020÷3=673…1,则第2020次输出的结果是4,故选:B.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数字.8.C解析:C【解析】【分析】.【详解】∵9<15<16,∴,故选C.【点睛】本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.9.C解析:C【解析】【分析】根据面动成体可得长方形ABCD绕CD边旋转所得的几何体.【详解】解:将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱,故选:C.【点睛】此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.10.D解析:D【解析】【分析】要列方程,首先根据题意找出题中存在的等量关系:售价-进价=利润60元,此时再根据等量关系列方程【详解】解:设进价为x元,由已知得服装的实际售价是300×0.8元,然后根据利润=售价-进价,可列方程:300×0.8-x=60故选:D【点睛】本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,此题应弄清楚两点:(1)利润、售价、进价三者之间的关系;(2)打八折的含义.11.A解析:A【解析】【分析】分相遇前相距50千米和相遇后相距50千米两种情况,根据路程=速度×时间列方程即可求出t值,可得答案.【详解】①当甲,乙两车相遇前相距50千米时,根据题意得:120t+80t=450-50,解得:t=2;(2)当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50,解得t=2.5.综上,t的值为2或2.5,【点睛】本题考查一元一次方程的应用,能够理解有两种情况、能够根据题意找出题目中的相等关系是解题关键.12.C解析:C【解析】【分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【详解】+,解∵水位升高0.6m时水位变化记作0.6m-,∴水位下降0.8m时水位变化记作0.8m故选:C.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.13.A解析:A【解析】【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.【点睛】此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.14.A解析:A【解析】①项,因为AP=BP,所以点P是线段AB的中点,故①项正确;②项,点P可能是在线段AB的延长线上且在点B的一侧,此时也满足BP=12AB,故②项错误;③项,点P可能是在线段BA的延长线上且在点A的一侧,此时也满足AB=2AP,故③项错误;④项,因为点P为线段AB上任意一点时AP+PB=AB恒成立,故④项错误.故本题正确答案为①.15.B【解析】【分析】寻找这五个数和的规律,设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,这五个数的和为5a ,用每个数字除以5,可得中间数字,结果的末位只能是3或5或7,不能是1或9.【详解】解:设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,1010225a a a a a a +-+++-++=,A 选项51685,357a a ==,可以作为中间数;B 选项51795,359a a ==,不能作为中间数;C 选项52265,453a a ==,可以作为中间数;D 选项52125,425a a ==,可以作为中间数.故选:B【点睛】本题考查了数的表示及规律探究,找准这五个数与中间数的规律是解题的关键.二、填空题16.【解析】【分析】设这个角度的度数为x 度,根据题意列出方程即可求解.【详解】设这个角度的度数为x 度,依题意得90-x=解得x=67.5故填【点睛】此题主要考查角度的求解,解题的关键是解析:67.5【解析】【分析】设这个角度的度数为x 度,根据题意列出方程即可求解.【详解】设这个角度的度数为x 度,依题意得90-x=13x解得x=67.5故填67.5【点睛】此题主要考查角度的求解,解题的关键是熟知补角的性质.【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解解析:5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.18.【解析】【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC 的中点求出AD的长度,由BD=AD﹣AB即可得出结论.【详解】解:∵AB=4,BC=2AB,∴B解析:【解析】【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC的中点求出AD 的长度,由BD=AD﹣AB即可得出结论.【详解】解:∵AB=4,BC=2AB,∴BC=8.∴AC=AB+BC=12.∵D是AC的中点,∴AD =12AC =6. ∴BD =AD ﹣AB =6﹣4=2.故答案为:2.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.19.-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.【详解】解:根据如图所示:当输入的是的时候,,此时结果解析:-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1>-,此时就需要将结果返回重新计算,直到结果1<-,才能输出结果.【详解】解:根据如图所示:当输入的是1-的时候,1(3)21-⨯--=,此时结果1>-需要将结果返回,即:1(3)25⨯--=-,此时结果1<-,直接输出即可,故答案为:5-.【点睛】本题考查程序设计题,解题关键在于数的比较大小和读懂题意.20.四 三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2解析:四 三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x 2y 2,次数为4,一共有3个项,所以多项式2x 3﹣x 2y 2﹣1是四次三项式.故答案为:四,三.【点睛】此题主要考查了多项式的定义.解题的关键是理解多项式的定义,用到的知识点为:多项式的次数由组成多项式的单项式的最高次数决定;组成多项式的单项式叫做多项式的项,有几项就是几项式.21.3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.解析:3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.22.33【解析】【分析】根据题意中的对应关系,由斤重的西瓜卖元,列方程求出6斤重的西瓜的定价;再根据“一个斤重的西瓜定价为元”可得出(12+6)斤重西瓜的定价.【详解】解:设6斤重的西瓜卖x 元解析:33【解析】【分析】根据题意中的对应关系,由12斤重的西瓜卖21元,列方程求出6斤重的西瓜的定价;再根据“一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫ ⎪⎝⎭元”可得出(12+6)斤重西瓜的定价. 【详解】解:设6斤重的西瓜卖x 元,则(6+6)斤重的西瓜的定价为:363(21)6xx x=+++元,又12斤重的西瓜卖21元,∴2x+1=21,解得x=10.故6斤重的西瓜卖10元.又18=6+12,∴(6+12)斤重的西瓜定价为:6121021=3336⨯++(元).故答案为:33.【点睛】本题主要考查求代数式的值以及一元一次方程的应用,关键是理解题意,找出等量关系. 23.1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式解析:1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.24.-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】解:,,,,则原式,故答案为【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.解析:-5【解析】【分析】根据题意确定出a 的最大值,b 的最小值,即可求出所求.【详解】解:459<<,23∴<<,a 2∴=,b 3=,则原式495=-=-,故答案为5-【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.25.16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+解析:16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+d=37①;2a=b+2=c-3=2d ②; 第二个方程所有字母都用a 来表示可得b=2a-2,c=2a+3,d=4a ,代入第一个方程得a=4,∴b=6,c=11,d=16,∴这四堆苹果中个数最多的一堆为16.故答案为16.【点睛】本题需注意未知数较多时,要把未知的四个量用一个量来表示,化多元为一元.26.【解析】【分析】根据合并同类项,系数相加,字母及指数不变,可得答案.【详解】解:,故答案为:.【点睛】本题考查合并同类项,熟记合并同类项的法则是解题的关键. 解析:5()-a b【解析】【分析】根据合并同类项,系数相加,字母及指数不变,可得答案.【详解】解:3()4()2()(342)()5()-+---=+--=-a b a b a b a b a b ,故答案为:5()-a b .【点睛】本题考查合并同类项,熟记合并同类项的法则是解题的关键.27.36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等∴∴x=2,A=14∴数字总和为:9+3+6+6+解析:36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等 ∴()934322x x x A +=++=+- ∴x=2,A=14∴数字总和为:9+3+6+6+14-2=36,故答案为36.【点睛】 本题考查了正方体的展开图和一元一次方程,解决本题的关键是正确理解题意,能够找到正方体展开图中相对的面28.2【解析】【分析】从n 边形的一个顶点出发有(n −3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记解析:2【解析】【分析】从n 边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记知识点(从n 边形的一个顶点出发有(n−3)条对角线)是解此题的关键.29.①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概解析:①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这10000名考生的数学中考成绩的全体是总体,正确;②每个考生的数学中考成绩是个体,故原说法错误;③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;④样本容量是200,正确;故答案为:①③④.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.30.﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm 时水位变化记作﹣3cm .故答案为:﹣3解析:﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm 时水位变化记作﹣3cm . 故答案为:﹣3cm .【点睛】此题主要考查有理数的应用,解题的关键是熟知有理数的意义.三、压轴题31.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.32.(1)10;(2)212±;(3)288. 5±±, 【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a 的值为10.(2)分两种情况,点A 在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA 的长度,从而得出a 的值.同理可求出当点A 在原点的左侧时,a 的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b =-4,则a 的值为 10(2)解:当A 在原点O 的右侧时(如图):设OB=m,列方程得:m+3m=14,。
2018-2019学年重庆市渝北中学七年级(上)期末数学试卷解析版

2018-2019学年重庆市渝北中学七年级(上)期末数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.(4分)﹣3的倒数是()A.3B.C.﹣D.﹣32.(4分)据统计,渝北区第二届“讯飞杯”优质课大赛视频网络点击10500次,将数10500用科学记数法表示为()A.10.5×105 B.1.05×105C.0.105×105 D.1.05×1043.(4分)将6﹣(+3)+(﹣2)改写成省略括号的和的形式是()A.6﹣3﹣2B.﹣6﹣3﹣2C.6﹣3+2D.6+3﹣24.(4分)计算﹣3(2x﹣1)的结果是()A.﹣6x﹣1B.﹣6x+1C.﹣6x+3D.﹣6x﹣35.(4分)下列各式子中与2m2n是同类项的是()A.﹣2mn B.3m2n C.3m2n2D.﹣mn26.(4分)下列四个式子中,是一元一次方程的是()A.﹣=2y﹣3B.3x2﹣4x=2C.=1D.=2x+67.(4分)如图,是由一些黑点组成的图,按此规律,第7个图形中,黑点的个数是()A.51B.48C.27D.158.(4分)若|a|=3,|b|=1,且a>b,那么a﹣b的值是()A.4B.2C.﹣4D.4或29.(4分)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.10.(4分)如图,赵老师在点O处观测到小明站位点A位于北偏西54°30'的方向,同时观测到小刚站位点B在南偏东15°20'的方向,那么∠AOB的大小是()A.69°50'B.110°10'C.140°50'D.159°50'11.(4分)如图是一个正方体的表面展开图,已知正方体的每个面都有一个有理数,且相对面上的两个数互为相反数,那么代数式a﹣b+c的值是()A.﹣4B.0C.2D.412.(4分)轮船在静水中速度为每小时30km,水流速度为每小时6km,从甲码头顺流航行到乙码头,再返回甲码头,共用5小时(不计停留时间),求甲、乙两码头间的距离.设两码头间的距离为xkm,则列出方程正确的是()A.(30+6)x+(30﹣6)x=5B.30x+6x=5C.D.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)天气预报中,如果零上3℃记作+3℃,那么零下5℃记作℃.14.(4分)将多项式m3+n2﹣2mn2+3m2n按m的降幂排列为.15.(4分)已知3a﹣2b﹣4=0,则代数式6a﹣4b+2019=.16.(4分)如图,BC⊥AC,BC=12,AC=9,AB=15,则点C到线段AB的距离是.17.(4分)实数x,y,z在数轴上的位置如图所示,则|y|﹣|x|+|z|﹣|y|=.18.(4分)A,B,C三种大米的售价分别为40元/kg、50元/kg、70元/kg,其中B,C两种大米的进价为40元/kg、50元/kg,经核算,三种大米的总利润相同,且A,B两种大米的销售量之和是C种大米之和的6倍,则A种大米的进价是.三、解答题:(本大题3个小题,每小题10分,共30分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上19.(10分)计算:(1)﹣3+(﹣4)×2+2;(2)﹣12﹣(2)3﹣4÷(﹣)20.(10分)解方程:(1)3x﹣2=x﹣7;(2).21.(10分)如图,点C,E是线段AB上两点,点D为线段AB的中点,AB=6,CD=1.(1)求BC的长;(2)若AE:EC=1:3,求EC的长.四、解答题:(本大题3个小题,22、23每小题题8分,24题10分,共26分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上22.(8分)先化简,再求值:5x2﹣2(3y2﹣4xy)+(2y2﹣5x2),其中x=﹣2,y=3.23.(8分)如图,将长方形纸片的一角作折叠,使顶点A落在A′处,DE为折痕,将∠BEA′对折,使得B′落在直线EA′上,得折痕EG.(1)求∠DEG的度数;(2)若EA′恰好平分∠DEB,求∠DEA′的度数.24.(10分)如图,已知数轴上点A表示的数为﹣12,点B在点A右边,且OA=2OB.(1)写出数轴上点B表示的数;(2)点M为数轴上一点,若AM﹣BM=4,求出点M表示的数.五、解答题:(本大题2个小题,其中,25题10分,26题12分,共22分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上25.(10分)重庆市出租车的起步价是10元(起步价是指不超过3km行程的出租车价格).超过3km行程后,其中除3km的行程按起步价计费外,超过部分按每千米2元计费(不足1km按1km计算).如果仅去程乘出租车而回程时不乘坐此车,并且去程超过3km,那么顾客还需付回程的空驶费,超过3km部分按每千米0.6元计算空驶费(即超过部分实际按每千米2.6元计费).如果往返都乘同一出租车并且中间等候时间不超过3min,则不收空驶费而加收3.2元等候费.现设小云等4人从单位到相距xkm(x<12)的解放碑办事,在解放碑停留时间3min内,然后返回单位.现有两种方案:方案一:去时4人乘同一辆出租车,返回都乘公交车(公交车车票为每人3元);方案一:4人乘同一辆出租车往返.(1)若3<x<12,用含x的代数式分别把两种方案的费用表示出来;(2)如果小云单位到解放碑的距离xkm(x<12),请问选择哪种计费方式更省钱?26.(12分)如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.(1)可求得x=,第2021个格子中的数为;(2)若前k个格子中所填数之和为2019,求k的值;(3)如果m,n为前三个格子中的任意两个数,那么所有的|m﹣n|的和可以通过计算|6﹣a|+|6﹣b|+|a﹣b|+|a﹣6|+|b ﹣6|+|b﹣a|得到.若m,n为前8个格子中的任意两个数,求所有的|m﹣n|的和.2018-2019学年重庆市渝北中学七年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.2.【解答】解:用科学记数法表示:10500=1.05×104.故选:D.3.【解答】解:将6﹣(+3)+(﹣2)改写成省略括号的和的形式是6﹣3﹣2,故选:A.4.【解答】解:﹣3(2x﹣1)=﹣6x+3.故选:C.5.【解答】解:与2m2n是同类项的是:3m2n.故选:B.6.【解答】解:一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式.故选:C.7.【解答】解:设第n个图形中黑点的个数为a n个(n为正整数).∵a1=3,a2=4+2×1=6,a3=5+2×(1+2)=11,a4=6+2×(1+2+3)=18,…,∴a n=n+2+2[1+2+…+(n﹣1)]=n+2+n(n﹣1)=n2+2(n为正整数),∴a7=72+2=51.故选:A.8.【解答】解:∵|a|=3,|b|=1,且a>b,∴a=3,b=1或a=3,b=﹣1,∴a﹣b=2或4.故选:D.9.【解答】解:绕直线l旋转一周,可以得到圆台,故选:D.10.【解答】解:∠AOB=90°﹣54°30'+90°+15°20'=140°50'.故选:C.11.【解答】解:“a”与“3”相对,“b”与“1”相对,“c”与“﹣2”相对,∵相对面上的两个数互为相反数,∴a=﹣3,b=﹣1,c=2,∴a﹣b+c=﹣3+1+2=0.故选:B.12.【解答】解:设两码头间的距离为xkm,依题意,得:+=5.故选:D.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.【解答】解:“正”和“负”相对,所以若零上3℃记作+3℃,那么零下5℃记作记作﹣5℃.故答案为:﹣5.14.【解答】解:多项式m3+n2﹣2mn2+3m2n的各项为:m3,n2,﹣2mn2,3m2n,按m降幂排列为:m3+3m2n﹣2mn2+n2.故答案为:m3+3m2n﹣2mn2+n2.15.【解答】解:∵3a﹣2b﹣4=0,∴3a﹣2b=4,∴原式=2(3a﹣2b)+2019=8+2019=2027.故答案为:2027.16.【解答】解:∵92+122=152,∴AC2+BC2=AB2,∴∠C=90°,设点C到AB的距离是h,AC•BC=AB•h,解得:h=7.2.故答案为:7.2.17.【解答】解:实数x,y,z在数轴上的位置可知,x<0,y>0,z>0,且|z|>|y|>|x|,则|y|﹣|x|+|z|﹣|y|=y+x+z﹣y=x+z,故答案为:x+z18.【解答】解:设A种大米的进件是m元/kg,且A种大米销售了xkg,B大米销售了ykg,则C大米销售了(x+y)kg,三种大米每千克的利润分别是(40﹣m)元、10元、20元,根据题意知:10y=(40﹣m)x=20×(x+y),即由10y=(x+y),解得x=2y,代入10y=(40﹣m)x中,解得m=35.故答案为:35.三、解答题:(本大题3个小题,每小题10分,共30分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上19.【解答】解:(1)﹣3+(﹣4)×2+2=﹣3+(﹣8)+2=﹣9;(2)﹣12﹣(2)3﹣4÷(﹣)=﹣1﹣8﹣4×(﹣4)=﹣1﹣8+16=7.20.【解答】解:(1)移项合并得:2x=﹣5,解得:x=﹣2.5;(2)去分母得:4x﹣4﹣9x+15=24,移项合并得:﹣5x=13,解得:x=﹣2.6.21.【解答】解:(1)∵点D为线段AB的中点,AB=6,∴BD=AB=3,∵CD=1,∴BC=BD﹣CD=3﹣1=2;(2)∵点D为线段AB的中点,AB=6,∴AD=AB=3,∵CD=1,∴AC=AD+CD=4,∵AE:EC=1:3,∴EC=×4=3.四、解答题:(本大题3个小题,22、23每小题题8分,24题10分,共26分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上22.【解答】解:原式=5x2﹣6y2+8xy+2y2﹣5x2=﹣4y2+8xy,将x=﹣2,y=3代入,∴原式=﹣84.23.【解答】解:(1)∵长方形纸片的一角折叠,顶点A落在A′处,另一角折叠,顶点B落在EA′上的B′点处,∴∠AED=∠A′ED,∠BEG=∠B′EG,而∠AED+∠A′ED+∠BEG+∠B′EG=180°,∴∠A′ED+∠B′EG=90°,即∠DEG=90°;(2)由(1)知∠AED=∠A′ED,∵EA′平分∠DEB,∴∠A′ED=∠A′EB,∴∠AED=∠DEA′=∠A′EB=180°=60°,故∠DEA′=60°.24.【解答】解:(1)设点B表示的数为x,∵OA=2OB,∴12=2x,∴x=6,∴数轴上点B表示的数为6;(2)设M表示的有理数为m,∵AM﹣BM=4,∴m+12﹣(6﹣m)=4或m+12﹣(m﹣6)=4,解得:m=﹣1.故数轴上点M表示的有理数是﹣1或18;五、解答题:(本大题2个小题,其中,25题10分,26题12分,共22分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上25.【解答】解:(1)方案一:2.6x+14.2;方案二:4x+7.2;(2)当3<x<5时,方案一费用>方案二费用,所以选择方案二;当x=5时,方案一费用=方案二费用,所以选择方案一或方案二;当x>5时,方案一费用<方案二费用,所以选择方案一;26.【解答】解:(1)∵任意三个相邻方格中所填数之和都相等,∴6+a+b=a+b+x,∴x=6,同理,a=﹣1,第9个数与第3个数相同,∴b=﹣2,∴每3个数6、﹣1、﹣2为一个循环组依次循环,∵2021÷3=673…2,∴第2021个格子中的数与第2个数相同,∴第2021个格子中的数为﹣1;故答案为:6,﹣1;(2)根据题意可知,每三个数一组,且它们的和为3,设共有n组数的和为2019,则3n=2019,n=673,∴k=3n=2019;(3)由于是三个数重复出现,那么前8个格子中,这三个数中,﹣2出现了2次,6和﹣1都出现了3次.故代入式子可得:|6﹣(﹣1)|×9+|6﹣(﹣2)|×6+|6﹣6|×6+|﹣1﹣6|×9+|﹣2﹣6|×6+|﹣1﹣(﹣2)|×6+|﹣1﹣(﹣1)|×6+|﹣2﹣(﹣2)|×2+|﹣2﹣(﹣1)|×6=234.。
重庆市七年级上册数学期末试题及答案解答

重庆市七年级上册数学期末试题及答案解答一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线2.﹣3的相反数是( ) A .13-B .13C .3-D .33.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( ) A .49 B .59 C .77D .1394.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠5.下列因式分解正确的是() A .21(1)(1)xx x +=+-B .()am an a m n +=-C .2244(2)mm m +-=-D .22(2)(1)aa a a --=-+6.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM 的长( ) A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm7.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a 、b 之间把绳子再剪(n ﹣2)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是( )A .4n+1B .4n+2C .4n+3D .4n+58.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( ) A .①④ B .②③ C .③D .④9.点()5,3M 在第( )象限. A .第一象限 B .第二象限C .第三象限D .第四象限10.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠211.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+12.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( ) A .2或2.5 B .2或10 C .2.5 D .2 13.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=114.下列各数中,比73-小的数是( ) A .3-B .2-C .0D .1-15.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )A .1685B .1795C .2265D .2125二、填空题16.若|x |=3,|y |=2,则|x +y |=_____. 17.把5,5,35按从小到大的顺序排列为______.18.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:若n =26,则第2019次“C 运算”的结果是_____.19.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元. 支付宝帐单 日期交易明细 10.16 乘坐公交¥ 4.00- 10.17 转帐收入¥200.00+ 10.18 体育用品¥64.00- 10.19 零食¥82.00- 10.20 餐费¥100.00-20.﹣30×(1223-+45)=_____. 21.若12x y =⎧⎨=⎩是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________.22.已知23,9n mn aa -==,则m a =___________.23.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).24.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克. 25.|﹣12|=_____. 26.当x= 时,多项式3(2-x )和2(3+x )的值相等. 27.若2a +1与212a +互为相反数,则a =_____. 28.方程x +5=12(x +3)的解是________. 29.当12点20分时,钟表上时针和分针所成的角度是___________. 30.钟表显示10点30分时,时针与分针的夹角为________.三、压轴题31.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.32.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD . (1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.33.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t(t >0)秒,数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)若点P、Q同时出发,求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?34.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.(1)求出数轴上B点对应的数及AC的距离.(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.①当P点在AB之间运动时,则BP=.(用含t的代数式表示)②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数35.如图,在平面直角坐标系中,点M的坐标为(2,8),点N的坐标为(2,6),将线段MN向右平移4个单位长度得到线段PQ(点P和点Q分别是点M和点N的对应点),连接MP、NQ,点K是线段MP的中点.(1)求点K的坐标;(2)若长方形PMNQ以每秒1个单位长度的速度向正下方运动,(点A、B、C、D、E分别是点M、N、Q、P、K的对应点),当BC与x轴重合时停止运动,连接OA、OE,设运动时间为t秒,请用含t的式子表示三角形OAE的面积S(不要求写出t的取值范围);(3)在(2)的条件下,连接OB、OD,问是否存在某一时刻t,使三角形OBD的面积等于三角形OAE的面积?若存在,请求出t值;若不存在,请说明理由.36.射线OA 、OB 、OC 、OD 、OE 有公共端点O .(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.37.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.38.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C、D运动时,总有2MD AC=,则AM=________(填空)()4在()3的条件下,N是直线AB上一点,且AN BN MN-=,求MNAB的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【详解】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C.【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.2.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.3.B解析:B【解析】【分析】首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b)与ab表示的形式,然后把已知代入即可求解. 【详解】解:∵(5ab+4a+7b )+(3a-4ab ) =5ab+4a+7b+3a-4ab =ab+7a+7b =ab+7(a+b ) ∴当a+b=7,ab=10时 原式=10+7×7=59. 故选B .4.C解析:C 【解析】 【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果. 【详解】解:由图知:∠1+∠2=180°, ∴12(∠1+∠2)=90°, ∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1). 故选:C . 【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.5.D解析:D 【解析】 【分析】分别利用公式法以及提取公因式法对各选项分解因式得出答案. 【详解】解:A 、21x +无法分解因式,故此选项错误; B 、()am an a m n +=+,故此选项错误; C 、244m m +-无法分解因式,故此选项错误; D 、22(2)(1)aa a a --=-+,正确;故选:D .【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确应用乘法公式是解题关键.6.C解析:C【解析】【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B之间或点C在点B 的右侧两种情况进行分类讨论.【详解】①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10-4=6cm.∵M是线段AC的中点,∴AM=12AC=3cm,②如图2,当点C在点B的右侧时,∵BC=4cm,∴AC=14cmM是线段AC的中点,∴AM=12AC=7cm.综上所述,线段AM的长为3cm或7cm.故选C.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.7.A解析:A【解析】试题分析:设段数为x,根据题意得:当n=0时,x=1,当 n=1时,x=1+4=5,当 n=2时,x=1+4+4=9,当 n=3时,x=1+4+4+4=13,所以当n=n时,x=4n+1.故选A.考点:探寻规律.8.A解析:A【解析】【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确; ②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误; ③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误; ④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确. 故选A . 【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.9.A解析:A 【解析】 【分析】根据平面直角坐标系中点的坐标特征判断即可. 【详解】 ∵5>0,3>0,∴点()5,3M 在第一象限. 故选A. 【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.10.B解析:B 【解析】 【分析】延长EP 交CD 于点M ,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP ,继而根据平角定义以及∠BEP=∠GEP 即可求得答案. 【详解】延长EP 交CD 于点M , ∵∠EPF 是△FPM 的外角, ∴∠2+∠FMP=∠EPF=90°, ∴∠FMP=90°-∠2, ∵AB//CD , ∴∠BEP=∠FMP , ∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP , ∴∠1+90°-∠2+90°-∠2=180°, ∴∠1=2∠2, 故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.11.D解析:D【解析】【分析】方程两边同乘12即可得答案.【详解】方程212134x x-+=-两边同时乘12得:4(21)123(2)x x-=-+故选:D.【点睛】本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.12.A解析:A【解析】【分析】分相遇前相距50千米和相遇后相距50千米两种情况,根据路程=速度×时间列方程即可求出t值,可得答案.【详解】①当甲,乙两车相遇前相距50千米时,根据题意得:120t+80t=450-50,解得:t=2;(2)当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50,解得t=2.5.综上,t的值为2或2.5,故选A.【点睛】本题考查一元一次方程的应用,能够理解有两种情况、能够根据题意找出题目中的相等关系是解题关键.13.A解析:A【解析】解:A ,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A ; B ,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;C ,底数为-1,一个负数的偶次方应为正数(-1)2=1;D ,底数为1,1的平方的相反数应为-1;即-12=-1,故选A .14.A解析:A【解析】【分析】先根据正数都大于0,负数都小于0,可排除C ,再根据两个负数,绝对值大的反而小进行判断即可.【详解】解:根据两个负数,绝对值大的反而小可知-3<73-. 故选:A .【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小. 15.B解析:B【解析】【分析】寻找这五个数和的规律,设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,这五个数的和为5a ,用每个数字除以5,可得中间数字,结果的末位只能是3或5或7,不能是1或9.【详解】解:设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,1010225a a a a a a +-+++-++=,A 选项51685,357a a ==,可以作为中间数;B 选项51795,359a a ==,不能作为中间数;C 选项52265,453a a ==,可以作为中间数;D 选项52125,425a a ==,可以作为中间数.故选:B【点睛】本题考查了数的表示及规律探究,找准这五个数与中间数的规律是解题的关键.二、填空题16.1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3解析:1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3,y=2时,|x+y|=|3+2|=5(2)x=3,y=﹣2时,|x+y|=|3+(﹣2)|=1(3)x=﹣3,y=2时,|x+y|=|﹣3+2|=1(4)x=﹣3,y=﹣2时,|x+y|=|(﹣3)+(﹣2)|=5故答案为:1或5.【点睛】此题主要考查了有理数的加法的运算方法,以及绝对值的含义和求法,要熟练掌握.17.【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:,5,都大于0,则,,故答案为:.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进<<5【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.解:50,则62636555=<=<,5<<,5<<.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可. 18.【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C 运算”的结果.【详解】解:由题意可得,当n =26时,第一次输出的结果为:13解析:【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C 运算”的结果.【详解】解:由题意可得,当n =26时,第一次输出的结果为:13,第二次输出的结果为:40,第三次输出的结果为:5,第四次输出的结果为:16,第五次输出的结果为:1,第六次输出的结果为:4,第七次输出的结果为:1第八次输出的结果为:4…,∵(2019﹣4)÷2=2015÷2=1007…1,∴第2019次“C 运算”的结果是1,故答案为:1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 19.810【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛解析:810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛】本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解. 20.﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(+)=﹣30×+(﹣30)×()+(﹣30)×=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛解析:﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(1223-+45)=﹣30×12+(﹣30)×(23-)+(﹣30)×45=﹣15+20﹣24故答案为:﹣19.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键.21.3【解析】【分析】把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】解:把代入方程组得:,①+②得:3(a+b)=9,则a+b=3,故答案为:3.【解析:3【解析】【分析】把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】解:把12xy=⎧⎨=⎩代入方程组得:2722a bb a+=⎧⎨+=⎩,①+②得:3(a+b)=9,则a+b=3,故答案为:3.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.22.27【解析】【分析】首先根据an=9,求出a2n=81,然后用它除以a2n−m,即可求出am的值.【详解】解:∵an=9,∴a2n=92=81,∴am=a2n÷a2n−m=81÷3=2【解析】【分析】首先根据a n=9,求出a2n=81,然后用它除以a2n−m,即可求出a m的值.【详解】解:∵a n=9,∴a2n=92=81,∴a m=a2n÷a2n−m=81÷3=27.故答案为:27.【点睛】此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.23.36684或36468或68364或68436或43668或46836等(写出一个即可) 【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】=x(解析:36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】32=x(x+2y)(x-2y).x xy4当x=36,y=16时,x+2y=36+32=68x-2y=36-32=4.则密码是36684或36468或68364或68436或43668或46836故答案为36684或36468或68364或68436或43668或46836【点睛】此题考查因式分解的应用,解题关键在于把字母的值代入24.30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.考点:列代数式25.【解析】【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】解:|﹣|=.故答案为:【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0解析:1 2【解析】【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】解:|﹣12|=12.故答案为:1 2【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.26.【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.解析:【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.27.﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a的值.【详解】根据题意得:去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:解析:﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a的值.【详解】根据题意得:a2a110 22+++=去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:﹣1【点睛】本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.28.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.29.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.30.【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°.解:10点30分时,钟面上时针指向数字解析:【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+12×30°.解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,所以时针与分针所成的角等于4×30°+12×30°=135°.故答案为:135°.三、压轴题31.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.32.(1)35°;(2)∠AOE﹣∠BOF的值是定值,理由详见解析;(3)4.【解析】【分析】(1)首先根据角平分线的定义求得∠AOE和∠BOF的度数,然后根据∠AOE﹣∠BOF求解;(2)首先由题意得∠BOC=3t°,再根据角平分线的定义得∠AOC=∠AOB+3t°,∠BOD=∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+,解方程即可求出t 的值. 【详解】解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;(2)∠AOE ﹣∠BOF 的值是定值由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;(3)根据题意得∠BOF =(3t+14)°, ∴3314202t t +=+, 解得4t =.故答案为4.【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.33.(1)﹣4,6﹣5t ;(2)①当点P 运动5秒时,点P 与点Q 相遇;②当点P 运动1或9秒时,点P 与点Q 间的距离为8个单位长度.【解析】【分析】(1)根据题意可先标出点A ,然后根据B 在A 的左侧和它们之间的距离确定点B ,由点P 从点A 出发向左以每秒5个单位长度匀速运动,表示出点P 即可;(2)①由于点P 和Q 都是向左运动,故当P 追上Q 时相遇,根据P 比Q 多走了10个单位长度列出等式,根据等式求出t 的值即可得出答案;②要分两种情况计算:第一种是点P 追上点Q 之前,第二种是点P 追上点Q 之后.【详解】解:(1)∵数轴上点A 表示的数为6,∴OA =6,则OB =AB ﹣OA =4,点B 在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为5t,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣5t,故答案为﹣4,6﹣5t;(2)①点P运动t秒时追上点Q,根据题意得5t=10+3t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+3a﹣5a=8,解得a=1;当P超过Q,则10+3a+8=5a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【点睛】在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.34.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣483 4【解析】【分析】(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.【详解】(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60﹣30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.∵CQ+BP=BC,∴5(x﹣24)+3x=90,解得x=1054,此时P点在数轴上对应的数是:30﹣3×1054=﹣4834.综上,相遇时P点在数轴上对应的数为﹣15或﹣4834.【点睛】本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.35.(1)(4,8)(2)S△OAE=8﹣t(3)2秒或6秒【解析】【分析】(1)根据M和N的坐标和平移的性质可知:MN∥y轴∥PQ,根据K是PM的中点可得K 的坐标;(2)根据三角形面积公式可得三角形OAE的面积S;(3)存在两种情况:①如图2,当点B在OD上方时②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,分别根据三角形OBD的面积等于三角形OAE的面积列方程可得结论.【详解】(1)由题意得:PM=4,∵K是PM的中点,∴MK=2,。
最新渝北中学七年级上册期末试题(含答案)

最新渝北中学七年级上册期末试题(含答案)第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.将一副直角三角尺按如图所示的不同方式摆放,则图中与相等的是( ) A.B.C.D.2.﹣的倒数是()A.B.﹣2 C. 2 D.﹣3.如果A、B、C在同一直线上,线段AB=6厘米,BC=2厘米,则A、C两点间的距离是()A、8厘米B、4厘米C、8厘米或4厘米D、无法确定4.地球的表面积约为510 000 000 km2,用科学计数法表示为()km2 A.51×108B.5.1×108C.51×107D.5.1×1075.下列判断错误的是()A、一个正数的绝对值一定是正数;B、一个负数的绝对值一定是正数;C、任何数的绝对值一定是正数;D、任何数的绝对值都不是负数;6.一辆汽车匀速行驶,若在a秒内行驶m6米,则它在2分钟内可行驶………………()A.m3米B.20ma米C.10ma米D.120ma米7、某商品价格a元,降低10%后,又降低了10%,销售量猛增,商店决定再提价20%,提价后这种商品的价格为()A.a元B.1.08a元 C.0.972a元D.0.96a元8.下列说法中,正确的是( )A.有最小的负数,没有最大的正数B.有最大的负数,没有最小的正数C.没有最大的有理数和最小的有理数D.有最小的正数和最小的负数9.下列计算中,正确的是()A.﹣2(a+b)=﹣2a+b B.﹣2(a+b)=﹣2a﹣b2C.﹣2(a+b)=﹣2a﹣2b D.﹣2(a+b)=﹣2a+2b10.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2015个单项式是( )A.2015x2015 B.4029x2014 C.4029x2015 D.4031x2015第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11. -5的绝对值是__________,-2的倒数是____________.12.绝对值小于8.9的所有整数的积是_________.13.若一个锐角∠α=37°48′,则∠α的余角为________________.14.有规律地排列着这样一些单项式:-xy,x2y,-x3y,x4y,-x5y,……,则第n个单项式(n ≥1正整数)可表示为.15.按照如图所示的操作步骤,若输出的值为20,则输入x的值为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算题.(1)25+|﹣2|÷(﹣)﹣(﹣2)2 (2)(﹣﹣)÷(﹣)+(﹣)(3)(a 2+4ab )﹣2(2a 2﹣3ab )17.计算:① 8+(-10)―(―5)+(-2); ② 31+(-34)-(-16)+54③ (12-59+712)×(-36) ④ (-1)2013+(-5)×[(-2)3+2]-(-4)2÷(-12)18. 在数轴上画出表示下列5个数的点,并用..“.<.”.把.它.们连接起来.....: -(-4), -||-3.5,+(-12) ,+(+2.5), 11219.阅读下面的文字,解答问题: 大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用−1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为 的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵<<,即2<<3, ∴的整数部分为2,小数部分为(−2).请解答:(1)的整数部分是__________,小数部分是__________ (2)如果的小数部分为a ,的整数部分为b ,求a +b −的值;-4-3 -2 220.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):星期一二三四五六日增减/辆﹣1 +3 ﹣2 +4 +7 ﹣5 ﹣10(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)本周总的生产量是多少辆?21.某单位在五月份准备组织部分员工到青岛旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为1000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有( >10 )人,则甲旅行社的费用为元,乙旅行社的费用为元;(用含的代数式表示,并化简。
重庆市七年级上学期期末数学试题及答案

重庆市七年级上学期期末数学试题及答案一、选择题1.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .12 2.一个角是这个角的余角的2倍,则这个角的度数是( )A .30B .45︒C .60︒D .75︒3.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠4.在0,1-, 2.5-,3这四个数中,最小的数是( ) A .0B .1-C . 2.5-D .35.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒ 6.下列选项中,运算正确的是( ) A .532x x -= B .2ab ab ab -= C .23a a a -+=-D .235a b ab +=7.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A .171B .190C .210D .380 8.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣79.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( ) 4abc﹣23 …A .4B .3C .0D .﹣2 10.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( )A .1B .﹣1C .3D .﹣3 11.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1) B .(3,3) C .(2,3) D .(3,2) 12.如果+5米表示一个物体向东运动5米,那么-3米表示( ).A .向西走3米B .向北走3米C .向东走3米D .向南走3米13.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是( )A .设B .和C .中D .山 14.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513B .﹣511C .﹣1023D .102515.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( ) A .不赔不赚B .赚了9元C .赚了18元D .赔了18元二、填空题16.已知方程22x a ax +=+的解为3x =,则a 的值为__________.17.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.18.多项式2x 3﹣x 2y 2﹣1是_____次_____项式.19.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元.20.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______. 21.若单项式 3a 3 b n 与 -5a m+1 b 4所得的和仍是单项式,则 m - n 的值为_____. 22.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____. 23.4是_____的算术平方根.24.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y)2019的值为_____. 25.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___. 26.若523m xy +与2n x y 的和仍为单项式,则n m =__________.27.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______.28.定义:从一个角的顶点出发,把这个角分成1: 2 的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.如图,90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,以O 为中心,将∠COD 顺时针最少旋转__________ ,OA 恰好是∠COD 的三等分线.29.已知7635a ∠=︒',则a ∠的补角为______°______′.30.如图,直线AB 、CD 相交于O ,∠COE 是直角,∠1=44°,则∠2=______.三、压轴题31.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.32.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.33.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等. 6abx-1-2 ...(1)可求得 x =______,第 2021 个格子中的数为______; (2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和. 34.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇? (2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.35.已知:A 、O 、B 三点在同一条直线上,过O 点作射线OC ,使∠AOC :∠BOC =1:2,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).36.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC.则AB=______,AC=______,BC=______.(用含t的代数式表示).(4)直接写出点B为AC中点时的t的值.37.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b+3a)2=0.(1)求A,B两点之间的距离;(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)②求甲乙两小球到原点距离相等时经历的时间.38.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是______;(2)另一动点R 从B 出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P 、R 同时出发,问点P 运动多少时间追上点R ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可. 【详解】解:根据题意可得: 设BC x =,则可列出:()223x x +⨯= 解得:4x =,12BC AB =, 28AB x ∴==. 故答案为:C. 【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.2.C解析:C 【解析】 【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解. 【详解】解:根据题意列方程的:2(90°-α)=α, 解得:α=60°. 故选:C . 【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).3.C解析:C 【解析】 【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果. 【详解】解:由图知:∠1+∠2=180°, ∴12(∠1+∠2)=90°, ∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1). 故选:C . 【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.4.C解析:C 【解析】 【分析】由题意先根据有理数的大小比较法则比较大小,再选出选项即可. 【详解】解:∵ 2.5-<1-<0<3, ∴最小的数是 2.5-, 故选:C . 【点睛】本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.5.D解析:D 【解析】 【分析】由题意分两种情况过点O 作OE AB ⊥,利用垂直定义以及对顶角相等进行分析计算得出选项. 【详解】解:过点O 作OE AB ⊥,如图:由40BOD ∠=︒可知40AOC ∠=︒,从而由垂直定义求得COE ∠=90°-40°或90°+40°,即有COE ∠的度数为50︒或130︒. 故选D. 【点睛】本题考查了垂直定义以及对顶角的应用,主要考查学生的计算能力.6.B解析:B 【解析】 【分析】根据整式的加减法法则即可得答案. 【详解】A.5x-3x=2x ,故该选项计算错误,不符合题意,B.2ab ab ab -=,计算正确,符合题意,C.-2a+3a=a ,故该选项计算错误,不符合题意,D.2a 与3b 不是同类项,不能合并,故该选项计算错误,不符合题意, 故选:B. 【点睛】本题考查整式的加减,熟练掌握合并同类项法则是解题关键.7.B解析:B 【解析】分析:由于第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,由此得到3=1+2,6=1+2+3,那么第四个图5条直线相交,最多有1+2+3+4=10个,以此类推即可求解. 详解:∵第一个图2条直线相交,最多有1个交点, 第二个图3条直线相交最多有3个交点, 第三个图4条直线相交,最多有6个, 而3=1+2,6=1+2+3,∴第四个图5条直线相交,最多有1+2+3+4=10个,∴20条直线相交,最多交点的个数是1+2+3+…+19=(1+19)×19÷2=190. 故选B .点睛:此题主要考查了平面内直线相交时交点个数的规律,解题时首先找出已知条件中隐含的规律,然后根据规律计算即可解决问题.8.A解析:A 【解析】 【分析】由已知可得3b ﹣6a+5=-3(2a ﹣b )+5,把2a ﹣b =3代入即可. 【详解】3b ﹣6a+5=-3(2a ﹣b )+5=-9+5=-4. 故选:A 【点睛】利用乘法分配律,将代数式变形.9.D解析:D 【解析】 【分析】根据三个相邻格子的整数的和相等列式求出a 、c 的值,再根据第9个数是3可得b=3,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解. 【详解】解:∵任意三个相邻格子中所填整数之和都相等, ∴4+a+b=a+b+c , 解得c=4, a+b+c=b+c+(-2), 解得a=-2,所以,数据从左到右依次为4、-2、b 、4、-2、b , 第9个数与第三个数相同,即b=3,所以,每3个数“4、-2、3”为一个循环组依次循环, ∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为-2. 故选D. 【点睛】此题考查数字的变化规律,仔细观察排列规律求出a 、b 、c 的值,从而得到其规律是解题的关键.10.B解析:B 【解析】 【分析】将1x =-代入2ax x -=,即可求a 的值. 【详解】解:将1x =-代入2ax x -=,可得21a --=-,解得1a =-,故选:B .【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解与方程的关系是解题的关键.11.C解析:C【解析】【分析】根据数对(1,2)表示教室里第1列第2排的位置,可知第一个数字表示列,第二个数字表示排,由此即可求得答案.【详解】∵(1,2)表示教室里第1列第2排的位置,∴教室里第2列第3排的位置表示为(2,3),故选C.【点睛】本题考查了数对表示位置的方法的灵活应用,分析出数对表示的意义是解题的关键.12.A解析:A【解析】∵+5米表示一个物体向东运动5米,∴-3米表示向西走3米,故选A.13.A解析:A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“设”是相对面,“和”与“中”是相对面,“建”与“山”是相对面.故选:A .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.14.D【解析】【分析】观察数据,找到规律:第n个数为(﹣2)n+1,根据规律求出第10个数即可.【详解】解:观察数据,找到规律:第n个数为(﹣2)n+1,第10个数是(﹣2)10+1=1024+1=1025故选:D.【点睛】此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.15.D解析:D【解析】试题分析:设盈利的这件成本为x元,则135-x=25%x,解得:x=108元;亏本的这件成本为y元,则y-135=25%y,解得:y=180元,则135×2-(108+180)=-18元,即赔了18元.考点:一元一次方程的应用.二、填空题16.2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.17.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.18.四 三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2解析:四 三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x 2y 2,次数为4,一共有3个项,所以多项式2x 3﹣x 2y 2﹣1是四次三项式.故答案为:四,三.【点睛】此题主要考查了多项式的定义.解题的关键是理解多项式的定义,用到的知识点为:多项式的次数由组成多项式的单项式的最高次数决定;组成多项式的单项式叫做多项式的项,有几项就是几项式.19.810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛解析:810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛】本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解.20.【解析】【分析】设应派往甲处x 人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处人,解析:()27x 21920x ⎡⎤+=+-⎣⎦【解析】【分析】设应派往甲处x 人,则派往乙处()20x -人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处()20x -人,根据题意得:()27x 21920x ⎡⎤+=+-⎣⎦.故答案为()27x 21920x ⎡⎤+=+-⎣⎦.【点睛】本题考查由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.21.-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-解析:-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-n=2-4=-2.故答案为-2.【点睛】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.22.3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)解析:3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.设有x辆车,则可列方程:3(x﹣2)=2x+9.故答案是:3(x﹣2)=2x+9.【点睛】本题考查一元一次方程,解题的关键是读懂题意,掌握列一元一次方程.23.【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.解析:【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.24.﹣1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,()2019=()201解析:﹣1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,(xy)2019=(22)2019=(﹣1)2019=﹣1.故答案为:﹣1.【点睛】本题考查了非负数的性质.解答本题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.25.正方体.【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考解析:正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查. 26.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9. 解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.27.28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x 首,根据题意,可列方程为: 28x-20(x+13)=20,解析:28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x 首,根据题意,可列方程为: 28x-20(x+13)=20,故答案为: 28x-20(x+13)=20.【点睛】本题主要考查一元一次方程应用,关键在于找出五言绝句与七言绝句总字数之间的关系. 28.40【解析】【分析】 由OA 恰好是COD 的三等分线可得或,旋转角为,求出其度数取最小值即可.【详解】解:因为,OC 、OD 是AOB 的两条三分线,所以 因为OA 恰好是COD 的解析:40【解析】【分析】由OA 恰好是∠COD 的三等分线可得'10AOD ︒∠=或'20AOD ︒∠=,旋转角为'DOD ∠,求出其度数取最小值即可.【详解】解:因为90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,所以30AOD ︒∠=因为OA 恰好是∠COD 的三等分线,所以'10AOD ︒∠=或'20AOD ︒∠=,当'10AOC ︒∠=时,''301040DOD AOD AOD ︒︒︒∠=∠+∠=+=当'20AOD ︒∠=时,''302050DOD AOD AOD ︒︒︒∠=∠+∠=+=,综上所述将∠COD 顺时针最少旋转40︒.故答案为:40︒【点睛】本题考查了角的平分线,熟练掌握角平分线的相关运算是解题的关键.29.25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.30.46°【解析】【分析】根据∠2=180°-∠COE-∠1,可得出答案. 【详解】解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.故答案为:46°. 【点睛】解析:46°【解析】【分析】根据∠2=180°-∠COE-∠1,可得出答案.【详解】解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.故答案为:46°.【点睛】本题考查平角、直角的定义和几何图形中角的计算.能识别∠AOB 是平角且它等于∠1、∠2和∠COE 三个角之和是解题关键.三、压轴题31.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t ,=4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健32.(1)3;(2)12;-3,2,-4或2,-3,-4.(3)a=11或4或10. 【解析】【分析】(1)根据上述材料给出的方法计算其相应的最佳值为即可;(2)按照三个数不同的顺序排列算出最佳值,由计算可以看出,要求得这些数列的最佳值的最小值;只有当前两个数的和的绝对值最小,最小只能为|−3+2|=1,由此得出答案即可;(3)分情况算出对应的数值,建立方程求得a的数值即可.【详解】(1)因为|−4|=4,-4-32=3.5,-4-312+=3,所以数列−4,−3,1的最佳值为3.故答案为:3;(2)对于数列−4,−3,2,因为|−4|=4,432--=72,432||2--+=52,所以数列−4,−3,2的最佳值为52;对于数列−4,2,−3,因为|−4|=4,||422-+=1,432||2--+=52,所以数列−4,2,−3的最佳值为1;对于数列2,−4,−3,因为|2|=2,224-=1,432||2--+=52,所以数列2,−4,−3的最佳值为1;对于数列2,−3,−4,因为|2|=2,223-=12,432||2--+=52,所以数列2,−3,−4的最佳值为1 2∴数列的最佳值的最小值为223-=12,数列可以为:−3,2,−4或2,−3,−4.故答案为:12,−3,2,−4或2,−3,−4.(3)当22a+=1,则a=0或−4,不合题意;当92a-+=1,则a=11或7;当a=7时,数列为−9,7,2,因为|−9|=9,972-+=1,9722-++=0,所以数列2,−3,−4的最佳值为0,不符合题意;当972a-++=1,则a=4或10.∴a=11或4或10.【点睛】此题考查数字的变化规律,理解新定义运算的方法是解决问题的关键.33.(1)6,-1;(2)2019或2014;(3)234【解析】【分析】(1)根据三个相邻格子的整数的和相等列式求出a 、x 的值,再根据第9个数是-2可得b =-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.(2)可先计算出这三个数的和,再照规律计算.(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.【详解】(1)∵任意三个相邻格子中所填整数之和都相等,∴6+a +b =a +b +x ,解得x =6,a +b +x =b +x -1,∴a =-1,所以数据从左到右依次为6、-1、b 、6、-1、b ,第9个数与第三个数相同,即b =-2,所以每3个数“6、-1、-2”为一个循环组依次循环.∵2021÷3=673…2,∴第2021个格子中的整数与第2个格子中的数相同,为-1. 故答案为:6,-1.(2)∵6+(-1)+(-2)=3,∴2019÷3=673.∵前k 个格子中所填数之和可能为2019,2019=673×3或2019=671×3+6,∴k 的值为:673×3=2019或671×3+1=2014.故答案为:2019或2014.(3)由于是三个数重复出现,那么前8个格子中,这三个数中,6和-1都出现了3次,-2出现了2次.故代入式子可得:(|6+2|×2+|6+1|×3)×3+(|-1-6|×3+|-1+2|×2)×3+(|-2-6|×3+|-2+1|×3)×2=234.【点睛】本题考查了列一元一次方程解实际问题的运用,规律推导的运用,此类题的关键是找出是按什么规律变化的,然后再按规律找出字母所代表的数,再进行进一步的计算.34.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .【解析】【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.【详解】解:(1)设经过ts 后,点P Q 、相遇.依题意,有2330t t +=,解得:6t =.答:经过6秒钟后,点P Q 、相遇;(2)设经过xs ,P Q 、两点相距10cm ,由题意得231030x x ++=或231030x x +-=,。
2018-2019学年重庆市渝北中学七年级(上)期末数学试卷(含解析)

2018-2019学年重庆市渝北中学七年级(上)期末数学试卷(考试时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.﹣3的倒数是()A.3 B.C.﹣D.﹣32.据统计,渝北区第二届“讯飞杯”优质课大赛视频网络点击10500次,将数10500用科学记数法表示为()A.10.5×105 B.1.05×105C.0.105×105 D.1.05×1043.将6﹣(+3)+(﹣2)改写成省略括号的和的形式是()A.6﹣3﹣2 B.﹣6﹣3﹣2 C.6﹣3+2 D.6+3﹣24.计算﹣3(2x﹣1)的结果是()A.﹣6x﹣1 B.﹣6x+1 C.﹣6x+3 D.﹣6x﹣35.下列各式子中与2m2n是同类项的是()A.﹣2mn B.3m2 n C.3m2 n2D.﹣mn26.下列四个式子中,是一元一次方程的是()A.﹣=2y﹣3 B.3x2﹣4x=2 C.=1 D.=2x+67.如图,是由一些黑点组成的图,按此规律,第7个图形中,黑点的个数是()A.51 B.48 C.27 D.158.若|a|=3,|b|=1,且a>b,那么a﹣b的值是()A.4 B.2 C.﹣4 D.4或29.将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.10.如图,赵老师在点O处观测到小明站位点A位于北偏西54°30'的方向,同时观测到小刚站位点B在南偏东15°20'的方向,那么∠AOB的大小是()A.69°50' B.110°10' C.140°50' D.159°50'11.如图是一个正方体的表面展开图,已知正方体的每个面都有一个有理数,且相对面上的两个数互为相反数,那么代数式a﹣b+c的值是()A.﹣4 B.0 C.2 D.412.轮船在静水中速度为每小时30km,水流速度为每小时6km,从甲码头顺流航行到乙码头,再返回甲码头,共用5小时(不计停留时间),求甲、乙两码头间的距离.设两码头间的距离为xkm,则列出方程正确的是()A.(30+6)x+(30﹣6)x=5 B.30x+6x=5C.D.二、填空题(每小题4分,共24分)13.天气预报中,如果零上3℃记作+3℃,那么零下5℃记作℃.14.将多项式m3+n2﹣2mn2+3m2n按m的降幂排列为.15.已知3a﹣2b﹣4=0,则代数式6a﹣4b+2019=.16.如图,BC⊥AC,BC=12,AC=9,AB=15,则点C到线段AB的距离是.17.实数x,y,z在数轴上的位置如图所示,则|y|﹣|x|+|z|﹣|y|=.18.A,B,C三种大米的售价分别为40元/kg、50元/kg、70元/kg,其中B,C两种大米的进价为40元/kg、50元/kg,经核算,三种大米的总利润相同,且A,B两种大米的销售量之和是C种大米之和的6倍,则A 种大米的进价是.三、解答题(共78分)19.(10分)计算:(1)﹣3+(﹣4)×2+2;(2)﹣12﹣(2)3﹣4÷(﹣)20.(10分)解方程:(1)3x﹣2=x﹣7;(2).21.(10分)如图,点C,E是线段AB上两点,点D为线段AB的中点,AB=6,CD=1.(1)求BC的长;(2)若AE:EC=1:3,求EC的长.22.(8分)先化简,再求值:5x2﹣2(3y2﹣4xy)+(2y2﹣5x2),其中x=﹣2,y=3.23.(8分)如图,将长方形纸片的一角作折叠,使顶点A落在A′处,DE为折痕,将∠BEA′对折,使得B′落在直线EA′上,得折痕EG.(1)求∠DEG的度数;(2)若EA′恰好平分∠DEB,求∠DEA′的度数.24.(10分)如图,已知数轴上点A表示的数为﹣12,点B在点A右边,且OA=2OB.(1)写出数轴上点B表示的数;(2)点M为数轴上一点,若AM﹣BM=4,求出点M表示的数.25.(10分)重庆市出租车的起步价是10元(起步价是指不超过3km行程的出租车价格).超过3km行程后,其中除3km的行程按起步价计费外,超过部分按每千米2元计费(不足1km按1km计算).如果仅去程乘出租车而回程时不乘坐此车,并且去程超过3km,那么顾客还需付回程的空驶费,超过3km部分按每千米0.6元计算空驶费(即超过部分实际按每千米2.6元计费).如果往返都乘同一出租车并且中间等候时间不超过3min,则不收空驶费而加收3.2元等候费.现设小云等4人从单位到相距xkm(x<12)的解放碑办事,在解放碑停留时间3min内,然后返回单位.现有两种方案:方案一:去时4人乘同一辆出租车,返回都乘公交车(公交车车票为每人3元);方案一:4人乘同一辆出租车往返.(1)若3<x<12,用含x的代数式分别把两种方案的费用表示出来;(2)如果小云单位到解放碑的距离xkm(x<12),请问选择哪种计费方式更省钱?26.(12分)如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.6 a b x ﹣1 ﹣2 …(1)可求得x=,第2021个格子中的数为;(2)若前k个格子中所填数之和为2019,求k的值;(3)如果m,n为前三个格子中的任意两个数,那么所有的|m﹣n|的和可以通过计算|6﹣a|+|6﹣b|+|a﹣b|+|a﹣6|+|b﹣6|+|b﹣a|得到.若m,n为前8个格子中的任意两个数,求所有的|m﹣n|的和.1.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.2.【解答】解:用科学记数法表示:10500=1.05×104.故选:D.3.【解答】解:将6﹣(+3)+(﹣2)改写成省略括号的和的形式是6﹣3﹣2,故选:A.4.【解答】解:﹣3(2x﹣1)=﹣6x+3.故选:C.5.【解答】解:与2m2n是同类项的是:3m2 n.故选:B.6.【解答】解:一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式.故选:C.7.【解答】解:设第n个图形中黑点的个数为a n个(n为正整数).∵a1=3,a2=4+2×1=6,a3=5+2×(1+2)=11,a4=6+2×(1+2+3)=18,…,∴a n=n+2+2[1+2+…+(n﹣1)]=n+2+n(n﹣1)=n2+2(n为正整数),∴a7=72+2=51.故选:A.8.【解答】解:∵|a|=3,|b|=1,且a>b,∴a=3,b=1或a=3,b=﹣1,∴a﹣b=2或4.故选:D.9.【解答】解:绕直线l旋转一周,可以得到圆台,故选:D.10.【解答】解:∠AOB=90°﹣54°30'+90°+15°20'=140°50'.故选:C.11.【解答】解:“a”与“3”相对,“b”与“1”相对,“c”与“﹣2”相对,∵相对面上的两个数互为相反数,∴a=﹣3,b=﹣1,c=2,∴a﹣b+c=﹣3+1+2=0.故选:B.12.【解答】解:设两码头间的距离为xkm,依题意,得:+=5.13.【解答】解:“正”和“负”相对,所以若零上3℃记作+3℃,那么零下5℃记作记作﹣5℃.故答案为:﹣5.14.【解答】解:多项式m3+n2﹣2mn2+3m2n的各项为:m3,n2,﹣2mn2,3m2n,按m降幂排列为:m3+3m2n﹣2mn2+n2.故答案为:m3+3m2n﹣2mn2+n2.15.【解答】解:∵3a﹣2b﹣4=0,∴3a﹣2b=4,∴原式=2(3a﹣2b)+2019=8+2019=2027.故答案为:2027.16.【解答】解:∵92+122=152,∴AC2+BC2=AB2,∴∠C=90°,设点C到AB的距离是h,AC•BC=AB•h,解得:h=7.2.故答案为:7.2.17.【解答】解:实数x,y,z在数轴上的位置可知,x<0,y>0,z>0,且|z|>|y|>|x|,则|y|﹣|x|+|z|﹣|y|=y+x+z﹣y=x+z,故答案为:x+z18.【解答】解:设A种大米的进件是m元/kg,且A种大米销售了xkg,B大米销售了ykg,则C大米销售了(x+y)kg,三种大米每千克的利润分别是(40﹣m)元、10元、20元,根据题意知:10y=(40﹣m)x=20×(x+y),即由10y=(x+y),解得x=2y,代入10y=(40﹣m)x中,解得m=35.故答案为:35.19.【解答】解:(1)﹣3+(﹣4)×2+2=﹣3+(﹣8)+2=﹣9;(2)﹣12﹣(2)3﹣4÷(﹣)=﹣1﹣8﹣4×(﹣4)=﹣1﹣8+16=7.20.【解答】解:(1)移项合并得:2x=﹣5,解得:x=﹣2.5;(2)去分母得:4x﹣4﹣9x+15=24,移项合并得:﹣5x=13,解得:x=﹣2.6.21.【解答】解:(1)∵点D为线段AB的中点,AB=6,∴BD=AB=3,∵CD=1,∴BC=BD﹣CD=3﹣1=2;(2)∵点D为线段AB的中点,AB=6,∴AD=AB=3,∵CD=1,∴AC=AD+CD=4,∵AE:EC=1:3,∴EC=×4=3.22.【解答】解:原式=5x2﹣6y2+8xy+2y2﹣5x2=﹣4y2+8xy,将x=﹣2,y=3代入,∴原式=﹣84.23.【解答】解:(1)∵长方形纸片的一角折叠,顶点A落在A′处,另一角折叠,顶点B落在EA′上的B′点处,∴∠AED=∠A′ED,∠BEG=∠B′EG,而∠AED+∠A′ED+∠BEG+∠B′EG=180°,∴∠A′ED+∠B′EG=90°,即∠DEG=90°;(2)由(1)知∠AED=∠A′ED,∵EA′平分∠DEB,∴∠A′ED=∠A′EB,∴∠AED=∠DEA′=∠A′EB=180°=60°,故∠DEA′=60°.24.【解答】解:(1)设点B表示的数为x,∵OA=2OB,∴12=2x,∴x=6,∴数轴上点B表示的数为6;(2)设M表示的有理数为m,∵AM﹣BM=4,∴m+12﹣(6﹣m)=4或m+12﹣(m﹣6)=4解得:m=﹣1.故数轴上点M表示的有理数是﹣1.25.【解答】解:(1)方案一:2.6x+14.2;方案二:4x+7.2;(2)当3<x<5时,方案一费用>方案二费用,所以选择方案二;当x=5时,方案一费用=方案二费用,所以选择方案一或方案二;当x>5时,方案一费用<方案二费用,所以选择方案一;26.【解答】解:(1)∵任意三个相邻方格中所填数之和都相等,∴6+a+b=a+b+x,∴x=6,同理,a=﹣1,第9个数与第3个数相同,∴b=﹣2,∴每3个数6、﹣1、﹣2为一个循环组依次循环,∵2021÷3=673…2,∴第2021个格子中的数与第2个数相同,∴第2021个格子中的数为﹣1;故答案为:6,﹣1;(2)根据题意可知,每三个数一组,且它们的和为3,设共有n组数的和为2019,则3n=2019,n=673,∴k=3n=2019;(3)由于是三个数重复出现,那么前8个格子中,这三个数中,﹣2出现了2次,6和﹣1都出现了3次.故代入式子可得:|6﹣(﹣1)|×9+|6﹣(﹣2)|×6+|6﹣6|×6+|﹣1﹣6|×9+|﹣2﹣6|×6+|﹣1﹣(﹣2)|×6+|﹣1﹣(﹣1)|×6+|﹣2﹣(﹣2)|×2+|﹣2﹣(﹣1)|×6=234。
重庆市七年级上册数学期末试题及答案解答

重庆市七年级上册数学期末试题及答案解答—、选择题1.有理数6 b 在数轴上的对应点的位置如图所示,则下列各式成立的是() * I J-2-1012 X = I 5 :②当X, y 的值互为相反数时,d=20:③不存在一个实数α使得 y=5排列,根据这个规律,点巳叶落在(0A±0C , 0B 丄OD .①Z AOB=Z COD ;②Z BOC+Z AOD=I80° ;③Z AOB+Z ∞D=90o : )A. a>bD ・ a< - b 2.已知关于%, y 的方程组< B. -QbVO C ・ IQlVlbl 3x-5y = 2a C ,则下列结论中:①当C = IO 时,方程组的x-2y=a-j解是 X =④若3 r -3π = 35,则a=5正确的个数有()A. 1个B. 2个C. 3.已知:有公共端点的四条射线OA, OB, OC, 3个D. 4个OD,若点P I (O), P 2, P 3...,如图所示 C. 射线OC 上 D.射线OD 上④图中小于平角的角有6个;其中正确的结论有几个(B. 2个C. 3个 5. 互不相等的三个有理数a, b, C 在数轴上对应的点分別为A, I a — b ∖ + ∖b-c I=I a-c ∖,贝IJ 点 B ()A.在点A, C 右边B.在点A, C 左边C.在点A, C 之间 B.D. 4个CO 若:D.以上都有可能)6. 如图,ZAoD=84° , ZAOB=I8a , OB 平分ZAOC.则ZCOD 的度数是( B.射线OB 上7.某个数值转换器的原理如图所示:若开始输入X 的值是4第1次输出的结果是4,第11・如图是一个正方体的平而展开图,把展开图折叠成正方体后,“美”字一面相对而上 的字是() 建设和 美 中LbA •设B •和 C.中 D.山712・下列各数中,比-一小的数是()3A. 一3 B ・-2 C. 0 D ・-1二、填空题13・已知x=3是方程- + I+'H (A ~I )=-的解,则m 的值为 3 4 314. 若∣x∣=3, ∣y∣=2,贝∣J∣x+y∣= .15. 已知单项式2Z +2/与5严产加是同类项,贝忖”二 _______ ・C. 36°D. 33°则第2020次输出的结果是( A. 8. A. 9. B. 4化简(2x - 3y) - 3(4x - 2y)的结果为(-IOX - 3yB. - IOX + 3y 下列式子中,是一元一次方程的是 2C. 2 )C. IOX - 9yD. A. 10.单项式Qb 的系数与次数分别为(2× -3y=0 A. 6, 1 C. 6, 2 D. 1 D. IOx+9y D ・-6, 2A42 2次输出的结果是2.依次继续下去, 101016・厲的算术平方根是 _________17. 若ZA = 37。
人教版2017~2018学年七年级上期末考试数学试题及答案

人教版2017~2018学年七年级上期末考试数学试题及答案2017-2018学年度(上)七年级期末质量监测数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.-3的相反数是()A。
3B。
-3C。
0D.无法确定2.下列各组数中,相等的是()A。
(-3)与-3B。
|-3|与-3C。
(-3)与-3D。
|3|与-33.下列说法中正确的个数是()①a一定是正数;②- a一定是负数;③- (- a)一定是正数;④a一定是分数。
A。
0个B。
1个C。
2个D。
3个4.下列图形不是正方体的展开图的是()A。
B。
C。
D。
5.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第7个图案中▲的个数为().A.28B.25C.22D.216.方程2x-1=-5的解是()A.3B.-3C.2D.-27.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心。
据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A。
5×1010千克B。
50×109千克C。
5×109千克D。
0.5×1011千克8.如图所示四个图形中,能用∠α、∠AOB、∠O三种方法表示同一个角的图形是()A。
B。
C。
D。
9.下列结论正确的是()A。
直线比射线长B。
一条直线就是一个平角C。
过三点中的任两点一定能作三条直线D。
经过两点有且只有一条直线10.文具店老板以每个144元的价格卖出两个计算器,其中一个赚了20%,另一个亏了20%,则卖这两个计算器总的是()A。
不赚不赔B。
亏12元C。
盈利8元D。
亏损8元二、填空题(本题有6小题,每小题3分,共18分)11.数轴上的点A、B位置如图所示,则线段AB的长度为3.12.单项式- ab的系数是-1;多项式xy+2x+5y-25是次项式2x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年重庆市渝北区七年级(上)期末数学试卷(考试时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.﹣2的倒数是()A.﹣2 B.2 C.D.﹣2.如图,由四个正方体组成的几何体,从左面看得到的平面图形是()A.B.C.D.3.已知α=70°,则∠α的补角是()A.20°B.30°C.110°D.130°4.已知关于x的方程x+a=1的解是x=2,则a的值为()A.1 B.﹣1 C.3 D.﹣35.47°40′+23°35′=()A.24°5′B.71°15′C.81°15′D.70°15′6.下列各式中,去括号正确的是()A.x+3(y﹣1)=x+3y﹣1 B.x﹣3(y﹣1)=x+3y+3C.x﹣3(y﹣1)=x﹣3y+3 D.x﹣3(y﹣1)=x﹣3y﹣37.下列几个图形中,射线OA,射线OB表示同一条射线的是()A.B.C.D.8.下列四种说法,正确的是()A.3x3y是三次单项式B.的系数是﹣C.单项式a的系数是1、次数是0D.π是一次单项式9.比较下列各数的大小,错误的是()A.3.5>﹣4 B.﹣π>﹣3 C.﹣2.8<0 D.|﹣7|<810.实数a,b,c在数轴上的位置如图所示,则化简|b|+|c﹣a|﹣|a+b|的结果为()A.2a+2b﹣c B.﹣c C.c﹣2a D.a﹣b﹣c11.下列图形都是用同样大小的黑点按一定规律组成的,其中第①个图形中一共有3个黑点,第②个图形中一共有8个黑点,第③个图形中一共有14个黑点,…,则第6个图形中黑点的个数是()A.29 B.38 C.48 D.5912.一艘轮船在某河流中往返航行于A,B两码头之间,该船顺流航行全程需6小时,逆流航行全程需10小时.已知水流速度为每小时3km,求A,B两码头间的距离.若设A,B两码头间距离为x,则所列方程为()A.B.C.﹣D.二、填空题(每小题4分,共24分)13.2017年的暑期档,由吴京导演并主演的《战狼2》从上映第一天开始,就不断刷新着影史各项纪录,4小时破亿,单日票房4.26亿.伴随着10月26日电影正式宣布收官,《战狼2》最终票房定格在5680000000人民币,用科学记数法表示5680000000应记作.14.比m的2倍大4的数用代数式表示是.15.若2x2y m+4与﹣3x2n﹣4y3的和是单项式,则mn=.16.|x|=4,|y|=1,且x>y,则x+y=.17.现定义一种新运算:a∇b=ka+3b﹣1(k为常数),且1∇2=7,则2∇(﹣1)=.18.已知:∠AOB=90°,∠BOC=30°,OM,ON分别平分∠AOB,∠BOC,则∠MON=.三、解答题(共78分)19.(8分)计算:(1)﹣14+(﹣2)×3;(2)24×()﹣3×(﹣2)220.(8分)解方程:(1)3(x﹣1)+2=3﹣x;(2).21.(10分)化简:(1)(3x﹣2y)+3(x+3y);(2)2(x2﹣x+1)﹣(3x2﹣x+2).22.(10分)如图,点A,B是数轴上两点,原点O位于A,B两点之间,且有:OB=3OA,AB=8,(1)AB两点对应的有理数分别为:,.(直接写出即可)(2)若点M,N分别是OA,AB的中点,求线段MN的长,(自行补全图形再解题)23.(10分)已知A=3a+9b+1,B=﹣2a﹣5b﹣2,当a,b满足a+b=5时,求A+2B的值.24.(10分)如图,点A,O,B三点在同一直线上,∠1=40°,射线OD平分∠COB,OE是∠DOB内的一条射线,且∠2=25°,求∠EOB与∠EOC的度数.25.(10分)阅读下面的材料:一个多位数,如果它各数位上的数字和是9,则称这个多位数为“顺意数”如:36各数位上的数字和为3+6=9,故36是“顺意数”;又如:135各数位上的数字和为1+3+5=9,故135也是“顺意数”.(1)请分别写出一个两位“顺意数”和三位“顺意数”,(2)任意一个两位“顺意数”都是9的倍数吗?为什么?(设任意一个两位数的十位数字为x,且l≤x≤9,x为整数)(3)如果一个三位“顺意数”的十位数字是3,且这个三位数能被4整除,求这个三位“顺意数”.26.(12分)甲、乙、丙三位老师共同编写一本数学参考资料,若甲单独编写需要100天,乙单独编写需要120天,丙单独编写需要150天(假设他们平时各自的编写速度都保持不变).实际编写过程中,三位老师共同编写30天后,丙老师因工作原因退出编写,只能由甲、乙两位老师继续编写:又过了10天,甲老师也因故退出编写,由乙老师独自完成剩余资料的编写任务.(1)求乙老师还需要多少天完成剩余资料的编写任务?(2)如果对于稿费有如下纳税标准:①不超过4000元的部分不纳税;②超过4000元而不超过10000元的部分,按14%的比例纳税;③超过10000元的部分,按20%的比例纳税,现已知该参考资料的编写总稿费为:1000元基本费用,再加上90元/页的编写稿费,且三位老师的总稿费共纳税1200元,请问该参考资料共多少页?参考答案与试题解析1.【解答】解:﹣2的倒数是﹣,故选:D.2.【解答】解:从左面看第一层是1个小正方形,第二层1个小正方形.故选:B.3.【解答】解:已知α=70°,则∠α的补角是180°﹣70°=110°.故选C.4.【解答】解:把x=2代入方程得:2+a=1,解得:a=﹣1,故选:B.5.【解答】解:47°40′+23°35′=71°15′.故选:B.6.【解答】解:A、原式=x+3y﹣3,不符合题意;B、原式=x﹣3y+3,不符合题意;C、原式=x﹣3y+3,符合题意;D、原式=x﹣3y+3,不符合题意,故选:C.7.【解答】解:A、方向相反,不是同一条射线,故本选项错误;B、端点相同,方向相同,是同一条射线,故本选项正确;C、方向相反,不是同一条射线,故本选项错误;D、方向不同,不是同一条射线,故本选项错误;故选:B.8.【解答】解:A、3x3y是四次单项式,故此选项错误;B、﹣的系数是﹣,故此选项正确;C、单项式a的系数是1、次数是1,故此选项错误;D、π是单项式,次数为0,故此选项错误.故选:B.9.【解答】解:A、3.5>﹣4,正确;B、﹣π<﹣3,错误;C、﹣2.8<0,正确;D、|﹣7|<8,正确,故选:B.10.【解答】解:从数轴上a、b、c的位置关系可知:c<a<0,b>0且|b|>|a|,故a+b>0,c﹣a<0,即有|b|+|c﹣a|﹣|a+b|=b﹣(c﹣a)﹣(a+b)=b﹣c+a﹣a﹣b=﹣c.故选:B.11.【解答】解:∵第①个图形中黑点的个数3=1+2+2×0,第②个图形中黑点的个数8=1+2+3+2×1,第③个图形中黑点的个数14=1+2+3+4+2×2,……∴第⑥个图形中黑点的个数为1+2+3+4+5+6+7+2×5=38,故选:B.12.【解答】解:设A,B两码头间距离为x,依题意,得:﹣3=+3.故选:D.13.【解答】解:5680000000=5.68×109.故答案为:5.68×10914.【解答】解:根据题意,得:2m+4,故答案为:2m+4.15.【解答】解:∵2x2y m+4与﹣3x2n﹣4y3的和是单项式,∴m+4=3,2n﹣4=2,∴m=﹣1,n=3;∴mn=﹣1×3=﹣3.故答案为:﹣3.16.【解答】解:∵|x|=2,∴x=±4,∵|y|=1,∴y=±1,∵x>y,∴x=4,y=±1,∴当x=4,y=1时,x+y=5;当x=4,y=﹣1时,x+y=3.故答案为:3或5.17.【解答】解:依题意有:k+3×2﹣1=7,解得k=2,则a∇b=2a+3b﹣1,则2∇(﹣1)=2×2+3×(﹣1)﹣1=0.故答案为:0.18.【解答】解:此题有两种情况,(1)如图,∵∠AOB=90°,∠BOC=30°,OM、ON分别是∠AOB和∠BOC的平分线,∴∠BOM=∠AOB=×90°=45°,∠BON=∠BOC=×30°=15°,∴∠MON=∠BOM+∠BON=45°+15°=60°.(2)如图,∵∠AOB=90°,∠BOC=30°,OM、ON分别是∠AOB和∠BOC的平分线,∴∠BOM=∠AOB=×90°=45°,∠BON=∠BOC=×30°=15°,∴∠MON=∠BOM﹣∠BON=45°﹣15°=30°.答:∠MON的度数是60°或30°.故答案为:60°或30°.19.【解答】解:(1)﹣14+(﹣2)×3=﹣1+(﹣6)=﹣7;(2)24×()﹣3×(﹣2)2=24×﹣24×﹣3×4=16﹣4﹣12=0.20.【解答】解:(1)去括号得:3x﹣3+2=3﹣x,移项合并得:4x=4,解得:x=1;(3)去分母得:2x﹣2﹣1+2x=6,移项合并得:4x=9,解得:x=.21.【解答】解:(1)(3x﹣2y)+3(x+3y)=3x﹣2y+3x+9y=6x+7y;(2)2(x2﹣x+1)﹣(3x2﹣x+2)=2x2﹣2x+2﹣3x2+x﹣2=﹣x2﹣x.22.【解答】解:(1)由OB=3OA,AB=8可知,AB两点对应的有理数分别为:﹣2,6;故答案为:﹣2,6;(2)如图:因为点M,N分别是OA,AB的中点,所以AM=1,AN=4,所以MN=AN﹣AM=4﹣1=3.23.【解答】解:∵A=3a+9b+1,B=﹣2a﹣5b﹣2,∴A+2B=(3a+9b+1)+2(﹣2a﹣5b﹣2)=3a+9b+1﹣4a﹣10b﹣4=﹣a﹣b﹣3=﹣(a+b)﹣3,当a+b=5时,原式=﹣5﹣3=﹣8.24.【解答】解:∵点A,O,B三点在同一直线上,∠1=40°,∴∠COB=180°﹣∠1=140°.又∵OD平分∠COB∴∠DOC=∠BOD=×140°=70°,∵∠2=25°,∴∠EOB=∠BOD﹣∠2=70°﹣25°=45°,∠EOC=∠DOC+∠2=70°+25°=95°.25.【解答】解:(1)81为两位“顺意数”,423为三位“顺意数”;(2)设任意一个两位数的十位数字为x,且l≤x≤9,x为整数,则个位上的数字为9﹣x,这个两位数表示为10x+9﹣x,因为10x+9﹣x=99x+9=9(11x+1),而l≤x≤9,x为整数,所以任意一个两位“顺意数”都是9的倍数;(3)设百位上的数字为x,则个位上的数字为6﹣x,其中1≤x≤6,x为整数,这个三位数表示为100x+30+6﹣x,而100x+30+6﹣x=99x+36,因为这个三位数能被4整除,则99x能被4整除,即x能被4整除,所以x=4,所以这个三位“顺意数”为432.26.【解答】解:(1)设乙老师还需要x天完成剩余资料的编写任务,由题意得:,解得:x=8;答:乙老师还需要8天完成剩余资料的编写任务;(2)10000元应纳税为:(10000﹣4000)×14%=840元,1200元﹣840元=360元,超过10000元的部分为:360÷20%=1800元,∴编写总稿费为:10000+1800=11800(元),∴(11800﹣1000)÷90=120;答:该参考资料共120页。