A Matlab Simulator for Electric Drive Vehicle to Grid Implementation
基于Matlab的多极多相永磁无刷直流电动机仿真

基于M atlab 的多极多相永磁无刷直流电动机仿真收稿日期:2004-03-18樊晓华,梁得亮,邹根华(西安交通大学电气工程学院,西安,710049)摘 要:文中基于多极多相永磁直流无刷电动机(BLDC M )的数学模型,以四极五相永磁无刷直流电动机为仿真实例,利用有限元分析获得电感参数和反电势波形,对样机进行了仿真。
对所得仿真结果和基于A nsoft 的分析结果进行比较,吻合较好,证明该方法是有效的。
关键词:无刷直流电动机;M atlab Si m ulink ;仿真;数字模型中图分类号:TM 361 TM 351 文献标识码:A 文章编号:1001-6848(2005)06-0016-03Si m ula tion of M ulti -poles M ulti -pha se P M B LDC M otor Ba sed On M a tlabFAN X iao -hua ,L I AN G D e -liang ,Z OU Gen -hua(E lectrical Engineering Co llege ,X i’an J iao tong U niversity ,X i’an 710049,Ch ina )Abstract :Based on the m athem atical model of m ulti -po les m ulti -phase per m anent m agnetic BLDC mo to r ,its building model and si m ulati on m ethod are studied in theM atlab Si m ulink environm ent ,the four -po les five -phase per m anent m agnetic BLDC mo to r is si m ulatied as an p ro to type ,its inductance param eter and E M F is calculated by using FE M .T he result of si m ulati on show s a very good agreem ent w ith one based on A nsoft ,it validates the theo rytical app roach .Key words :BLDC mo to r ;M atlab Si m ulink ;M athem atical model0 引 言计算机仿真是借助计算机,用系统模型对真实系统或者设想的系统进行实验的一门综合性技术。
MATLAB中的三相异步电动机仿真

目录前言 (1)1 异步电动机动态数学模型 (2)1.1电压方程 (2)1.2磁链方程 (3)1.3转矩方程 (5)1.4运动方程 (6)2 坐标变化和变换矩阵 (8)2.1三相--两相变换(3/2变换) (8)3 异步电动机仿真 (9)3.1异步电机仿真框图及参数 (9)3.2异步电动机的仿真模型 (11)4 仿真结果 (15)5 结论 (16)参考文献 (17)前言随着电力电子技术与交流电动机的调速和控制理论的迅速发展,使得异步电动机越来越广泛地应用于各个领域的工业生产。
异步电动机的仿真运行状况和用计算机来解决异步电动机控制直接转矩和电机故障分析具有重要意义。
它能显示理论上的变化,当异步电动机正在运行时,提供了直接理论基础的电机直接转矩控制(DTC),并且准确的分析了电气故障。
在过去,通过研究的异步电动机的电机模型建立了三相静止不动的框架。
研究了电压、转矩方程在该模型的功能,同相轴之间的定子、转子的线圈的角度。
θ是时间函数、电压、转矩方程是时变方程这些变量都在这个运动模型中。
这使得很难建立在αβ两相异步电动机的固定框架相关的数学模型。
但是通过坐标变换,建立在αβ两相感应电动机模型框架可以使得固定电压、转矩方程,使数学模型变得简单。
在本篇论文中,我们建立的异步电机仿真模型在固定框架αβ两相同步旋转坐标系下,并给出了仿真结果,表明该模型更加准确地反映了运行中的电动机的实际情况。
1 异步电动机动态数学模型在研究三相异步电动机数学模型时,通常做如下假设 1) 三相绕组对称,磁势沿气隙圆周正弦分布;2) 忽略磁路饱和影响,各绕组的自感和互感都是线性的; 3) 忽略铁芯损耗4) 不考虑温度和频率对电阻的影响异步电机的数学模型由下述电压方程、磁链方程、转矩方程和运动方程组成。
1.1 电压方程三相定子绕组的电压平衡方程为(1-1)与此相应,三相转子绕组折算到定子侧后的电压方程为(1-2)式中 A u , B u , C u , a u , b u ,c u —定子和转子相电压的瞬时值;A i ,B i ,C i , a i , b i ,c i —定子和转子相电流的瞬时值;A ψ,B ψ,C ψ, a ψ, b ψ,c ψ—各相绕组的全磁链; Rs, Rr —定子和转子绕组电阻上述各量都已折算到定子侧,为了简单起见,表示折算的上角标“ ’”均省略,以下同此。
基于MATLAB App Designer的电动汽车动力参数匹配

10.16638/ki.1671-7988.2020.15.002基于MATLAB App Designer的电动汽车动力参数匹配韦超毅1,许哲1,黄大明2*,徐光忠1(1.广西大学机械工程学院,广西南宁530004;2.南宁学院交通学院,广西南宁530200)摘要:“节能发展,绿色环保”已成为当今社会最关切的主题,电动汽车因此迎来了发展热潮。
电动汽车的动力参数匹配是设计开发中的关键环节,能够使电动汽车满足基本的动力性及经济性要求。
文章参考某款电动汽车的整车参数和性能指标,基于MA TLAB App Designer开发设计一款App,实现电动汽车的驱动电机、动力电池和传动比的关键参数匹配。
该款App能够使电动汽车的参数匹配计算提供便利,也为后续应用程序开发及扩展提供参考。
关键词:电动汽车;MATLAB;参数匹配;App Designer中图分类号:U469.72 文献标识码:A 文章编号:1671-7988(2020)15-04-04Matching Of Electric Vehicle Dynamic Parameters Based On Matlab App DesignerWei Chaoyi1, Xu Zhe1, Huang Daming2*, Xu Guangzhong1( 1.College of Mechanical Engineering&Guangxi University, Guangxi Nanning 530004;2.Transportation College&NanNing University, Guangxi Nanning 530200 )Abstract: "Energy-saving development, green environmental protection" has become the most concerned topic in today's society, and electric vehicles have ushered in a development boom. The matching of dynamic parameters of electric vehicles is a key link in the design and development, which can enable electric vehicles to meet the basic dynamic and economic requirements. The article refers to the entire vehicle parameters and performance indicators of an electric vehicle, develops and designs an App based on MA TLAB App Designer, and realizes the matching of key parameters of the electric vehicle's drive motor, power battery and transmission ratio. This App can facilitate the parameter matching calculation of electric vehicles, and also provide a reference for subsequent application development and expansion.Keywords: Electric vehicle; MATLAB; Parameter matching; App DesignerCLC NO.: U469.72 Document Code: A Article ID: 1671-7988(2020)15-04-04前言随着近年我国社会经济的持续快速发展,人们的生活水平不断地提升,汽车保有量也在逐年递增,汽车尾气的排放造成的污染日益严重。
基于MRAS的无直流母线电压传感器PMSM滑模控制

基于MRAS的无直流母线电压传感器PMSM滑模控制常海赐;滕青芳;靳宇星【摘要】针对永磁同步电机直流母线电压传感器故障的问题,提出一种无直流母线电压传感器的永磁同步电机滑模控制策略。
设计了基于自适应技术的模型参考自适应观测器,以精确估计直流母线电压值,从而保证电机正常运行,利用滑模控制技术,设计了积分滑模面,以保证电机转速、直轴、交轴电流能够快速收敛到给定值。
同时采用连续幂次函数设计滑模控制律,消除了滑模抖振。
仿真结果表明,所设计的直流母线电压观测器能够精确观测直流母线电压值,当直流母线电压传感器故障时亦能够保证系统的正常运行,且滑模控制器能够使转速、电流更快的跟随给定值,使系统具有更强的鲁棒性。
%In view of the fault of DC bus voltage sensor of the permanent magnet synchronous mo-tor (PMSM),the sliding mode control strategy of PMSM for DC bus voltage sensor is proposed. A model reference adaptive observer is designed to exactly estimate DC bus voltage and to ensure the normal operation of the motor with adaptive techniques.By making use of the sliding mode control techniques,an integral sliding surface is designed to ensure that the motor speed,direct-axis and quadrature-axis current can quickly converge to the given value.At the same time,the control law is designed by using the continuous power function to eliminate the chattering of slid-ing mode.The simulation results show that the designed DC bus voltage observer can accurately observe DC bus voltage value to guarantee the normal operation of the system when DC bus volt-age sensor is fault.The sliding mode controllercan make the rotating speed and current follow the given value faster,and make the system more robust.【期刊名称】《兰州交通大学学报》【年(卷),期】2016(035)006【总页数】7页(P76-82)【关键词】永磁同步电机;直流母线电压;模型参考自适应观测器;滑模控制【作者】常海赐;滕青芳;靳宇星【作者单位】兰州交通大学自动化与电气工程学院,甘肃兰州 730070;兰州交通大学自动化与电气工程学院,甘肃兰州 730070;兰州交通大学自动化与电气工程学院,甘肃兰州 730070【正文语种】中文【中图分类】TM351永磁同步电机(permanent magnet synchronous motor,PMSM)因其结构简单、高效率、高功率密度和形状、尺寸灵活多样等突出优点,在工业、交通、军事等领域被广泛的应用.对于一个典型的电压源逆变器驱动PMSM控制系统而言,需要一个直流母线电压传感器来传递直流母线信息.通过传感器检测直流母线电压信息,不仅增加了成本和体积,而且当直流母线电压传感器出现故障时控制系统无法精确获取直流母线电压值,进而损害系统的可控性[1-3].针对上述问题,有两种容错方案,即硬件冗余法和解析冗余法[4-6].硬件冗余即增加冗余传感器法,这样既增加生产成本,也使系统体积更加庞大,使系统结构复杂化.故硬件冗余法较少采用;解析冗余则基于系统数学模型,通过软件算法实现电机直流母线电压辨识,具有编程灵活、功能强大、易于实现和成本低廉等优点,因此是电机容错系统的首选容错方案[7-9].PMSM直流母线电压的容错方案,国外学者研究较多.文献[10]采用直接替换法,当直流母线电压传感器出现故障时,直接采用额定直流母线电压值代替实际值,以保证系统的持续运行,该方法局限于直流母线电压恒定的系统,不能适用于母线电压随时间波动的系统,比如混合动力电动汽车;文献[11]采用自适应磁链观测法,提出了一种在线直流母线电压观测器,但因设计复杂而难于实现,且该方法只能针对感应电机系统.文献[12]针对电力牵引系统的单相PWM整流器,利用电网侧已知信息设计了龙贝格状态观测器以重构直流母线电压,因其需要得到电网侧的实时信息,具有一定的局限性.基于此,设计一个简单有效的直流母线电压观测器来实时观测直流母线电压值很有必要.针对永磁同步电机控制系统采用自适应技术,设计了模型参考自适应(model reference adaptive system,MRAS)观测器对直流母线电压进行实时在线观测.传统的矢量控制一般采用PI控制器作为转速和电流调节器,在一定条件下它能起调节作用,但当系统参数变化或存在外部干扰时(例如,模型不确定、参数摄动、摩擦阻力和负载扰动等),则难以保证电机系统获得满意性能[13-15].为了改善控制系统的的鲁棒性,一些非线性控制方法相继被提出.其中滑模(sliding mode,SM)变结构控制因为对PMSM系统参数时变和外部扰动的强鲁棒性,成为国内外的研究热点[16-18].滑模控制无需精确的数学模型,可根据当前的系统状态构造滑模面,通过控制量的切换作用,迫使系统沿着既定的“滑动模态”运动.具有响应速度快、对外界参数不敏感、易于实现等优点[19],在永磁同步电机控制领域被广泛使用.为提高PMSM控制系统的响应速度和抗负载扰动能力,本文根据矢量控制原理,设计了积分滑模控制器(integral sliding mode controller,ISMC),使得电机转速、直轴电流、交轴电流能快速收敛到给定值.此外采用连续幂次函数代替传统开关函数,以消除抖振、保证系统的稳定性.假设磁路不饱和,空间磁场呈正弦分布,不计涡流和磁滞损耗,PMSM定子电流方程在dq两相旋转坐标系下可表示为式中:ud,uq,id,iq,Ld,Lq分别为定子电压、电流、电感在dq轴的分量;Rs为定子电阻;ψf为永磁体磁链;np为磁极对数;wr为转子机械角速度. PMSM机械转动方程为式中:J为转动惯量;T1为负载转矩;Bm为阻力.电磁转矩可以表示为对于隐极式永磁同步电机而言,由于Ld=Lq=L,因此,电磁转矩可表示为Te=1.5npψfiq.针对三相六开关电压源逆变器驱动PMSM控制系统,基于模型参考自适应观测器和滑模变结构控制理论,提出了PMSM无直流母线电压传感器积分滑模控制策略.系统结构框图如图1所示,该系统主要包括:模型参考自适应观测器、转速环积分滑模控制器、q轴电流积分滑模控制器、d轴电流积分滑模控制器、SVPWM模块及电压源逆变器等.2.1 模型参考自适应观测器设计对于由电压源型逆变器驱动的三相永磁同步电机,定子相电压是由施加在功率开关门极上的PWM信号和直流母线电压所决定的.因此定子电压幅值可近似的表示为式中:ma为调制系数;Vdc为直流母线电压;γ是由PWM开关方式决定的.当直流母线电压传感器发生故障,直流母线电压值无法获得的情况下,可将定子电压值近似为式中:Vdc(nom)为给定的直流母线电压值;若定义α=Vdc/Vdc(nom),则us=αu.通过准确观测α就可以得到真正的直流母线电压值.1)参考模型由式(1)可得模型自适应观测器的参考模型为式中:2)可调模型考虑直流母线电压是未知的,模型参考自适应观测器的可调模型表示(表示的估计值)如下:式中为反馈项,kv为反馈系数.对参考模型式(6)和可调模型式(7)做差,得到两个模型的输出之差(,表示的误差值)如式(8)所示.将式(8)写成向量形式如下:式中:为了得到使观测器稳定的自适应律,选择如下Lyapunov函数:式中:kα为正增益.对式(10)求导可得为保证误差系统式(8)稳定,需满足V1≤0.为此可做如下假设:则因为直流母线电压的变化率远小于定子电流变化率,可以认为因此可以得到从而得到的自适应律为为了提高直流母线电压的估计精度,本文采用基于比例积分作用的模型参考自适应观测器:式中:kp,ki分别为比例和积分增益.则Vdc的估计值可由得到.由以上分析可构造出基于MRAS的PMSM直流母线电压观测器结构框图,如图2所示.2.2 积分滑模控制器设计2.2.1 电机转速控制器设计转速控制器的设计目的就是寻找合适控制律,使得电机实际转速ωr能够快速准确地跟随给定转速,因此定义速度误差为eω=-ωr.为提高电机转速的响应速度和跟踪精度,设计如下积分滑模面:式中:c1为常数;t→∞.根据式(2)和式(3)可进一步得到为避免滑模控制中由于开关项sign(·)函数引起的高频抖振现象,通常的做法是采用饱和函数sat(·)函数代替sign(·)函数,但是当系统进入稳态后,抖振现象依然存在.为了彻底消除这种抖振现象,本文通过引入连续幂次函数fal(·)函数将滑模控制律设计为其中:η1为滑模正增益;连续幂次函数fal(·)的定义如下:其中:δ为滤波因子;ε为非线性因子;当ε∈(0,1)时式(16)具有小误差大增益,这种特性是传统的饱和函数sat(·)所不具备的.根据式(14)和式(15)可以得出转速积分滑模控制器的输出为根据以上各式可得出PMSM转速控制器结构框图,如图3所示.为验证以式(17)为输出时滑模控制器的稳定性,定义Lyapunov函数为对上式求导,并将式(13)和式(17)代入得当δ1>0,ε1∈(0,1)时Lyapunov函数V2正定,且其导数≤0,因此当采用式(17)所示的滑模控制律时,系统满足Lyapunov稳定性条件.2.2.2 电机交、直轴电流控制器设计交、直轴电流控制器用于精确跟踪dq轴电流,因此将dq轴电流误差定义为其中分别为dq轴坐标系下的定子电流参考值,且=0.采用和转速环一样的控制策略将滑模切换面设计为进一步可得到同转速环一样,为减小dq轴电流脉动采用连续幂次函数函数fal(·)将电流环滑模控制趋近律取为由式(20)和式(21)即可求得交、直轴电流的输出为稳定性证明,同转速环,略.为验证所设计系统的正确性和有效性,采用Matlab/Simulink/Simspace进行了仿真研究,所采用的PMSM各项参数如表1所列.仿真过程中采样时间设置为100μs,电机参考转速1 000r/min,带2N·m负载启动,直流母线电压参考值Vdc(nom)=300V.转速滑模控制器的参数为:c1=0.2,η1=2 400,ε1=0.5,δ=0.1;电流滑模控制器参数为:c2=c3=0.01,η2=η3=500,ε2=ε3=0.5,δ2=δ3=0.1;直流母线电压MRAS观测器中PI 控制器参数选择为:kp=0.01,ki=0.02.图4至图7分别给出了系统的直流母线电压观测曲线图和电机转速、转矩以及dq 轴电流曲线图.从图4可以看出所设计的MRAS观测器能够快速、准确地估计出系统直流母线电压值.图5至图7可以看出基于积分滑模的转速控制器、电流控制器能够使系统具有良好的转速、转矩响应以及稳定的dq轴电流值.针对PMSM驱动系统中直流母线电压传感器故障的情况,本文采用MRAS技术设计了一种简单易于实现的MRAS直流母线电压观测器,利用已知的转速、定子电流等信息精确估算出了直流母线电压值,保证了永磁同步电机在直流母线电压传感器故障状态下的正常运行,提高了PMSM的运行可靠性;采用积分滑模控制器作为系统的转速和电流控制器,提高了系统的响应速度,减小了转矩和电流脉动,将连续幂次函数fal(.)函数引入滑模控制律中,有效的消除了滑模抖振,提高了滑模控制器的控制性能.仿真结果表明了本文控制策略的正确性和实用性.【相关文献】[1] Foo G H B,Zhang X,Vilathgamuwa D M.A sensor fault detection and isolation method in interior permanent-magnet synchronous motor drives based on an extended kalman filter[J].IEEE Transactions on Industrial Electronics,2013,60(8):3485-3495.[2] Zakzouk N E,Abdelsalam A K,Helal A A,et al.DC-link voltage sensorless control technique for singlephase two-stage photovoltaic grid-connected system[C]//IEEE International Energy Conference.Piscataway,NJ:IEEE Press,2014:58-64.[3]王本振,邓堪谊,于艳君,等.直流母线电压对载波频率成份法无位置传感器控制的影响分析[J].微电机,2010,43(10):10-12.[4]滕青芳,柏建勇,朱建国,等.基于滑模模型参考自适应观测器的无速度传感器三相永磁同步电机模型预测转矩控制[J].控制理论与应用,2015,32(2):150-161.[5] Berriri H,Naouar M W,Slama-Belkhodja I.Easy and fast sensor fault detection and isolation algorithm for electrical drives[J].IEEE Transactions on Power Electronics,2012,27(2):490-499.[6] Wallmark O,Harnefors L,Carlson O.Control algorithms for a fault-tolerant PMSM drive[J].IEEE Transactions on Industrial Electronics,2007,54(4):1973-1980. [7]滕青芳,李国飞,朱建国,等.基于扩张状态观测器的无速度传感器容错逆变器驱动永磁同步电机系统自抗扰模型预测转矩控制[J].控制理论与应用,2016,33(5):676-684.[8] Kim G S,Lee K B.Fault diagnosis and fault-tolerant control of a dc-link voltage sensor for PV inverters[C]//International Power Electronics and Motion Control Conference.Piscataway,NJ:IEEE Press,2012:1408-1412.[9]滕青芳,左瑜君,柏建勇,等.基于MRAS观测器的无速度传感器永磁同步电机模型预测控制[J].兰州交通大学学报,2014,33(4):6-11.[10] Jeong Y S,Sul S K,Schulz S E,et al.Fault detection and fault-tolerant control of interior permanent-magnet motor drive system for electric vehicle[J].IEEE Transactions on Industry Applications,2005,3(1):458-1463.[11] Salmasi F R,Najafabadi T A,Jabehdar-Maralani P.An adaptive flux observer with online estimation of DC-link voltage and rotor resistance for VSI-based induction motors[J].IEEE Transactions on Power E-lectronics,2010,25(5):1310-1319. [12] Youssef A B,El Khil S K,Slama-Belkhodja I.State observer-based sensor fault detection and isolation,and fault tolerant control of a single-phase PWM rectifier for electric railway traction[J].IEEE Transactions on Power Electronics,2013,28(12):5842-5853.[13]王德贵.永磁同步电机调速系统的变参数PI控制[J].伺服控制,2014(6):39-41. [14] Tursini M,Parasiliti F,Zhang D.Real-time gain tuning of PI controllers for high-performance PMSM drives[J].IEEE Transactions on Industry Applications,2002,38(4):1018-1026.[15]鲁文其,胡育文,杜栩杨,等.永磁同步电机新型滑模观测器无传感器矢量控制调速系统[J].中国电机工程学报,2010,30(33):78-83.[16]茅靖峰,吴爱华,吴国庆,等.永磁同步电机幂次变速趋近律积分滑模控制[J].电气传动,2014(6):50-53.[17]郑剑飞,冯勇,陆启良.永磁同步电机的高阶终端滑模控制方法[J].控制理论与应用,2009,26(6):697-700.[18]张晓光,赵克,孙力.永磁同步电动机混合非奇异终端滑模变结构控制[J].中国电机工程学报,2011(27):116-122.[19]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,24(3):407-418.。
基于Matlab_Simulink汽车驾驶员电动座椅控制系统的仿真设计

基于Matlab/Simulink 汽车驾驶员电动座椅控制系统的仿真设计张兰江(聊城大学汽车与交通工程学院,山东聊城252059)摘要:以汽车驾驶员电动座椅的水平调节为例,利用Matlab/Simuulink 对具有自动调节功能的直流伺服位置控制系统的动态特性进行计算和仿真,从而确定该系统控制器的最佳控制参数的匹配。
关键词:电动座椅;直流伺服控制系统;Simulink 仿真;控制器中图分类号:TP272文献标识码:A文章编号:1008-5483(2008)03-0009-05Simulation Design of Adjuster Control System for Auto Electric Seat Based on Matlab/SimulinkZhang Lanjiang(School of Automobile &Transportation Engineering,Liaocheng University,Liaocheng 252059,China)Abstract:Taking an example for the horizontal adjuster of the Auto electric seat ,a DC servo -control system with the self-adjusting function was designed .The system ’s dynamic characteristics were simulated and calculated with Matlab/Simulink ,thereby the optimal matching of the parameters for the controller was ascertained.Keywords:electric seat ;DC servo-control system;Simulink simulation ;controller汽车的电动座椅由座垫、靠背、靠枕、骨架、悬挂和调节机构等组成。
基于MATLABSIMULINK的电传动履带车辆转向性能仿真

为电机转子角速度。 T l2 = F2 r s , if ! ( 5) ( 6)
F1 r s T l1 = . i f !i
( 制动) 力 ( N ) ; f 1 、 f 2 为内、 外侧履带地面变形阻力 ( N ) ; M 为转 向阻力 矩 ( N ∀ m ) ; L 为 履带接 地长 ( m) 。
1
1 1
电传动履带车辆转向行驶理论分析
假设条件
[ 2- 3]
以满足工程应用为前提 , 转向仿真计算在如下 假设下进行: 1) 转向时车速较低 , 车辆重心在转向过程中不 变, 位于对称轴线交叉点上, 忽略瞬时重心偏移和整 车转动惯量的影响。 2) 转向在水平地面进行 , 且地面附着力足够 , 忽略横向滑移和纵向滑移。 3) 仅考虑履带接地段地面变形阻力和接地段 转向阻力影响, 且两条履带的地面变形阻力相同, 在 履带接地段地面压力作均匀分布。 1 2 转向工况分析 电传动履带车辆的转向工况按转向半径的大小 可分为小半径转向、 中等半径转向 ( 再生制动转向 ) 和大半径转向( 修正方向 ) 三种转向工况。小半径转 向时, 转向半径满足 0 R < B / 2, 内外侧履带速度 方向 相反 , 外 侧履 带速 度比内 侧履 带速 度快。当 | v 1 | = | v 2 | 时, 转向半径 R = 0, 为原地中心转向。 当转向半径满足 R ! B/ 2 时 , 为中等半径转向 , 此 工况下, 外侧电机通过外侧履带向地面输出功率; 内 侧电机通过内侧履带从地面吸收功率, 在内履带的 拖动下以发电机模式工作 , 产生再生功率, 该种转向 也称为再生制动转向。大半径转向通常转向半径很 大, 转向阻力相对较小 , 内外侧电机都输出功率 , 车 辆克服转向阻力所需驱动力较小 , 因而所需转向功 率也很小 , 该转向也称为修正方向。 在不同的转向工况下, 两侧电机的工作模式是 不同的。图 2 给出小半径和中等半径转向时运动与 受力分析。对于大半径转向工况 , 其运动与受力分 析与中等半径转向工况相似, 不同之处在于大半径 转向时内外两侧履带速度差较小 , 且两侧电机都处 于驱动模式。 图 2 中各参数的物理意义如下: B 为履带中心 距( m ) ; R 为转向半径 ( m ) ; C 1 、 C 2 为内、 外侧履带 接地段瞬时转向中心 ; C 为车辆平面中心 ; O 为车 辆转向中心; 为转向角速度( r/ min) ; v 1 、 v 2 为内、 外侧履带速度 ( km/ h ) ; F 1 、 F 2 为内、 外侧履带牵引
基于MATLAB的电动汽车差速控制

基于MATLAB的电动汽车差速控制┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊┊摘要电动汽车是汽车工业发展的一个重要分支,其核心技术包括车辆工程,电机及其驱动技术,电池技术,控制技术。
随着能源危机迫近,电动汽车独特的发展前景,吸引了国内外大型研究机构的推动,已成为相关领域研究的一个热点,并且取得了各种成果。
双轮驱动电动汽车是一种新的电动汽车(Electric vehicle,简称EV)的发展方向,随着电动汽车的研发和产业化过程,电动汽车以其理想的控制性能和广阔的应用前景,在学术界和工程界引起了广泛的关注。
本文针对两轮驱动电动车控制系统进行了相关的研究、分析、设计和实验。
首先,电动汽车的国内外发展的背景进行了详细的分析,介绍了驱动系统的分类和比较。
其次,从传统的电子差速控制算法,该项目受到车轮简单新颖驱动电动汽车为背景的优势,通过对系统动态性能的优化设计和控制,车辆的速度控制先进的车辆控制策略研究的深入,基于电动汽车驱动芯片轮设计,并围绕这一思路,硬件电路设计。
最后分析了输入参数,根据实测波形,验证了电动汽车电子差速控制方案的可行性。
关键词:电动汽车,差速控制,转矩分配,整车动力模型。
基于MATLAB的电动汽车差速控制┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊┊ABSTRACTElectric vehicle is an important branch of the development of automobile industry, the core technology includes vehicle engineering, motor and drive technology, battery technology, control technology. With the energy crisis looming, the development prospects of electric vehicle unique, attracted to promote large-scale research institutions at home and abroad, has become a hot research, and has made various achievements.The wheel drive electric vehicle is a new electric vehicle (Electric vehicle, referred to as EV) the direction of development, with the development of electric vehicles and the process of industrialization, the electric car with its ideal control performance and wide application prospect, and has caused widespread concern in the academic and engineering circles. The two were studied, analysis, and experimental design related to drive control system of electric vehicle.First of all, electric cars, the domestic and foreign development background in detail, introduces the classification and comparison of driving system.Secondly, the differential control algorithm from the traditional electronic, the project by the wheel has the advantages of simple and novel drive electric vehicle as the background of the advantages, by optimizing the design and control of the dynamic performance of the system, in-depth vehicle speed control advanced vehicle control strategy research, chip wheel drive electric vehicle based on the design, and around this idea, the hardware circuit design.Finally, this paper final analysis of the input parameters, according to the measured waveform, verified the feasibility of electric automobile electronic differential control scheme.Key words: electric vehicle, differential control, torque distribution, vehicle dynamic model.基于MATLAB的电动汽车差速控制┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊┊目录第一章绪论 (1)1.1 研究背景与研究意义 (1)1.2 目前电动汽车发展的概况 (1)1.2.1 电动汽车驱动方式及轮式驱动研究现状 (2)1.3 电子差速的意义 (3)1.3.1 电子差速优越性 (4)1.4 本课题的主要研究工作 (4)第二章电子差速控制算法的选择 (6)2.1 自然差速的可行性分析 (6)2.2 现有电子差速方案的讨论 (7)2.2.1 转速控制 (8)2.2.2 转矩控制 (10)2.2.3 最佳滑转率控制 (11)2.3 本章小结 (13)第三章行驶动力学模型及新型转向控制策略 (14)3.1 行驶方程式 (14)3.1.2 行驶功率方程式 (14)3.1.3 轮胎特性 (15)3.1.4考虑轮胎特性得车轮滚动方程 (16)3.1.5轮胎的侧偏特性 (16)3.2 转向行驶动力学模型 (17)3.2.1 车辆转向动力学方程 (18)3.2.2 轮胎侧偏角 (19)3.2.3 横摆角速度 (19)3.2.4 车轮转速 (20)3.2.5车轮的法向载荷 (20)3.3 控制策略 (21)3.4 本章小结 (22)4.1 仿真模型的建立 (23)4.1.1 建立整车行驶平衡模块及控制模块 (24)4.1.2 建立整车其他参数估算模块 (25)4.1.3 建立整车纵向动力学模型及轮胎模型 (25)4.2 仿真结果的输出 (27)基于MATLAB的电动汽车差速控制┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊┊4.3 本章小结 (28)结论与展望 (29)致谢 (30)参考文献 (31)附录1:外文翻译基于MATLAB的电动汽车差速控制┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊┊第一章绪论1.1 研究背景与研究意义20世纪各国的汽车工业在推动国民经济发展,造福于人类的同时,也给全球环境带来了灾害性的影响。
电力电子电路仿真-MATLAB和PSpice应用

Discontinuities、Discrete、Look-up Tables、Math Operations、Model Verification、Model-Wide Utilities 、 Ports&Subsystems、Signal Attributes、Signal Routing、Sinks、Sources和Use-Defined functions等模 块组。在电力电子专业中常用的模块组有Continuous、 Math operations、Signal Routing、Sinks、sources、 Discontinuities等。
5.1 MATLAB的计算基础
5.1.7 MATLAB 常用的函数 MATLAB的函数极为丰富,一些常用的数学函数如表5-6
见书
5.2 MATLAB程序设计基础 5.3 MATLAB的绘图功能
5.2 MATLAB程序设计基础 5.2.1 表达式、表达式语句和赋值语句 5.2.2 流程控制语句 5.2.3 MATLAB常用的其他命令
(5)Sinks模块组
(6)Sources模块组
5.4 SIMULINK 环境和模型库
2. SimPower System(电力系统)工具箱
主要有电源(Electrical sources)、元件(Elements)、电力电子( Power Electronics)、电机系统(Machines)、测量(Measurements)附 加(Extras)等模块组。
的情况,会给出一定的出错提示信息,但是这提示不一定 准确,这是软件还不够完备的地方。
5.4 SIMULINK 环境和模型库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A Matlab Simulator for Electric Drive Vehicle toGrid ImplementationYuchao Ma, Andrew Cruden, Member IET, David Infield, Senior Member IEEEDepartment of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UKyuchao.ma@Abstract- Vehicle to grid (V2G) describes a system in which power can be fed back to the electrical power grid from an electric drive vehicle (EDV) when connected to the grid and notin use. Alternatively, when the vehicle batteries need to becharged, the flow can be reversed and electricity can be drawn from the electrical power grid to charge the battery.Taking into account the specific features of the EDV battery energy storage system, a MATLAB simulator has been developed by the authors to model the scenarios of V2G deployment within a daily power dispatch schedule. Different characteristics of EDV battery energy storage system and testscenarios can be set up by the user. The power networks modeled in the simulator are standard IEEE-30, -57 and -118 bus systems. The simulator provides a tool to investigate the effects of V2G implementation across a wide scope of the economic and technical issues, with respect to the physical power grid operation.Index Terms —Electric Drive Vehicle, Vehicle to Grid, Stateof Charge.I.I NTRODUCTIONElectric drive vehicles (EDV) are traditionally viewed by the electricity utilities simply as a load that needs to be recharged for transportation use. Vehicle to grid (V2G) [1-2]is a concept whereby the electric energy stored in the EDVbattery can be fed back to the power grid when the vehiclesare not in use. Such bidirectional flow characterizes the EDV as a responsive load, even as a generation resource, that canbe called on when required during a day. As an energy storage bank, V2G technology makes it possible to store the excess energy during low-level-demand time periods andsubsequently to release this stored energy during high-level-demand time periods.Initially, a conceptual doubt for V2G technology was associated with the belief that the availability of the vehiclespower would be low because they would be on road. However, over tens of thousands of light vehicles are in usealmost one hour per day. The high availability of the futureEDVs to be a responsive load or even a source of generation is comparable to the base load fossil-fueled power plants [2]. V2G implementation could provide a significant revenue stream to grid-connected EDVs and further encourage their adoptions. So far, the economic analysis of V2G technology applied to the current electricity markets has been widely studied and reported in open literature. In [3] the equations to calculate the capacity for grid power from three types of EDVs are proposed to evaluate revenue and costs for these vehicles to supply electricity to electric markets. In [4] the strategies and business models are proposed as theoretic support on implementation of V2G to stabilize large-scale wind power production. The economic potential of utility-owned fleets of EDVs to provide power for US electricityregulation markets is studied in [5]. The cost analysis ofEDVs providing peak power in Japan is investigated in [6]. In addition, the assessment of V2G technology applied to the UK electricity market is studied in [7].To investigate the effects of V2G deployment on EDVs and the power grid, a Matlab simulator has been developed to model the energy flows between the EDVs and the power grid for a daily power dispatch schedule. The simulator enables the user to model different test scenarios of V2G implementation by specifying the parameters of the EDV battery energy storage system and the characteristics of the power grid. II. B RIEF INTRODUCTION OF ELECTRIC BATTERY CHARACTERISTICS Battery modeling techniques has been widely studied inopen literature [8, 9]. Given a constant discharge current, i d ,the battery usage status can be described by the state of charge (SoC), s , which is expressed as s ( t ) = 1 − ( ∫0 →t i d dt )/C a (i d ) = 1 − i d t /C a (i d ) . (1)Where i d is the discharge current in Amperes and C a (i d ) is the available battery capacity in Ampere-hour (Ah).According to the Peukert equation [10], the available capacity of the battery, C a (i d ), is expressed as C a ( i d ) = i d * C p / ( i d ) k . (2) Where C p is the Peukert capacity of the battery in Ah; k is the Peukert exponent ranging between 1.1~ 1.3. Both C p and k are fixed parameters with respect to a given EDV battery.The Peukert capacity is computed as C p = T *( C N/ T ) k . (3)Where C N is the nominal capacity and T is the rated discharge time in hours; C N /T is the nominal discharging current in Ampere.Equations (1) ~ (3) are used to update the SoC value of the battery discharged or charged at a current of i d after a specified time interval.Another characteristic of the EDV battery is that its open circuit voltage is a dynamic variable. Fig 1 shows the voltage vs. capacity curve of a NiMH battery rated at 240V, 100Ah@5hours, given the discharge current of 2C/5 (40A). In Fig. 1, the available capacity of the battery (87.055Ah) and the delivered capacities when the SoC value is 0.8 and 0.4(17.4110 Ah and 52.233Ah, respectively) are indicated.978-1-4244-5697-0/10/$25.00 ©2010 IEEE 1097Counting from the time point at which the SoC value is 0.8, the delivered capacity is 20Ah (37.412Ah-17.411Ah) after half an hour discharge.Fig. 1 Voltage vs. capacity of battery rated at 240 V, 100Ah@ 5hours, discharge current at 2C/5.In providing V2G service, the SoC value of the battery iscontrolled to remain in the range between s min and s max. The specification of the s min and s max values depends on the using profile of the EDVs. G enerally the s min is set at some values that can provide enough energy for transportation to the nextdestination. Such consideration is based on the fact that only‘excess’ capacity (SoC value lager than s min ) of the EDVbattery is used to provide the V2G service.With respect to the different battery types, a lookup table ofvoltage vs. capacity at different discharge/charge currents anddifferent rated capacities and rated voltages has been built inthis V2G simulator. A partial view of such table is shown intable 1. The first column is named as Category for thereference of the rated voltage and capacity. For example,240100 means the rated voltage and capacity are 240volts and100 Ah, respectively. Voltage values at differentdischarge/charge currents (from 0.1C to 2C, column 3 and 4)and different capacities are included from the fifth column.TABLE I. P ARTIAL VIEW OF THE L OOKUP TABLE OF THE BATTERY VOLTAGE VS .CAPACITYCategory Battery TypeDischarge/Charge Current Capacity (Ah) 0 1.04895 2.0979…(p.u.) (Amp.) Voltage (volt) 240100 Lead Acid 0.1 2 259.38 246.11 246.05…… … … … … … … …240100 Lead Acid 2 40257.1 243.83 243.78…240100 Li-Ion 0.12 279.48 278.340 277.24…… … … … … … … …The database is used to do interpolation to obtain the voltage corresponding to the updated SoC value at the beginning of the current time interval t , s t −_, based on the selected discharge current i d . G iven the value of s t −_, the released capacity till t −, C t − can be obtained by equation (1). The interpolation is then conducted to obtain the voltage value, V t −, based on the value of C t − . With the voltage V t − and the discharge current of i d , the generated power from the EDV is obtained. The value of the SoC at the end of the current time interval, s t +, is updated by the s t − and the value of i d . Fig.2 shows the flowchart of the derivation of the battery power generated during current time interval t .In deriving the generated electric vehicle power (EVP),EVP t , the voltage value at the beginning of time interval, V t − ,is assumed to be constant over that specific time interval. Infact, the voltage of the battery is a dynamic variable as shownin Fig 1. The error created from assuming a constant voltageduring a given time interval, such as half an hour forproviding power to the grid, is negligible. In Fig.1, countingthe start time at which the SoC value is 0.8, the voltagedecreases from 252.2 V to 248.8 V after half an hourdischarge at the 2C/5 rate (40A). The less the dischargecurrent, the less variation of the voltage during a half an hourtime interval. Since the 2C/5 discharge current is set as theupper limit of the developed V2G simulator, the constantvoltage assumption during a half an hour time interval canprovide a fine approximation.In formulating the load flow by taking into account V2G implementation, the dispatchable power from EDVs, via DC-AC power converters, is grouped into an aggregate power injection at the bus to which it is connected. However, such amount power is constrained by the EDV battery state ofcharge. The power flow model isP n , t (v 1, v 2 ,…, v n ,…, v N ) + ∑b EVP b ,n ,t (i b ) *K b = 0 ∀n , t (4) Q n ,t ( v 1,v 2 ,…, v n ,…, v N ) = 0∀n , t (5)Subject tos min ≤ s b , t − + ( t + − t − )*i b /C b (i b ) ≤ s max ∀ b , t (6)Where n , b and t are the indices for power gird bus, individual EDV and time interval, respectively. For instance, EVP b ,n ,t (i b) denotes the battery power from EDV b connectedat bus n during time interval t , given the discharge/charge current of i b ; t +and t − are the beginning and end time point ofthe time interval t ; s b ,t −is the SoC value of EDV b at timepoint t − ; P b ,t (⋅) and Q b ,t(⋅) are real and reactive power balanceat bus n during the current time interval t ; v 1, …, v Nare thevoltage phasor values at each bus; K bis a constant to factor inthe energy loss in converting the DC power output of EDV into the AC power to be injected into the power grid or viceversa; the subscripts of d , denoting the discharge current as i dAmpere-hour (Ah)V o l t a g e (v o l t s )1098in section II, is replaced by the subscript index of b to denote the discharge or charge current of EDV b .III. M ATLAB V2G SIMULATORThe simulator has been developed through the MATLAB and the main interface is shown in Fig.3. The simulator is composed of five parts. Three panels named as EDV configuration , Power system configuration and EDV location & Control signal are placed on the left hand side for data and parameter input. Two areas on the right hand side are used to show the Tabulated results , and Graphic results .Fig. 3. Main interface of the MATLAB V2G simulator.A. EDV configurationThis panel, as shown in Fig.4, is used to trigger the configuration dialog for the EDV banks. Each EDV bank is a group of individual EDVs. The configured data of each bank is applied to all the individual EDVs belonging to that bank. Currently, at most ten banks can be defined according to the value of selection popmenu labeled as How many EDV banks?at the top of the panel.Fig.4. EDV bank configuration panel.The configuration dialog for the EDV bank is shown in the Fig.5. The number of the individual EDVs in this bank is set by the top edit control component named as Enter the EDV number of this bank . Then, the user specifies the battery type, the nominal voltage, the rated capacity and the Peukert exponent values to configure the EDV battery characteristics. Two check control components specify how the initial state of charge of each EDV is defined. The user can choose one of them to set the initial value of the state of charge at thebeginning of the first time interval. The discharge/chargecurrent rate, in p.u. of rated value, is categorised into three levels as Low level , Medium level and High level . To choose which level of the discharge/charge current depends on thestate of charge at the beginning of the current time interval, according to the flowchart shown in Fig.2. In addition, to account for the power loss in converting DC power into AC power injected to the grid, the user can define the value of the Converter efficiency factor used in equation (4) as K b .Fig. 5. EDV characteristics setting dialog.B. Power system configurationIn this panel, Fig.6, the user can choose the power grid simulated for the V2G technology to be implemented. The parameters of the IEEE-30, -39, -57 and -118 test system used in MatPower[11] are available in the simulator or user can manually input real network parameters if available. The demand profile is copied from the Jan. 2009 UK demand data [12] and is effectively scaled by the maximum quantity of the day. The fixed load demand and generator supply at each bus are then shared proportionally over a day, using the scaleddaily demand.Fig.6. Power system configuration panel.Four radio check buttons are listed on the right side of the panel in Fig.6. Each button corresponds to a special simulation scenario where new variables are introduced to study the effects of the V2G implementation. For instance, an economic analysis of the V2G service can be investigated by introducing the spot prices of the electricity of the day whilefirming the wind power integration using the V2G service can1099be studied by enabling the wind power penetration of the day .The other two radio buttons allow the user to introduce two kinds of grid operation constraints, being network overload congestion and reactive power output limits of the traditional generators. Those constraints allow the user to investigate the V2G effects on a more realistic power system basis and to study the possible positive effects of V2G services on mitigating those constraints.C. EDV location & Control signalThis panel is composed of two parts. The grid connection of the EDV banks is on the left hand side whilst the control signal setting is on the right hand side, as shown in Fig.7. The rows of this panel, corresponding to each EDV bank, are enabled for user setting by inputting the number of the EDVbanks, shown in Fig.4.Fig. 7. EDV location & Control signal setting panel.In the column named as Bus in Fig.7, the user can assign which bus the EDV bank is connected to. In addition, user needs to specify the Control signal which calls on the EDV banks at different demand level time intervals that are: peak; valley; non-peak-non-valley load intervals. Four options, discharge , charge , bidirectional and disconnected , are listed in each of the popupmenu of the control signal setting. The bidirectional option means the EDV bank can take both the discharge and charge role randomly while the disconnected option disables the EDV bank from the grid.A reasonable setting strategy for the control signal profile is to let the EDV banks take the discharge role during peak load time intervals and the charge role during valley load timeintervals. Such control signals are designed with the purposeto attempt to level the load. Other strategies for setting the control signal can be devised to achieve specific economic or technical goals, such as to maximize the economic returns by introducing the spot prices of electricity during the day or to minimize the grid network energy flow loss by optimally discharging or charging the EDVs in appropriate time intervals, which are called jointly with one of the four radio buttons listed in Fig.6. D. Results outputThe right part of the simulator shown in Fig. 3 is used forthe results output purpose. The Tabulated results aredisplayed by a Spreadsheet control component. The user canselect which half an hour interval to show the results in theLoad flow results sheet , including the power system operationvariable values and the EDV deployment status, as shown inFig.8. In addition, the user can export the results to an Excelfile by clicking the button labeled as Export to…at the topright hand side of the tabulated results area, Fig. 3.Graphic results are controlled by two buttons labeled as To plot the power systems results and To plot the EDV variables , which navigate the user to two dialogs, as shown in Fig.9, and Fig.12, respectively. In both dialogs, the user can specify the results of interest during specified time intervals that are to be plotted.Fig.8. Partial view of the EDV deployment status, from 07:00-07:30 of a low demand time interval (charging).Fig.9. EDV variables plot configuration dialog.Fig.10. shows the graphics of the SoC and the dispatched power of all the EDVs of EDV bank1 over one day, whilst Fig. 11 shows the information for a specific EDV. From the half hour interval index 33 to 37 (peak load time intervals) the control signal sets the EDV to discharge whilst from time interval 14 to 18 (valley load time intervals) it is to be charged. At other times, the EDVs are disconnected from the grid. Thenegative values of power, Fig. 10 and Fig.11, indicate thebattery discharges whilst the SoC value decrease; whilstpositive values of the power means charging with the SoCvalues increasing. The SoC values of all the EDVs areconstrained in the range between 0.4 and 0.8, s min and s max inequation (6).By clicking the check box labelled as demand quantityduring one day in Fig.12, Fig. 13 shows the peak load shavingeffect from the total contribution of EDV battery energystorage systems. As expected, the peak load demand ispartially offset by the discharging power from the EDVs1100while the valley load demand is increased due to the charging power absorbed by the EDVs from the power grid. By clicking the check box of real and reactive power flow loss and picking the branches of interest, the user can observe the real and reactive power flow losses of the selected branches during one day. In addition, graphic of the bus voltage profiles can be plotted by clicking the check box of Bus voltage magnitude and angle in Fig.12.Fig.10. SoC (upper) and dispatched power (lower) during one day,EDVbank1 (discharge/charge current: 0.5 C-1C-1.5C) connected at bus 3,IEEE30 bus power grid.Fig.11. SoC (upper) and dispatched power (lower) during one day, EDV25 ofbank5 (discharge/charge current: 0.3C-0.9C-1.3C) connected bus 15, IEEE30bus power grid.Fig.12. Power system variables plot configuration dialog.Fig.13. Peak load shaving effect of the V2G implementation.IV.C ONCLUSIONElectric vehicles are expected to significantly increase in numbers over the next few years reflecting their potential environmental advantages. To charge and discharge the EDV battery is equivalent to deploying the EDV as a dispatchable load resource allowing bidirectional power flow between the EDV and the power system. A comprehensive MATLABsimulator has been developed by the authors for modelling a distributed EDV energy storage system implemented as V2G technology. The simulator underpins the ongoing research on economic and technical analysis of the V2G technology at the physical grid operation level.A CKNOWLEDGEMENTSThis work is supported by an E.On International Research Initiative Award 2007.R EFERENCES[1]Kempton W., Tomic J., Letendre S., Brooks A. and Lipman T., “Vehicle-to-Grid power: battery, hybrid, and fuel cell vehicles as resources for distributed electric power in California,” Working Paper Series with number UCD-ITS-RR-01-03, Jun., 2001.[2] Kempton W. and Letendre S., “Electric vehicles as a new source ofpower for electric utilities,” Transportation Research , vol. 2, no. 3, 1997, pp.157-175.[3] Kempton W. and Tomic J., “Vehicle to grid fundamentals: calculatingcapacity and net revenue,” Journal of Power Sources , vol. 144, no.1,Jun. 2005, pp.268-279.[4] Kempton W. and Tomic J., “Vehicle to grid implementation: fromstabilizing the grid to supporting large-scale renewable energy,” Journal of Power Sources , vol. 144, no.1, Jun. 2005, pp.280-294.[5] Tomic J. and Kempton W., “Using fleets of electric-drive vehicles forgrid support,” Journal of Power Sources , vol. 168, no. 2, Jun. 2007, pp. 459-468.[6] Kempton W. and Kubo Toru., “Electric-drive vehicles for peak powerin Japan,” Energy Policy , vol.28, no.1, Jan. 2000, pp. 9-18.[7] Zhong X., Cruden A., Infield D. and Holik P., “Assessment of vehicleto grid power as power system support,” Smart grid & Mobility Europe Conference , 16-17 Jun., 2009.[8] Kroeze, R.C.; Krein, P.T., “Electrical battery model for use in dynamicelectric vehicle simulations,” Power Electronics Specialists Conference , 15-19 Jun. 2008, pp.1336 – 1342[9] Somayajula, D.; Meintz, A.; Ferdowsi, M., “Study on the effects ofbattery capacity on the performance of hybrid electric vehicles,” Vehicle Power and Propulsion Conference , 3-5 Sept. 2008, pp.1 - 5 [10] Larminie J. and Lowry J., Electric vehicle technology explained , John Wiley & sons, 2003.[11] The MATPOWER, /matpower/ .[12] /NR/rdonlyres/8600C184-DFF3-4BB4-A6C8-71E87919E4A6/33735/Demand_Jan_to_Mar2009.xlsSoC Powe in kW Half an hour index SoC Powe in kWHalf an hour index Electricity demand (in p.u. of 100MVA )Half an hour index1101。