纳米药物载体构建哪家好
刺激响应型介孔二氧化硅基纳米药物递送系统的构建与性能研究

刺激响应型介孔二氧化硅基纳米药物递送系统的构建与性能研究摘要:随着纳米技术的发展,纳米药物递送系统作为一种新型的药物递送途径受到了广泛关注。
介孔二氧化硅(mesoporous silica,简称MS)作为一种稳定性良好、无毒副作用的纳米材料,被广泛应用于纳米药物递送系统的构建。
本文采用一种刺激响应型的介孔二氧化硅(responsive mesoporous silica,简称RMS)为载体构建纳米药物递送系统,并采用荧光探针和细胞实验等手段对其进行性能评价。
实验结果表明,所构建的RMS基纳米药物递送系统具有很好的药物包载能力和刺激响应性,并且在低毒副作用方面表现出了很好的应用前景。
关键词:介孔二氧化硅;纳米药物递送系统;刺激响应;药物包载能力;应用前景Abstract:With the development of nanotechnology, nanomedicine delivery system has attracted widespread attention asa new way of drug delivery. Mesoporous silica (MS) asa stable and non-toxic nanomaterial, has been widely used in the construction of nanomedicine delivery system. In this paper, a responsive mesoporous silica(RMS) as a carrier is used to construct a nanomedicine delivery system, and the performance is evaluated by fluorescent probe and cell experiments. The results showed that the RMS-based nanomedicine delivery system had good drug loading capacity and stimulus responsiveness, and exhibited good application prospects in low toxicity.Keywords: Mesoporous silica; nanomedicine delivery system; stimulus response; drug loading capacity; application prospect第一章绪论1.1 研究意义纳米药物递送系统作为一种新型的药物递送途径,具有在靶点处释放药物的优势,能够提高药物的治疗效果,降低药物的副作用,是目前药物研究领域的热点之一。
抗肿瘤药物靶向纳米载体的构建及应用研究

4、纳米粒子的制备
4、纳米粒子的制备
制备抗肿瘤药物靶向纳米载体的关键步骤是纳米粒子的制备。制备方法包括 物理法(如超声波法、喷雾干燥法等)和化学法(如乳化-交联法、沉淀法等)。 制备过程中需对工艺参数进行严格控制,以确保纳米粒子的粒径、形貌和稳定性。
二、抗肿瘤药物靶向纳米载体的 应用研究
二、抗肿瘤药物靶向纳米载体的应用研究
抗肿瘤药物靶向纳米载体的 构建及应用研究
目录
01 一、抗肿瘤药物靶向 纳米载体的构建
03 三、结论
02 二、抗肿瘤药物靶向 纳米载体的应用研究
04 参考内容
内容摘要
抗肿瘤药物靶向纳米载体是一种具有高度靶向性和高效性的新型药物传递系 统,能够将抗肿瘤药物精确地输送到肿瘤部位,从而提高药物的疗效并降低副作 用。本次演示将介绍抗肿瘤药物靶向纳米载体的构建方法及其在肿瘤治疗中的应 用研究。
二、纳米药物载体的制备方法
二、纳米药物载体的制备方法
纳米药物载体的制备方法主要包括乳化-溶剂挥发法、喷雾干燥法、超临界流 体技术等。这些方法各有特点,可根据不同的需要选择适合的方法。例如,乳化 -溶剂挥发法可用于制备脂质体,喷雾干燥法可用于制备纳米粒和纳米球,超临 界流体技术则可用于制备高分子量药物载体。
一、抗肿瘤药物靶向纳米载体的 构建
一、抗肿瘤药物靶向纳米载体的构建
抗肿瘤药物靶向纳米载体的构建主要涉及载体材料的选取、药物装载、靶向 分子的修饰以及纳米粒子的制备等步骤。
1、载体材料的选取
1、载体材料的选取
抗肿瘤药物靶向纳米载体的关键要素之一是选择合适的载体材料。载体材料 应具有良好的生物相容性、可降解性和可加工性,同时应具备一定的药物载体能 力。目前常用的载体材料包括天然高分子材料(如壳聚糖、透明质酸等)和合成 高分子材料(如聚乳酸、聚乙烯醇等)。
纳米药物载体技术在肿瘤治疗中的应用评价分析

纳米药物载体技术在肿瘤治疗中的应用评价分析随着科学技术的不断进步,纳米药物载体技术作为一种新型的药物传递系统,已经成为肿瘤治疗领域的热点研究方向。
纳米药物载体技术通过利用纳米尺度的载体将药物传递到靶向肿瘤细胞,旨在提高药物的疗效,减少副作用,并改善患者的生活质量。
本文将对纳米药物载体技术在肿瘤治疗中的应用进行评价分析。
一、纳米药物载体技术的原理与优势纳米药物载体技术通过制造纳米级的载体将药物封装在内部,以增加药物在体内的稳定性和溶解度,并实现药物的靶向输送。
纳米载体可以通过修饰表面结构,使其对肿瘤细胞具有特异性识别能力,从而提高药物在肿瘤组织中的积累和生物利用度。
此外,纳米药物载体技术还能够延长药物的血浆半衰期,增加药物在体内的停留时间,提高疗效。
二、纳米药物载体技术在肿瘤治疗中的应用1. 靶向治疗纳米药物载体技术可以通过修饰载体表面的配体或抗体,将药物精确地传递到肿瘤细胞表面,从而提高药物的特异性和疗效。
例如,一些纳米药物载体可以通过识别肿瘤细胞表面的特定受体进行定向输送,实现精准治疗。
这种靶向技术可以有效地减少对健康细胞的损伤,降低药物对全身的毒副作用。
2. 药物组合疗法纳米药物载体技术还可以实现多药物的组合输送,以增加治疗效果。
通过将不同的药物封装在纳米载体中,可以实现药物的协同作用,达到更好的治疗效果。
例如,一些研究团队将化疗药物与免疫治疗药物组合在一起,通过纳米药物载体技术实现二者的同时释放,从而提高免疫治疗的效果。
3. 药物耐药性纳米药物载体技术可以改善药物的药代动力学性质,降低肿瘤细胞对药物的耐药性。
纳米药物载体可以有效地将药物输送到肿瘤组织内,增加药物对肿瘤细胞的作用时间和作用浓度,从而提高对耐药性肿瘤的治疗效果。
三、纳米药物载体技术的挑战与发展趋势1. 体内稳定性纳米药物载体技术在体内应用面临着许多挑战,其中之一是稳定性问题。
纳米药物载体在体内容易受到蛋白质的吸附、免疫系统的清除,以及肝脏和脾脏的摄取等因素的影响。
纳米载体药物行业报告

纳米载体药物行业报告纳米载体药物是一种利用纳米技术制备的药物,通过将药物载入纳米载体中,可以提高药物的溶解度、稳定性和靶向性,从而提高药物的疗效和减少副作用。
纳米载体药物在肿瘤治疗、心血管疾病、神经系统疾病等领域具有广阔的应用前景。
本报告将对纳米载体药物行业的发展现状、市场规模、技术进展和未来趋势进行深入分析。
一、纳米载体药物行业发展现状。
纳米载体药物作为一种新型药物制剂,在近年来得到了迅速的发展。
目前,纳米载体药物已经在肿瘤治疗、心血管疾病、神经系统疾病等多个领域取得了一定的临床应用。
例如,通过纳米载体技术可以将抗肿瘤药物载入纳米粒子中,实现药物的靶向输送,提高药物在肿瘤组织中的积累,从而提高疗效并减少毒副作用。
二、纳米载体药物市场规模。
据市场研究机构统计,纳米载体药物市场规模在过去几年呈现出快速增长的趋势。
预计未来几年,随着纳米技术的不断成熟和应用领域的拓展,纳米载体药物市场规模将进一步扩大。
特别是在肿瘤治疗领域,纳米载体药物具有巨大的市场潜力,预计未来几年将成为纳米载体药物市场的主要增长驱动力。
三、纳米载体药物技术进展。
纳米载体药物的制备技术是纳米技术领域的重要研究方向之一。
目前,纳米载体药物的制备技术已经取得了一系列重要的进展,包括纳米粒子的制备技术、药物的载体选择和表面修饰技术等。
这些技术的进展为纳米载体药物的研发和临床应用提供了重要的支持,也为纳米载体药物行业的发展奠定了坚实的技术基础。
四、纳米载体药物未来趋势。
纳米载体药物作为一种新型药物制剂,具有明显的优势和潜力。
未来,随着纳米技术的不断发展和纳米载体药物技术的不断完善,纳米载体药物将在肿瘤治疗、心血管疾病、神经系统疾病等领域得到更广泛的应用。
同时,随着纳米载体药物市场规模的不断扩大,纳米载体药物行业也将迎来更多的投资和合作机会,未来的发展前景十分看好。
综上所述,纳米载体药物作为一种新型药物制剂,具有广阔的应用前景和市场潜力。
随着纳米技术的不断成熟和应用领域的拓展,纳米载体药物行业将迎来更多的发展机遇,未来的发展前景十分看好。
多西他赛纳米脂质载体的研究

多西他赛纳米脂质载体的研究一、概要多西他赛(Docetaxel)是一种常用的抗肿瘤药物,主要用于治疗多种类型的恶性肿瘤。
然而由于多西他赛在体内主要通过肝脏进行代谢,其血药浓度较低,导致其治疗效果受到限制。
因此研究一种有效的纳米脂质载体系统以提高多西他赛的生物利用度和疗效具有重要意义。
近年来纳米脂质载体技术在药物输送领域取得了显著进展,为解决多西他赛等药物的低生物利用度问题提供了新的途径。
本研究旨在构建一种高效的多西他赛纳米脂质载体,并对其进行体外和动物实验验证其对多西他赛的增溶、包载和稳定性的影响。
通过优化载体结构和表面修饰,实现多西他赛在体内的高分布和靶向性释放,从而提高多西他赛的疗效和降低毒副作用。
1.研究背景和意义多西他赛是一种常用的抗肿瘤药物,其在治疗多种恶性肿瘤方面具有显著的疗效。
然而由于多西他赛的药代动力学特性和组织分布的不均匀性,导致其在体内的生物利用度较低,限制了其在临床治疗中的应用。
因此开发一种高效的多西他赛给药途径具有重要的研究意义。
纳米脂质载体作为一种新型的药物递送系统,具有高度的选择性和靶向性,能够在体内有效传递药物,提高药物的生物利用度。
近年来纳米脂质载体在药物递送领域的研究取得了显著的进展,为解决多西他赛等抗癌药物的给药难题提供了新的思路。
本研究旨在探讨多西他赛纳米脂质载体的制备方法、性质及其在肿瘤细胞中的表达和作用机制,为优化多西他赛的给药途径提供理论依据和实验基础。
通过构建高效、低毒性的多西他赛纳米脂质载体,实现多西他赛在肿瘤细胞内的高浓度富集,从而提高其在肿瘤治疗中的疗效。
同时研究多西他赛纳米脂质载体的生物相容性和稳定性,为其在临床应用中提供保障。
2.多西他赛的作用及副作用多西他赛是一种抗肿瘤药物,主要用于治疗乳腺癌、卵巢癌、非小细胞肺癌等多种恶性肿瘤。
其作用机制主要是通过抑制微管蛋白的解聚,从而阻止肿瘤细胞的有丝分裂,达到抑制肿瘤生长和扩散的目的。
多西他赛在临床应用中取得了显著的疗效,但同时也伴随着一定的副作用。
多功能介孔二氧化硅纳米药物-疫苗的构建及其抗肿瘤研究

多功能介孔二氧化硅纳米药物-疫苗的构建及其抗肿瘤研究摘要:近年来,纳米材料受到越来越广泛的关注,其在药物/疫苗传递、肿瘤治疗等方面具有巨大的潜力。
介孔二氧化硅(mesoporous silica nanoparticles,MSN)由于其特殊的孔径、表面官能团和良好的生物相容性,是一种理想的纳米载体。
本文将介绍利用MSN构建多功能药物/疫苗载体,在特定环境下实现药物/疫苗的高效传递和肿瘤治疗。
在抗肿瘤研究方面,有许多优秀的成果,并取得了显著的治疗效果。
最后,本文将对将来研究的发展方向进行展望。
关键词:介孔二氧化硅;纳米药物/疫苗;多功能载体;抗肿瘤中文摘要:全文内容:1. 前言纳米技术近年来急剧发展,成为研究的热点之一。
相比较于传统的治疗手段,纳米技术有着巨大的优势。
首先,纳米粒子大小同细胞、细胞器的尺寸相当,能更加准确地穿过生物组织到达目标区域,从而提高治疗效果和减少不良反应。
其次,通过纳米粒子的表面修饰,可以实现药物和疫苗的精准传递和控制释放,从而使药物和疫苗能够更好地发挥作用。
近年来,人们发现,用介孔二氧化硅(mesoporous silica nanoparticles, MSN)作为药物/疫苗载体有着很高的生物相容性、高药物载量等优点。
此外,MSN还具有比较稳定的结构、可调控的孔径和表面官能团等独特的特性,使其在药物传递和疫苗敏化等方面有着良好的应用前景。
本文主要介绍了利用MSN构建多功能药物/疫苗载体,在特定环境下实现药物和疫苗的高效传递和肿瘤治疗,并在抗肿瘤研究方面取得的显著的治疗效果。
2. MSN的构建MSN是孔径在2~50 nm之间的多孔介孔硅材料,由于其孔径大小、结构稳定性和表面官能团等特点,使得其成为理想的纳米载体。
在利用MSN作为药物/疫苗载体时,可以通过表面修饰来实现靶向传递、控制释放等功能。
2.1 MSN的合成方法合成MSN的方法主要有两种:一种是通过溶胶凝胶法,将硅源、模板和表面修饰剂混合后,在0-100℃、基础、硬化剂等辅助条件下使其成为具有规则孔道的介孔体。
药用高分子材料——纳米药物载体技术
纳米药物载体技术用纳米粒子作为药物载体可实现靶向输送、缓释给药的目的, 这是由于小粒子可以进入很多大粒子难以进入的人体器官组织, 如小于50nm 的粒子就能穿过肝脏内皮或通过淋巴传送到脾和骨髓, 也可能到达肿瘤组织。
另外纳米粒子能越过许多生物屏障到达病灶部位, 如透过血脑屏障( BBB) 把药物送到脑部, 通过口服给药可使药物在淋巴结中富集等。
具有生物活性的大分子药物( 如多肽、蛋白类药物) 很难越过生物屏障, 用纳米粒子作为载体可克服这一困难, 并提高其在体内输送过程中的稳定性。
用纳米粒子实现基因非病毒转染, 是输送基因药物的有效途径。
药物既可以通过物理包埋也可以通过化学键合的方式结合到聚合物纳米粒子中。
载有药物的聚合物纳米粒子通常以胶体分散体的形式通过口服、经皮、皮下及肌肉注射、动脉注射、静脉点滴和体腔黏膜吸附等给药方式进入人体。
制备聚合物纳米粒子的方法主要有以下几种: ( 1) 单体聚合形成聚合物纳米粒子; ( 2) 聚合物后分散形成纳米粒子; ( 3) 结构规整的两亲性聚合物在水介质中自组装形成纳米粒子。
1 单体聚合制备的聚合物纳米粒子聚氰基丙烯酸烷基酯( PACA) 在人体内极易生物降解, 且对许多组织具有生物相容性。
制备聚氰基丙烯酸烷基酯纳米粒子采用的是阴离子引发的乳液聚合方法, 通常以OH-为引发剂, 反应一般在酸性水介质中进行, 常用的乳化剂有葡聚糖、乙二醇与丙二醇的嵌段共聚物和聚山梨酸酯等, 具体制备过程见图1。
当反应介质pH 值偏高时, OH-浓度大, 反应速度快, 形成的PACA 分子量低, 以此作为给药载体材料进入人体后, 降解速度太快, 不利于药物缓释。
因此聚合反应介质的pH 值通常控制在1.0~ 3.5 范围内。
图1 聚氰基丙烯酸烷基酯纳米粒子的制备过程PACA 纳米粒子载药的方式有两种: 一是药物与单体一起加入, 药物在聚合反应过程中被包埋在粒子内; 二是聚合反应完成后, 药物通过吸附进入粒子内部。
纳米药物的载体选择与制备技巧
纳米药物的载体选择与制备技巧纳米药物是指通过合适的载体将药物封装成纳米级粒子,以改善其溶解度、稳定性和靶向性,从而提高药物的疗效和减少副作用。
选择合适的纳米载体和使用适当的制备技巧对于纳米药物的成功应用至关重要。
本文将介绍纳米药物的载体选择和制备技巧。
在纳米药物的载体选择方面,应根据药物的特性和治疗需求来选择合适的载体。
常见的纳米载体包括脂质体、聚合物纳米粒子、金属纳米粒子等。
脂质体是一种常用的纳米载体,由磷脂和胆固醇等组成的双层膜结构。
其制备简单,具有较好的生物相容性和稳定性。
此外,脂质体还可以根据需要进行表面修饰,以实现靶向给药。
然而,脂质体在长期储存和药物释放方面仍存在一些挑战。
聚合物纳米粒子是另一种常见的纳米载体,由聚合物材料制备而成。
聚合物纳米粒子可以通过改变聚合物的结构和附着药物的方法来实现对药物的控制释放。
此外,聚合物纳米粒子还可以在内部或表面引入靶向分子,以提高纳米药物的靶向性。
金属纳米粒子是纳米载体中的一类特殊载体,其具备良好的光学、电学、热学性质。
金属纳米粒子可以用于药物的传统载体外,还可以用于光热疗法、生物成像、核医学等领域。
但是,金属纳米粒子对于正常细胞的毒性以及其自身的稳定性仍需进一步研究。
在纳米药物的制备技巧方面,一般分为物理方法和化学方法两种。
物理方法制备纳米药物的载体主要包括乳化法、溶剂沉淀法等。
乳化法是一种常见的制备脂质体的方法,通过给药物流体添加表面活性剂和乳化剂,使药物快速乳化成纳米粒子。
溶剂沉淀法则是通过有机溶剂将药物溶解,然后将有机溶液加入大量非溶剂中,从而形成纳米粒子。
化学方法中的共沉淀法和胶体沉积法可用于制备金属纳米粒子。
共沉淀法是将可溶性金属盐溶解在溶液中,加入还原剂或沉淀剂,使金属离子还原成金属纳米粒子。
胶体沉积法是将金属离子逐渐还原成金属纳米颗粒,并通过胶体保护剂稳定纳米颗粒。
同时,电化学沉积法和热分解法也常用于制备金属纳米粒子。
除了物理方法和化学方法,还有一种常见的制备纳米药物的方法是通过生物合成。
纳米药物载体介绍
纳米药物载体介绍纳米药物载体是一种能够将药物有效地输送到靶点并释放药物的粒子或结构。
它主要由纳米材料构成,具有较小的尺寸、高的表面积和容积比以及可调控的结构和性质。
纳米药物载体的独特特性使其能够克服传统药物输送系统的种种限制,为药物治疗提供了新的可能性。
纳米药物载体的种类很多,包括纳米颗粒、纳米胶体、纳米胶束、纳米乳液、纳米脂质体、纳米微粒等。
其中,纳米颗粒是最常见的一种类型,由于其较小的尺寸(通常在1到1000纳米之间),能够透过生物组织,实现药物在体内的输送。
此外,纳米颗粒还具有高度可调控的结构和性质,可以针对不同的药物和治疗需求进行设计和优化。
纳米药物载体的制备方法多种多样,包括溶剂挥发法、油-水乳化法、超声乳化法、胶束溶剂蒸发法等。
其中,溶剂挥发法是一种常见的制备方法,其基本原理是将药物和材料在溶剂中混合,通过挥发掉溶剂,使药物和材料得以结合形成纳米颗粒。
这种方法具有简单、快速、易于操作的特点,在实际应用中得到了广泛的采用。
纳米药物载体的优势主要体现在三个方面。
首先,纳米药物载体能够提高药物的溶解度和稳定性。
由于纳米颗粒具有高的表面积和容积比,能够提供更多的药物与生物组织接触,从而加速药物的溶解和释放速度。
其次,纳米药物载体能够提高药物的组织选择性。
纳米颗粒具有较小的尺寸,能够透过血管壁进入组织,实现药物的靶向输送。
通过改变纳米颗粒的表面性质和药物的包装方式,还可以实现对药物靶向输送的进一步控制。
最后,纳米药物载体能够提高药物的生物利用度和降低副作用。
纳米颗粒能够延长药物在体内的循环时间,降低药物在体内的分解和排泄速度,从而增加药物的生物利用度。
此外,药物包裹在纳米颗粒内,能够减少药物与生物组织的接触,降低药物对正常细胞的损伤。
纳米药物载体在药物治疗中具有广阔的应用前景。
目前已有多种纳米药物载体系统进入临床试验,并取得了一定的成果。
例如,纳米脂质体载体系统已经应用于抗癌药物的输送,取得了显著的抗肿瘤效果。
纳米纤维素作为药物载体的研究进展
《中国造纸》2021年第40卷第2期·纳米纤维素作药物载体·纳米纤维素作为药物载体的研究进展陈甜甜何星桦蒋天艳刘鹏涛*刘忠(天津科技大学天津市制浆造纸重点实验室,天津,300457)摘要:药物载体(Drug Delivery )通常由高分子纳米材料构成,可以控制药物释放速率,实现药物靶向运输功能。
纳米纤维素具有良好的生物相容性、低毒性和可降解性等优良性能,可作为一种理想的新型药物载体材料。
本文总结了近几年纤维素纳米晶体、纤维素纳米纤丝、细菌纤维素等作为药物载体的研究进展,并对其与药物分子的结合方式做了简单的介绍。
关键词:纳米纤维素;药物载体;纤维素纳米晶体;纤维素纳米纤丝;细菌纤维素中图分类号:TS72文献标识码:ADOI :10.11980/j.issn.0254-508X.2021.02.010Research Progress in the Application of Nanocellulose as Drug DeliveryCHEN Tiantian HE Xinghua JIANG Tianyan LIU Pengtao *LIU Zhong(Tianjin Key Lab of Pulp and Paper ,Tianjin University of Science and Technology ,Tianjin ,300457)(*E -mail :pengtaoliu@ )Abstract :Drug delivery is a kind of substance usually composed of polymer nanomaterials ,which can change the release rate of drug and re‐alize the drug targeted transport function.Nanocellulose has good biocompatibility ,low toxicity and degradability ,and can be used as an ideal new drug delivery material.In this paper ,the research progress in the application of cellulose nanocrystal ,cellulose nanofibril ,andbacterial nanocellulose etc.as drug delivery was summarized ,and the combination modes of nanocellulose and drug molecules were briefly introduced.Key words :nanocellulose ;drug delivery ;cellulose nanocrystal ;cellulose nanofibril ;bacterial nanocellulose近年来,天然聚合物如海藻酸盐、壳聚糖、胶原蛋白、淀粉、纤维素等在生物医学方面中的应用受到了研究人员的广泛关注,发现其在生物医药领域可以实现包括药物输送、伤口敷料以及组织工程支架等多种功能[1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米药物载体构建哪家好
纳米药物载体构建哪家好?这是大家想了解的问题。
纳米级药物载体是一种属于纳米级微观范畴的亚微粒药物载体输送系统。
可以将药物包封于亚微粒中,可以调节释药的速度,增加生物膜的透过性、改变在体内的分布、提高生物利用度等。
先丰纳米推出的纳米药物载体构建服务可以很好满足客户的需求。
下面就简单的介绍纳米药物载体构建。
客户可以选择上述载体递送药物,从而实现药物递送研究。
这些纳米药物载体可以借助肿瘤EPR(增强的渗透于滞留)效应实现肿瘤靶向给药,同时还可以在表面修饰靶向配体而实现主动靶向递送,还可以结合成像单元构建具有靶向诊疗一体化功能的纳米药物。
基于高分子材料的纳米药物载体构建,如:脂质体载药,聚合物胶束载药,聚合物(蛋白)纳米粒载药,磁性脂质纳米颗粒载药,纳米颗粒(球形颗粒、金纳米棒、金纳米笼)载药,纳米石墨烯载药等。
脂质体、聚合物胶束与聚合物纳米粒载药体系
案例:磁性脂质纳米颗粒药物递送
如果想要了解给更多关于纳米药物载体构建的内容,欢迎立即咨询先丰纳米公司。
先丰纳米是江苏先进纳米材料制造商和技术服务商,专注于石墨烯、类石墨烯、碳纳
米管、分子筛、黑磷、银纳米线等发展方向,现拥有石墨烯粉体、石墨烯浆料和石墨烯膜
完整生产线。
自2009年成立以来一直在科研和工业两个方面为客户提供完善服务。
科研客户超过
一万家,工业客户超过两百家。
南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现
专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及
技术提供商。
2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米
材料制造和技术服务中心。
现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。
欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看。