江西九年级数学第二十一章一元二次方程21.2解一元二次方程21.2.1配方法第2课时作业课件

合集下载

第二十一章21.2.1配方法

第二十一章21.2.1配方法

=x2+x+ 1 = 3 ,则x2+x- 1 =0,则p=1,q=- 1 ,则pq=- 1 .
44
2
2
2
栏目索引
21.2.1 配方法
栏目索引
1.(2018河北衡水安平期末)在解方程2x2+4x+1=0时,对方程进行配方,图 21-2-1-1①是a小思做的,图21-2-1-1②是小博做的,对于两人的做法,说法正 确的是 ( )
21.2.1 配方法
栏目索引
初中数学(人教版)
九年级 上册
第二十一章 二元一次方程
21.2.1 配方法
栏目索引
21.2.1 配方法
解析 (1)原方程可化为x2=27,
栏目索引
∴x=±3 3 ,
∴x1=3 3 ,x2=-3 3 . (2)原方程可化为(3x+1)2=8,∴3x+1=±2 2 ,
∴x= 1 2 2 , 3
4 3
2
=1
+
4 3
2

,即
x

4 3
2

= 25 .由此可得x+ 4 =± 5 ,解得x1=-3,x2= 1 .
9
33
3
(3)移项,得2x2-x=-2.二次项系数化为1,得x2- 12 x=-1.配方,得x2- 12 x+

1 4
2
=
-1+
21.2.1 配方法
栏目索引
一、选择题 1.(2019天津宁河期中,5,★☆☆)若一元二次方程x2=m有解,则m的取值 为 ( ) A.正数 B.非负数 C.一切实数 D.零
答案 B 当m≥0时,一元二次方程x2=m有解.故选B.

赣州市七中九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.1用配方法解一元二次方

赣州市七中九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.1用配方法解一元二次方

《21.2.1 用配方法解一元二次方程》一.选择题1.用配方法解方程x2﹣6x﹣7=0,下列配方正确的是()A.(x﹣3)2=16 B.(x+3)2=16 C.(x﹣3)2=7 D.(x﹣3)2=22.用配方法解方程x2﹣4x﹣3=0,下列配方结果正确的是()A.(x﹣4)2=19 B.(x+4)2=19 C.(x+2)2=7 D.(x﹣2)2=73.把方程x2﹣8x+3=0化成(x+m)2=n的形式,则m,n的值是()A.4,13 B.﹣4,19 C.﹣4,13 D.4,194.用配方法解方程x2+x=2,应把方程的两边同时()A.加B.加C.减D.减5.已知a2﹣2a+1=0,则a2010等于()A.1 B.﹣1 C. D.﹣6.一元二次方程2x2+3x+1=0用配方法解方程,配方结果是()A.B. C. D.7.将方程3x2+6x﹣1=0配方,变形正确的是()A.(3x+1)2﹣1=0 B.(3x+1)2﹣2=0 C.3(x+1)2﹣4=0 D.3(x+1)2﹣1=0 8.已知方程x2﹣6x+q=0可以配方成(x﹣p)2=7的形式,那么x2﹣6x+q=2可以配方成下列的()A.(x﹣p)2=5 B.(x﹣p)2=9 C.(x﹣p+2)2=9 D.(x﹣p+2)2=5二.填空题9.一元二次方程x2﹣2x+1=0的根为______.10.用配方法解方程x2﹣4x﹣1=0配方后得到方程______.11.将方程x2﹣4x﹣1=0化为(x﹣m)2=n的形式,其中m,n是常数,则m+n=______.12.如果一个三角形的三边均满足方程x2﹣10x+25=0,则此三角形的面积是______.13.已知点(5﹣k2,2k+3)在第四象限内,且在其角平分线上,则k=______.14.方程(x﹣1)(x﹣3)=1的两个根是______.15.当x=______时,代数式的值是0.16.方程4x2﹣4x+1=0的解x1=x2=______.17.解方程:9x2﹣6x+1=0,解:9x2﹣6x+1=0,所以(3x﹣1)2=0,即3x﹣1=0,解得x1=x2=______.18.用配方法解一元二次方程2x2+3x+1=0,变形为(x+h)2=k,则h=______,k=______.三.解答题19.用配方法解方程(1)x2﹣6x﹣15=0(2)3x2﹣2x﹣6=0(3)x2=3﹣2x(4)(x+3)(x﹣1)=12.20.证明:不论x为何实数,多项式2x4﹣4x2﹣1的值总大于x4﹣2x2﹣3的值.21.分别按照下列条件,求x的值:分式的值为零.22.观察下列方程及其解的特征:(1)x+=2的解为x1=x2=1;(2)x+=的解为x1=2,x2=;(3)x+=的解为x1=3,x2=;…解答下列问题:(1)请猜想:方程x+=的解为______;(2)请猜想:关于x的方程x+=______的解为x1=a,x2=(a≠0);(3)下面以解方程x+=为例,验证(1)中猜想结论的正确性.解:原方程可化为5x2﹣26x=﹣5.(下面请大家用配方法写出解此方程的详细过程)《21.2.1 用配方法解一元二次方程》参考答案与试题解析一.选择题1.用配方法解方程x2﹣6x﹣7=0,下列配方正确的是()A.(x﹣3)2=16 B.(x+3)2=16 C.(x﹣3)2=7 D.(x﹣3)2=2 【解答】解:由原方程移项,得x2﹣6x=7,等式两边同时加上一次项系数一半的平方32,得x2﹣6x+32=7+32,∴(x﹣3)2=16;故选A.2.用配方法解方程x2﹣4x﹣3=0,下列配方结果正确的是()A.(x﹣4)2=19 B.(x+4)2=19 C.(x+2)2=7 D.(x﹣2)2=7 【解答】解:由原方程,得x2﹣4x=3,在等式的两边同时加上一次项系数﹣4的一半的平方,得x2﹣4x+4=3+4,即x2﹣4x+4=7,配方,得(x﹣2)2=7;故选D.3.把方程x2﹣8x+3=0化成(x+m)2=n的形式,则m,n的值是()A.4,13 B.﹣4,19 C.﹣4,13 D.4,19【解答】解:∵x2﹣8x+3=0∴x2﹣8x=﹣3∴x2﹣8x+16=﹣3+16∴(x﹣4)2=13∴m=﹣4,n=13故选C.4.用配方法解方程x2+x=2,应把方程的两边同时()A.加B.加C.减D.减【解答】解:∵x2+x=2∴x2+x+=2+故选:A.5.已知a2﹣2a+1=0,则a2010等于()A.1 B.﹣1 C. D.﹣【解答】解:由原方程,得(a﹣1)2=0,∴a﹣1=0,即a=1;∴a2010=12010=1.故选A.6.一元二次方程2x2+3x+1=0用配方法解方程,配方结果是()A.B. C. D.【解答】解:∵2x2+3x+1=0∴2x2+3x=﹣12(x2+x)=﹣12(x2+x+)=﹣1+∴2(x+)2=即2(x+)2﹣=0故选B.7.将方程3x2+6x﹣1=0配方,变形正确的是()A.(3x+1)2﹣1=0 B.(3x+1)2﹣2=0 C.3(x+1)2﹣4=0 D.3(x+1)2﹣1=0 【解答】解:∵3x2+6x﹣1=0∴3(x2+2x)﹣1=0∴3(x2+2x+1﹣1)﹣1=0∴3(x2+2x+1)﹣3﹣1=0∴3(x+1)2﹣4=0故选C.8.已知方程x2﹣6x+q=0可以配方成(x﹣p)2=7的形式,那么x2﹣6x+q=2可以配方成下列的()A.(x﹣p)2=5 B.(x﹣p)2=9 C.(x﹣p+2)2=9 D.(x﹣p+2)2=5【解答】解:∵x2﹣6x+q=0∴x2﹣6x=﹣q∴x2﹣6x+9=﹣q+9∴(x﹣3)2=9﹣q据题意得p=3,9﹣q=7∴p=3,q=2∴x2﹣6x+q=2是x2﹣6x+2=2∴x2﹣6x=0∴x2﹣6x+9=9∴(x﹣3)2=9即(x﹣p)2=9故选:B.二.填空题9.一元二次方程x2﹣2x+1=0的根为x1=x2=1 .【解答】解:∵x2﹣2x+1=0∴(x﹣1)2=0∴x1=x2=1.10.用配方法解方程x2﹣4x﹣1=0配方后得到方程(x﹣2)2=5 .【解答】解:把方程x2﹣4x﹣1=0的常数项移到等号的右边,得到x2﹣4x=1方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=1+4配方得(x﹣2)2=5.11.将方程x2﹣4x﹣1=0化为(x﹣m)2=n的形式,其中m,n是常数,则m+n= 7 .【解答】解:x2﹣4x﹣1=0,移项得:x2﹣4x=1,配方得:x2﹣4x+4=1+4,(x﹣2)2=5,∴m=2,n=5,∴m+n=5+2=7,故答案为:7.12.如果一个三角形的三边均满足方程x2﹣10x+25=0,则此三角形的面积是.【解答】解:由方程x2﹣10x+25=0,得该方程有两个相等的实数根,即5.则此三角形的三边都是5.则该三角形的面积为S=×5×5×sin60°=×5×5×=.13.已知点(5﹣k2,2k+3)在第四象限内,且在其角平分线上,则k= ﹣2 .【解答】解:∵点(5﹣k2,2k+3)在第四象限内,∴,解得﹣<x<﹣;又∵点(5﹣k2,2k+3)在第四象限的角平分线上,∴5﹣k2=﹣2k﹣3,即k2﹣2k﹣8=0,∴k1=4(不合题意,舍去),k2=﹣2.故答案是:﹣2.14.方程(x﹣1)(x﹣3)=1的两个根是x1=2+,x2=2﹣.【解答】解:由原方程,得x2﹣4x+2=0,移项,得x2﹣4x=﹣2,等式的两边同时加上一次项系数一半的平方,得x2﹣4x+4=﹣2+4,配方,得(x﹣2)2=2,∴x=2±,∴x1=2+,x2=2﹣;故答案是:∴x1=2+,x2=2﹣.15.当x= ﹣1 时,代数式的值是0.【解答】解:由分式的值为零的条件得(x+2)2﹣1=0,x+3≠0,由(x+2)2﹣1=0,得(x+2)2=1,∴x=﹣1或x=﹣3,由x+3≠0,得x≠﹣3.综上,得x=﹣1.故空中填:﹣1.16.方程4x2﹣4x+1=0的解x1=x2= .【解答】解:∵4x2﹣4x+1=0∴(2x﹣1)2=0∴x1=x2=.17.解方程:9x2﹣6x+1=0,解:9x2﹣6x+1=0,所以(3x﹣1)2=0,即3x﹣1=0,解得x1=x2= .【解答】解:据题意得x1=x2=.18.用配方法解一元二次方程2x2+3x+1=0,变形为(x+h)2=k,则h= ,k= .【解答】解:原方程可以化为:,移项,得x2+x=﹣,等式的两边同时加上一次项系数一半的平方,得x2+x+=﹣+,配方,得(x+)2=比较对应系数,有:;故答案是:、.三.解答题19.用配方法解方程(1)x2﹣6x﹣15=0(2)3x2﹣2x﹣6=0(3)x2=3﹣2x(4)(x+3)(x﹣1)=12.【解答】解:(1)移项得:x2﹣6x=15,配方得:x2﹣6x+9=15+9,(x﹣3)2=24,开方得:x﹣3=±,x1=3+2,x2=3﹣2;(2)移先得:3x2﹣2x=6,x2﹣x=2,配方得:x2﹣x+()2=2+()2,(x﹣)2=,开方得:x﹣=±,,;(3)x2+2x=3,配方得:x2+2x+1=3+1(x+1)2=4,开方得:x=﹣1±2,x1=1,x2=﹣3;(4)整理得:x2+2x=15,配方得:x2+2x+1=15+1,(x+1)2=16,开方得:x=﹣1±4,x1=3,x2=﹣5.20.证明:不论x为何实数,多项式2x4﹣4x2﹣1的值总大于x4﹣2x2﹣3的值.【解答】解:2x4﹣4x2﹣1﹣(x4﹣2x2﹣3)=x4﹣2x2+2=(x2﹣1)2+1∵(x2﹣1)2≥0,∴(x2﹣1)2+1>0,∴不论x为何实数,多项式2x4﹣4x2﹣1的值总大于x4﹣2x2﹣3的值.21.分别按照下列条件,求x的值:分式的值为零.【解答】解:根据题意得,x2﹣5x﹣6=0,即(x+1)(x﹣6)=0,∴x+1=0,x﹣6=0,解得x=﹣1或x=6,又x+1≠0,解得x≠﹣1,∴x的值是6.22.观察下列方程及其解的特征:(1)x+=2的解为x1=x2=1;(2)x+=的解为x1=2,x2=;(3)x+=的解为x1=3,x2=;…解答下列问题:(1)请猜想:方程x+=的解为x1=5,;(2)请猜想:关于x的方程x+= (或)的解为x1=a,x2=(a≠0);(3)下面以解方程x+=为例,验证(1)中猜想结论的正确性.解:原方程可化为5x2﹣26x=﹣5.(下面请大家用配方法写出解此方程的详细过程)【解答】解:(1)x1=5,;(2)(或);(3)方程二次项系数化为1,得.配方得,,即,开方得,,解得x1=5,.经检验,x1=5,都是原方程的解.第二十三章旋转(基础过关)考试时间:120分钟一、选择题(每小题3分,共36分)1.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是A.B.C.D.【答案】C【解析】A、是轴对称图形,不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,也是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.将如图所示的图形按逆时针方向旋转90º后得到图形是()A. B. C. D.【答案】A【分析】根据旋转的定义,观察图形即可解答.【解析】根据旋转的定义,图片按逆时针方向旋转90°,箭头竖直向下,从而可确定为A图.故选A.【点睛】本题主要考查了旋转的性质,熟知性质是解题的关键.3.如图,将△ABC绕点A顺时针旋转60°得到△AED,若AB=4,AC=3,BC=2,则BE的长为()A. 5B. 4C. 3D. 2【答案】B【分析】根据将△ABC 绕点A 顺时针旋转 60°得到△AED 可得△ABE 是等边三角形,根据等边三角形的性质即可得.【解析】∵将△ABC 绕点A 顺时针旋转 60°得到△AED ,∴AE=AB ,∠BAE=60°,∴△ABE 是等边三角形,∴BE=AB=4,故选B.【点睛】本题考查了旋转的性质、等边三角形的判定与性质,得出△ABE 是等边三角形是解题的关键.4.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A. 68°B. 20°C. 28°D. 22°【答案】D 【解析】∵四边形ABCD 为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故选D .【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线的夹角等于旋转角.5.如图,以点A 为中心,把ABC ∆逆时针旋转120︒,得到△AB C ''(点B 、C 的对应点分别为点B ′、)C ',连接BB ',若//AC BB '',则CAB '∠的度数为( )A .45︒B .60︒C .70︒D .90︒【答案】D 【分析】先根据旋转的性质得到∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质易得∠AB′B=30°,再根据平行线的性质由AC′∥BB′得∠C′AB′=∠AB′B=30°,然后利用∠CAB′=∠CAC′-∠C′AB′进行计算. 【解析】以点A 为中心,把ABC ∆逆时针旋转120︒,得到△'AB C ',''120BAB CAC ∴∠=∠=︒,'AB AB =,()1'180120302AB B ∴∠=︒-︒=︒, '//'AC BB ,'''30C AB AB B ∴∠=∠=︒, ''''1203090CAB CAC C AB ∴∠=∠-∠=︒-︒=︒.故选D .【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线的夹角等于旋转角.也考查了等腰三角形的性质,三角形内角和定理以及平行线的性质.6.如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,∠AOB =∠B =30°,OA =2,将△AOB 绕点O 逆时针旋转90°,点B 的对应点B '的坐标是( )A .(﹣1,2+)B .(﹣,3)C .(﹣,2+)D .(﹣3,)【解析】如图,作B ′H ⊥y 轴于H .由题意:OA ′=A ′B ′=2,∠B ′A ′H =60°,∴∠A ′B ′H =30°,∴AH ′=A ′B ′=1,B ′H =,∴OH =3,∴B′(﹣,3),故选:B.【考点】本题考查了旋转的性质与坐标系的结合.7、如图,和都是等腰直角三角形,,四边形是平行四边形,下列结论中错误的是()A.以点为旋转中心,逆时针方向旋转后与重合B.以点为旋转中心,顺时针方向旋转后与重合C.沿所在直线折叠后,与重合D.沿所在直线折叠后,与重合【答案】B【分析】本题通过观察全等三角形,找旋转中心,旋转角,逐一判断.【解析】A.根据题意可知AE=AB,AC=AD,∠EAC=∠BAD=135°,△EAC≌△BAD,旋转角∠EAB=90°,正确;B.因为平行四边形是中心对称图形,要想使△ACB和△DAC重合,△ACB应该以对角线的交点为旋转中心,顺时针旋转180°,即可与△DAC重合,错误;C.根据题意可知∠EAC=135°,∠EAD=360°﹣∠EAC﹣∠CAD=135°,AE=AE,AC=AD,△EAC≌△EAD,正确;D.根据题意可知∠BAD=135°,∠EAD=360°﹣∠BAD﹣∠BAE=135°,AE=AB,AD=AD,△EAD≌△BAD,正确.故选B.点睛:本题主要考查平行四边形的对称性:平行四边形是中心对称图形,对称中心是两对角线的交点.8.如图,等边三角形ABC内有一点P,分別连结AP、BP、CP,若AP=6,BP=8,CP=10.则S△ABP+S△BPC=().A.20+16 B.24+12 C.20+12 D.24+16【解析】如图,将△BPC绕点B逆时针旋转60°后得△AP'B,连接PP′,根据旋转的性质可知,旋转角∠PBP′=∠CAB=60°,BP=BP′,∴△BPP′为等边三角形,∴BP′=BP=8=PP';由旋转的性质可知,AP′=PC=10,在△BPP′中,PP′=8,AP=6,由勾股定理的逆定理得,△APP′是直角三角形,∴S△ABP+S△BPC=S四边形AP'BP=S△BP'B+S△AP'P=BP2+×PP'×AP=24+16故答案为:24+16【考点】本题考查了旋转的性质及勾股定理和面积求法.9.点P是正方形ABCD边AB上一点(不与A,B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于( )A.75°B.60°C.45°D.30°【答案】C【解析】过点E作EF⊥AF,交AB的延长线于点F,则∠F=90°,∵四边形ABCD为正方形,∴AD=AB,∠A=∠ABC=90°,∴∠ADP+∠APD=90°,由旋转可得:PD=PE,∠DPE=90°,∴∠APD+∠EPF=90°,∴∠ADP=∠EPF,在△APD和△FEP中,∠ADP=∠FPE,∠A=∠F=90°,PD=EP,∴△APD≌△FEP(AAS),∴AP=EF,AD=PF,又∵AD=AB,∴PF=AB,即AP+PB=PB+BF,∴AP=BF,∴BF =EF ,又∠F =91°,∴△BEF 为等腰直角三角形,∴∠EBF =45°,又∠CBF =91°,则∠CBE =45°.故选C .【考点】正方形的性质,全等三角形,旋转问题.10.如图,点O 是等边三角形ABC 内的一点,BOC=150∠︒,将BCO ∆绕点C 按顺时针旋转60︒得到ACD ∆,则下列结论不正确的是( )A .BO=ADB .DOC=60∠︒C .OD AD ⊥ D .OD//AB【答案】D【分析】根据旋转的性质逐一判断即可.【解析】∵将△BCO 绕点C 按顺时针旋转60°得到△ACD ,∴BO=AD ,故A 正确,∵OC 与CD 是对应边,C 为旋转中心,∴∠DOC 等于旋转角,即∠DOC=60°,故B 正确, ∵OC=CD ,∠DOC=60°,∴△OCD 是等边三角形,∴∠ODC=60°,∵∠BOC 与∠ADC 是对应角,∴∠ADC=150°,∴∠ODA=150°-60°=90°,即OD ⊥AD ,故C 正确,∵∠ADC=150°,∴∠DA C<30°,∴∠BAD<90°,∴∠ODA+∠BAD≠180°,∴OD 与AB 不平行,故D 错误,故选D.【点睛】本题考查了旋转的性质,旋转前后的两个图形全等,对应边、对应角分别相等,对应点与旋转中心的连线的夹角等于旋转角,准确找出对应边和对应角是解题关键.11.如图,边长为a 的正方形ABCD 绕点A 逆时针旋转30°得到正方形A ′B ′C ′D ′,图中阴影部分的面积为( )A .212aB .233aC .23(1)4a -D .23(1)3a -【答案】D【分析】设B ′C ′与CD 交于点E .由于阴影部分的面积=S 正方形ABCD -S 四边形AB ′ED ,又S 正方形ABCD =2a , 所以关键是求S 四边形AB ′ED .为此,连接AE .根据HL 易证△AB ′E ≌△ADE ,得出∠B ′AE =∠DAE =30°.在直角△ADE 中,由正切的定义得出DE =AD •tan ∠DAE =3a . 再利用三角形的面积公式求出S 四边形AB ′ED =2S △ADE .【解析】如图,设B ′C ′与CD 交于点E ,连接AE . 在△AB ′E 与△ADE 中, AB E= ADE=90 AE=AE AB =AD '⎧∠∠⎪⎨⎪'⎩,∴△AB ′E ≌△ADE (HL ),∴∠B ′AE =∠DAE .∵∠BAB ′=30°,∠BAD =90°,∴∠B ′AE =∠DAE =30°,∴DE =AD •tan ∠DAE = 3a .∴S 四边形AB ′ED =2S △ADE =2×12×a ×3a = 3a 2. ∴阴影部分的面积=S 正方形ABCD -S 四边形AB ′ED =23(1)a -.故选:D .【考点】正方形的性质;旋转的性质;解直角三角形.【点评】本题主要考查了正方形、旋转的性质,直角三角形的判定及性质,图形的面积以及三角函数等知识,综合性较强,有一定难度.12.如图,在等腰直角三角形ABC中,∠BAC=90°,一个三角尺的直角顶点与BC边的中点O重合,且两条直角边分别经过点A和点B,将三角尺绕点O按顺时针方向旋转任意一个锐角,当三角尺的两直角边与AB,AC分别交于点E,F时,下列结论中错误的是()A.AE+AF=AC B.∠BEO+∠OFC=180°C.OE+OF=BC D.S四边形AEOF=S△ABC【解析】连接AO,如图所示.∵△ABC为等腰直角三角形,点O为BC的中点,∴OA=OC,∠AOC=90°,∠BAO=∠ACO=45°.∵∠EOA+∠AOF=∠EOF=90°,∠AOF+∠FOC=∠AOC=90°,∴∠EOA=∠FOC.在△EOA和△FOC中,,∴△EOA≌△FOC(ASA),∴EA=FC,∴AE+AF=AF+FC=AC,选项A正确;∵∠B+∠BEO+∠EOB=∠FOC+∠C+∠OFC=180°,∠B+∠C=90°,∠EOB+∠FOC=180°﹣∠EOF =90°,∴∠BEO+∠OFC=180°,选项B正确;∵△EOA≌△FOC,∴S△EOA=S△FOC,∴S四边形AEOF=S△EOA+S△AOF=S△FOC+S△AOF=S△AOC=S△ABC,选项D正确.故选:C.二、填空题(每小题3分,共18分)13.如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A 逆时针旋转β(0°<β<90°)得到AF,连接EF.若AB=3,AC=2,且α+β=∠B,则EF=__________.【答案】13【解析】由旋转的性质可得AE=AB=3,AC=AF=2,∵∠B+∠BAC=90°,且α+β=∠B,∴∠BAC+α+β=90°,∴∠EAF=90°,∴EF=22=13,AE AF故答案为:13.【点睛】本题考查了旋转的性质,勾股定理,灵活运用旋转的性质是本题的关键.14.如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE 交AC于点F,则CF的长为__________cm.【答案】10–6【解析】如图,过点A作AG⊥DE于点G,由旋转知:AD=AE,∠DAE=90°,∠CAE=∠BAD=15°,∴∠AED=∠ADG=45°,在△AEF 中,∠AFD =∠AED +∠CAE =60°,在Rt △ADG 中,AG =DG =2AD=32, 在Rt △AFG 中,GF =3AG=6,AF =2FG =26,∴CF =AC –AF =10–26,故答案为:10–26.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,解直角三角形等,解题的关键是能够通过作适当的辅助线构造特殊的直角三角形,通过解直角三角形来解决问题. 15.如图,△ABC 、△BDE 都是等腰直角三角形,BA =BC ,BD =BE ,AC =4,DE =2.将△BDE 绕点B 逆时针方向旋转后得△BD ′E ′,当点E ′恰好落在线段AD ′上时,则CE ′= .【解析】如图,连接CE ′,∵△ABC 、△BDE 都是等腰直角三角形,BA =BC ,BD =BE ,AC =4,DE =2,∴AB =BC =2,BD =BE =2,∵将△BDE 绕点B 逆时针方向旋转后得△BD ′E ′,∴D ′B =BE ′=BD =2,∠D ′BE ′=90′,∠D ′BD =∠ABE ′,∴∠ABD ′=∠CBE ′,∴△ABD ′≌△CBE ′(SAS ),∴∠D ′=∠CE ′B =45°, 过B 作BH ⊥CE ′于H ,在Rt △BHE ′中,BH =E ′H =BE ′=,在Rt △BCH 中,CH ==,∴CE ′=+,故答案为:.16.如图,在△ABC 中,AB =AC =4,将△ABC 绕点A 顺时针旋转30°,得到△ACD ,延长AD 交BC 的延长线于点E ,则DE 的长为__________.【答案】23–2【解析】根据旋转过程可知:∠CAD =30°=∠CAB ,AC =AD =4. ∴∠BCA =∠ACD =∠ADC =75°.∴∠ECD =180°–2×75°=30°. ∴∠E =75°–30°=45°.过点C 作CH ⊥AE 于H 点,在Rt △ACH 中,CH =12AC =2,AH =23. ∴HD =AD –AH =4–23.在Rt △CHE 中,∵∠E =45°,∴EH =CH =2. ∴DE =EH –HD =2–(4–23)=23–2.故答案为32.【点睛】本题主要考查了旋转的性质以及特殊直角三角形的性质,解题的关键是作垂线构造直角三角形,利用线段的和差求解即可.17.已知在△ABC 中,8AB AC ==,30BAC ∠=︒.将△ABC 绕点A 旋转,使点B 落在原△ABC 的点C 处,此时点C 落在点D 处.延长线段AD ,交原△ABC 的边BC 的延长线于点E ,那么线段DE 的长等于 . 【答案】434-.【解析】如答图,过点C 作CH AE ⊥于点H ,∵将△ABC 绕点A 旋转,点C 落在点D 处,8AB AC ==,30BAC ∠=︒, ∴8AD AC ==,30CAD BAC ∠=∠=︒. ∴在Rt ACH ∆中,4,43CH AH == .又∵EC 是BC 的延长线,AB AC =,30BAC ∠=︒, ∴18027530DCE ∠=︒-⨯︒=︒.∴753045E ADC DCE ∠=∠-∠=︒-︒=︒. ∴CEH ∆是等腰直角三角形.∴4EH CH ==. ∴443AE AH EH =+=+.∴4438434DE AE AD =-=+-=-.【考点】面动旋转问题;等腰三角形的性质;等腰直角三角形的判定和性质;含30度角直角三角形的性质;三角形内角和外角性质.18.如图,在菱形ABCD 中,2AB =,60BAD ︒∠=,将菱形ABCD 绕点A 逆时针方向旋转,对应得到菱形AEFG ,点E 在AC 上,EF 与CD 交于点P ,则DP 的长是________.【答案】31-【分析】本题考查菱形的性质以及旋转图形特点,可通过做辅助线结合特殊角度构建特殊直角三角形,利用图形性质求解边长以解答本题. 【解析】连接BD 并交AC 于H 点,如下图所示 ∵菱形ABCD ,AB=2,∠BAD=60°∴∠DCA=12BAD ∠=30°,∠ABC=120°,BD AC ⊥ ∴3CH =,23AC =又因为菱形AEFG 由菱形ABCD 旋转得来∴AE=AB=2,∠AEF=∠ABC=120°,∴∠CEF=180°-120°=60°,故∠EPC=90° ∵CE=AC-AE=232- ,∴CP=33- 故DP=DC-CP=2(33)31--=-【点睛】题目考查菱形知识点时,对角线互相垂直考查次数极多,涉及图形旋转时,需要立刻推出边等以及角等. 三、解答题(共46分)19.(6分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB 的三个顶点O (0,0)、A (4,1)、B (4,4)均在格点上. (1)画出△OAB 关于y 轴对称的△OA 1B 1,并写出点A 1的坐标;(2)画出△OAB 绕原点O 顺时针旋转90°后得到的△OA 2B 2,并写出点A 2的坐标; (3)在(2)的条件下,求线段OA 在旋转过程中扫过的面积(结果保留π).【解析】(1)如下图所示,点A 1的坐标是(–4,1); (2)如下图所示,点A 2的坐标是(1,–4); (3)∵点A (4,1),∴OA =221417+=,∴线段OA 在旋转过程中扫过的面积是:290(17)⨯π⨯=174π.【点睛】本题考查简单作图、扇形面积的计算、轴对称、旋转变换,解答本题的关键是明确题意,利用数形结合的思想解答.20.(8分)在58⨯的网格中建立如图的平面直角坐标系,四边形OABC 的顶点坐标分别为(0,0)O ,(3,4)A ,(8,4)B ,(5,0)C .仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB 绕点C 逆时针旋转90︒,画出对应线段CD ;(2)在线段AB 上画点E ,使45BCE ︒∠=(保留画图过程的痕迹); (3)连接AC ,画点E 关于直线AC 的对称点F ,并简要说明画法.【分析】(1)根据题意,将线段CD 是将线段CB 绕点C 逆时针旋转90︒即可;(2)将线段DC 绕点D 逆时针旋转90︒,得到线段'DC ,将线段BC 绕点B 顺时针旋转90︒,得到线段'BC ,则四边形'C BCD 是正方形,连接'C C ,DB ,'C C 交AB 于点E ,则E 点为所求; (3)将线段AC 绕点A 逆时针旋转90︒,得到线段AG ,过E 点作线段//EH AG 交AO 于F ,交AC 于'O ,则F 为所求.【解析】(1)如图示,线段CD 是将线段CB 绕点C 逆时针旋转90︒得到的;(2)将线段DC 绕点D 逆时针旋转90︒,得到线段'DC , 将线段BC 绕点B 顺时针旋转90︒,得到线段'BC ,则四边形'C BCD 是正方形,连接'C C ,DB ,'C C 交AB 于点E ,则E 点为所求, 理由如下:∵四边形'C BCD 是正方形,∴'C C DB ,'45C CB ,则有45ECB ∠=,∴E 点为所求;(3)将线段AC 绕点A 逆时针旋转90︒,得到线段AG ,过E 点作线段//EH AG 交AO 于F ,交AC 于'O ,则F 为所求; 理由如下:∵将线段AC 绕点A 逆时针旋转90︒,得到线段AG ,∴90GAC∵//EH AG ,∴''90AO FAO E,∵四边形OABC 的顶点坐标分别为(0,0)O ,(3,4)A ,(8,4)B ,(5,0)C , ∴四边形OABC 是平行四边形,根据AC 是平行四边形OABC 的对角线,∴''FAO EAO∴''FAO EAO ()ASA ∴''FO EO ,∴AC 垂直平分EF∴F 是点E 关于直线AC 的对称点,【点睛】本题考查了作图-旋转变换,正方形的性质,全等三角形的性质和轴对称的性质,熟悉相关性质是解题的关键.21.(8分)在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.【解析】(1)如图1,∵△ABC绕点A顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA=12(180°–30°)=75°,∴∠ADE=90°–75°=15°;(2)如图2,∵点F是边AC中点,∴BF=12 AC,∵∠ACB=30°,∴AB=12AC,∴BF=AB,∵△ABC绕点A顺时针旋转60得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行四边形的判定.22.(8分)如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE、GC.(1)试猜想AE与GC的数量关系与位置关系;(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.【答案】(1)AE=GC,AE GC;(2)成立,见解析【分析】(1)由于四边形ABCD、DEFG都是正方形,易证得△ADE≌△CDG,则∠1=∠2,AE=CG,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AE⊥GC.(2)题(1)的结论仍然成立,参照(1)题的解题方法,可证△ADE≌△CDG,得∠5=∠4,AE=CG,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由图知∠AEB=∠CEH=90°-∠6,即∠7+∠CEH=90°,由此得证.【解析】(1)答:AE=GC,AE⊥GC;证明:如图1中,延长GC交AE于点H.在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG,∴∠1=∠2,AE=GC,∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°-(∠1+∠3)=180°-90°=90°,∴AE⊥GC.故答案为:AE=GC,AE⊥GC;(2)答:成立;证明:如图2中,延长AE和GC相交于点H.在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°-∠3;∴△ADE≌△CDG,∴∠5=∠4,AE=CG,又∵∠5+∠6=90°,∠4+∠7=180°-∠DCE=180°-90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.【点睛】本题主要考查了旋转的性质、正方形的性质以及全等三角形的判定和性质.需要注意的是:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.23.(8分)如图,在平面直角坐标系xOy 中,点A 的坐标为A(1,0),等腰直角三角形ABC 的边AB 在x 轴的正半轴上,∠ABC =90°,点B 在点A 的右侧,点C 在第一象限.将△ABC 绕点A 逆时针旋转a ,(1)若a =75°,如果点C 的对应点E 恰好落在y 轴的正半轴上,求AB 的长; (2)若旋转a °后,有DE ∥AC ,且点B 的对应点D 也恰好落在y 轴的正半轴上,求DC 的长.【答案】(1)2;(2)6DC =【分析】(1)依据旋转的性质,即可得到∠OAE =60°,再根据OA =1,∠EOA =90°,∠OAE =60°,即可得出AE =2,AC =2.最后在Rt △ABC 中,可得到2AB BC ∴==.(2)当//DE AC 时, 18045135α︒︒︒=-=,画出图形,根据等腰直角三角形的特点求得C 、D 两点的坐标,再根据勾股定理求得DC 的长度 【解析】(1)依题意得:45,75BAC CAE ︒︒∠=∠=,,60AC AE OAE ︒=∠=,1,90OA EOA ︒=∠=,60OAE ︒∠=,2AE ∴=,2AC ∴=,2AB BC ∴==.(2)当//DE AC 时, 18045135α︒︒︒=-=,且点B 的对应点D 也恰好落在y 轴的正半轴上时,OA=OD=1,AB=CB=2,∴D (0,1),C (1+2,2), ∴()()2212216DC =++-=.【点睛】本题主要考查了坐标与图形变化,勾股定理,等腰直角三角形的性质的综合运用,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.24.(8分)如图1是一款“雷达式”懒人椅.当懒人椅完全展开时,其侧面示意图如图2所示,金属杆AB 、CD 在点O 处连接,且分别与金属杆EF 在点B ,D 处连接.金属杆CD 的OD 部分可以伸缩(即OD 的长度可变).已知OA =50cm ,OB =20cm ,OC =30cm .DE =BF =5cm .当把懒人椅完全叠合时,金属杆AB ,CD ,EF 重合在一条直线上(如图3所示),此时点E 和点A 重合.(1)如图2,已知∠BOD =6∠ODB ,∠OBF =140°.①求∠AOC 的度数.②求点A ,C 之间的距离. (2)如图3,当懒人椅完全叠合时,求CF 与CD 的长. 【答案】(1)①120°,②70cm ;(2)70cm【分析】(1)①先根据外角定理得到∠OBF =∠BOD+∠ODB ,根据已知条件关于∠ODB 和∠OBF 等量关系6∠ODB+∠ODB =∠OBF ,代入数值即可求得结果.②作垂线,由(1)可得∠AOC =120°,进而求得∠OAG =90°﹣60°=30°,根据30°所对直角边是斜边的一半得到OG =12OA =25,根据勾股定理求出AG 、CG ,再根据AC 22CG AG -即可求出结果.(2)观察图形可得到CF =OC ﹣OB ﹣BF ,CD =OC+OA ﹣DE ,代入数值可得结果. 【解析】(1)①∵∠OBF =∠BOD+∠ODB ,∠BOD =6∠ODB ,∴6∠ODB+∠ODB =∠OBF ,∴7∠ODB =140°,∴∠ODB =20°,∴∠BOD =6×20°=120°, ∵∠AOC =∠BOD ,∴∠AOC =120°;②连接AC ,过点A 作AG ⊥CE 于G ,如图2所示:∵∠AOC =120°,∴∠AOG =180°﹣120°=60°, ∵AG ⊥CE ,∴∠OGA =90°, ∴∠OAG =90°﹣60°=30°,∴OG =12OA =12×50=25(cm ), 由勾股定理得:AG 22OA OG -225025-253cm ),∵CG =OC+OG =30+25=55(cm ),∴AC 22CG AG-()2255253-=70(cm ),∴点A ,C 之间的距离为70cm ;(2)CF=OC﹣OB﹣BF=30﹣20﹣5=5(cm),CD=OC+OA﹣DE=30+50﹣5=75(cm).【点睛】本题主要是考查了对图形求解题的综合应用,结合勾股定理、补角余角的定理进行考查。

九年级数学目录江西

九年级数学目录江西

九年级数学目录江西第二十一章一元二次方程:21.1一元二次方程21.2解一元二次方程阅读与思考黄金分割数21.3实际问题与一元二次方程数学活动小结复习题21第二十二章二次函数:22. 1二次函数的图象和性质22.2二次函数与一元二次方程信息技术应用探索干净函数的性质22.3实际问题与二次函数阅读与思考推测滑行距离与滑行时间的关系数学活动小结复习题22第二十三章旋转:23.1图形的旋转23.2中心对称信息技术应用探索旋转的性质23.3课题学习图案设计阅读与思考旋转对称数学活动小结复习题23第二十四章圆:24.1圆的有关性质24.2点和圆、直线和圆的位置关系实验与探究圆和圆的位置关系24.3正多边形和圆阅读与思考圆周率兀24.4弧长和扇形面积实验与探究设计跑道数学活动小结复习题24第二十五章概率初步:25.1随机事件与概率.25. 2用列举法求概率阅读与思考概率与中奖25. 3用频率估计概率实验与探究π的估计数学活动小结复习题25第二十六章反比例函数:26.1反比例函数信息技术应用探索反比例函数的性质26. 2实际问题与反比例函数阅读与思考生活中的反比例关系数学活动小结复习题26第二十七章相似:27.1图形的相似27.2相似三角形观察与猜想奇妙的分形图形27.3位似信息技术应用探索位似的性质数学活动小结复习题27第二十八章锐角三角函数:28.1锐角三角函数阅读与思考一张古老的“三角函数表”28.2解直角三角形及其应用阅读与思考山坡的高度数学活动小结复习题28第二十九章投影与视图:29.1投影29.2三视图阅读与思考视图的产生与应用29.3课题学习制作立体模型数学活动小结复习题29。

九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.1配方法(第一课时直接开平方法)课件人教版

九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.1配方法(第一课时直接开平方法)课件人教版

∴ x3 5 或 x3- 5 .
∴ x1= 5-3 ,x2 = - 5-3 .
解一元二次方程的基本思路是:
把一个一元二次方程“ 降次 ”,转化 为两个一元一次方程.
由应用直接开平方法解形如:
x2=p(p≥0),那么x=± p
由应用直接开平方法解形如:
(mx+n)2=p(p≥0),则mx+n=____p_ .
问题:一桶油漆可刷的面积为1500 dm2 , 李林用这桶油漆恰好刷完10个同样的正方体 形状的盒子的全部外表面,你能算出盒子的 棱长吗?
提示
可以根据正方体表面积 S=6a2求解. 同时要注意 所得的结果要符合实际
意义.
解:设正方体的棱长为x dm,则一个正方 体的表面积为__6_x_2_dm2 .根据一桶油漆可 刷面积列出方程 1_0_×_6_x_2_=_1_5_0_0____.
解下列方程:
(1)9x2 5 3;
解:移项,得 9x2 8.
系数化为1,得 x2 8 .
9
直接开平方,得
x
8. 9
x1

22 3
,x2


22 3
.
注意:二次根 式必须化为最 简二次根式。
(2)9x2 5 1.
解:先移项,得 9x2 4. 系数化为1,得 x2 4 0 9
1

x1

, 3
x2

1.
整理,得_x_2_=_2_5 , 根据平方根的意义得x=___±_5__. 即x1=___5___,x2=__-_5___. 因为_棱__长__不_能__为__负__值__,所以正方体的棱长 是_5_d_m__.

21.2.1 解一元二次方程-配方法

21.2.1 解一元二次方程-配方法

x1 a ,x2 a
这种解一元二次方程的方法叫做直接开平方法.
2、把一元二次方程的左边配成一个完全平方式, 然后用开平方法求解,这种解一元二次方程的方 法叫做配方法.
注意:配方时, 等式两边同时加上的是一次项 系数一半的平方.
思维拓展
2 1、把方程x -3x+p=0配方得到
(x+m)2=
1 2
(1)求常数p,m的值;
(2)求方程的解。
2、若: x y 4 x 6 y 13 0,
2 2
则x _____ -8
y
理论迁移
1、将代数式x2+6x+2化成(x+p)2+q的形式 为 (x+3)2-7 。 2、比较大小:
6x ≤ x2+9.(填“>”、“<”、“≥”、 3、若代数式2x2-6x+b可化为2(x-a)2-1,则 a+b的值是 5 。
课堂小结
1、一般地,对于形如x2=a(a≥0)的方程,根据平方
根的定义,可解得
例题精讲
例1 用配方法解下列方程:
(1) x2 - 8x +1 =0
(2) 2x2 +1=3x (3) 3x2-6x+4=0
教材P42
2、 3
归纳总结
解一元二次方程的基本思路:
二次方程
降次
一次方程
把原方程变为(mx+n)2=P的形式(其中m、 n、P是常数)。
当P≥0时,两边同时开平方,这样原方 程就转化为两个一元一次方程。 当P<0时,原方程的解又如何?
ห้องสมุดไป่ตู้
把一元二次方程的左边配成一个完全 平方式,然后用直接开平方法求解,这种 解一元二次方程的方法叫做配方法.

九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.2公式法教案新人教版(2021

九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.2公式法教案新人教版(2021

2018-2019学年九年级数学上册第二十一章一元二次方程21.2 解一元二次方程21.2.2 公式法教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年九年级数学上册第二十一章一元二次方程21.2 解一元二次方程21.2.2 公式法教案(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年九年级数学上册第二十一章一元二次方程21.2 解一元二次方程21.2.2 公式法教案(新版)新人教版的全部内容。

21.2.2 公式法※教学目标※【知识与技能】1.理解并掌握求根公式的推导过程.2。

能利用公式法求一元二次方程的解.【过程与方法】经历探索求根公式的过程,加强推理技能,进一步发展逻辑思维能力.【情感态度】用公式法求解一元二次方程的过程中,锻炼学生的运算能力,养成良好的运算习惯,培养严禁认真的科学态度.【教学重点】求根公式的推导和公式法的应用.【教学难点】一元二次方程求根公式的推导.※教学过程※一、复习导入1.前面我们学习过直接开平方法解一元二次方程,比如,方程24x,227x:提问1 这种解法的(理论)依据是什么?提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数"的特殊的一元二次方程有效,不能实施于一般形式的一元二次方程)2.面对这种局限性,我们该怎么办?(使用配方法,把一般形式的一元二次方程化为能够直接开平方的形式)(学生活动) 用配方法解方程:2x x.237总结用配方法解一元二次方程的步骤(学生总结,老师点评)(1)先将已知方程化为一般形式; (2)二次项系数化为1; (3)常数项移到右边;(4)方程两边都加上一次项系数的一般的平方,使左边配成一个完全平方式; (5)变形为2x np 的形式,如果0p ,就可以直接开平方求出方程的解,如果0p ,则一元二次方程无解.二、探索新知能否用上面配方法的步骤求出一元二次方程200ax bx c a 的两根?移项,得2ax bxc .二次项系数化为1,得2b cx xa a. 配方,得22222b b c b xx a aaa,即222424b b ac x aa .此时,教师应作适当停顿,提出如下问题,引导学生分析、探究:(1)两边能直接开平方吗?为什么? (2)你认为下一步该怎么办?师生共同完善认知:(1)当b 2—4ac >0时,两边可直接开平方,得242b b ac x a,∴2142bb ac x a,2242bb ac x a;(2)当b 2—4ac =0时,有202b x a 。

九年级数学上册第21章21.2.1配方法第二课时

九年级数学上册第21章21.2.1配方法第二课时
第二十一章 一元二次方程 21.2 解一元二次方程
21.2.2 配方法 第二课时 配方法
第1页
新知 配方法
(1)配方法定义: 把一元二次方程左边化成一个完全平方式,
右边变成一个非负数,用直接开平方方法来求方程 解,这种方法称为配方法.
(2)用配方法解一元二次方程步骤: ①化:把二次项系数化为1(方程两边都除以 二次项系数);②移项:把常数项移到方程右边;
第5页
举一反三 1. 填空: (1)x2+6x+( 9 )=(x+ 3 )2; (2)x2-8x+( 16 )=(x- 4 )2; (3)x2-4x+( 4 )=(x- 2 )2; (4)
第6页
2. 用配方法解一元二次方程x2-2x-3=0时,方
程变形正确是( B) A. (x-1)2=2
B. (x-1)2=4
∴x1= 5 -2,x2=- 5 -2. (2)2x2+1=3x.
解:移项,得2x2-3x=-1,整理,得
,配x方2 ,3得x6
∴x1=1,x2=
1 2
.
第8页
第2页
③配方:方程两边都加上一次项系数二分之一平方; ④变形:方程左边配方,右边合并同类项; ⑤开方: 依据平方根意义,方程两边开平方;⑥求解:解一元 一次方程;⑦定解:写出原方程解.
注意:(1)配方目标是为了降次,将一个一元二次方 程转化成两个一元一次方程.
(2)配方法关键一步是配方,即方程两边都加上一次 项系数二分之一平方,千万不要忘了在右边也加上一 次项系数二分之一平方.
第3页
例题精讲 【例】解以下方程: (1)x2+6x+5=0;(2)2x2+6x+2=0. 解 (1)移项,得x2+6x=-5, 配方,得x2+6x+32=-5+32, 即(x+3)2=4, 由此可得x+3=±2, ∴x1=-1,x2=-5.

21.2.1配方法解一元二次方程

21.2.1配方法解一元二次方程

1. 证明:代数式x2+4x+ 5的值不小于1.
2. 证明:代数式-2y2+2y-1的值不大于
1 2
用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
1.一般地,对于形如x2=a(a≥0)的方程,
答:道路宽1米
课堂练习
3.若实数x、y满足(x+y+2)(x+y-1)=0,
则x+y的值为( D ).
(A)1
(B)-2
(C)2或-1 (D)-2或1
4.对于任意的实数x,代数式x2-5x+10的值
是一个( B )
(A)非负数 (B)正数
(C)整数 (D)不能确定的数
综合应用
例题3. 用配方法解决下列问题
根据平方根的定义,可解得 x1 a,x2 a
这种解一元二次方程的方法叫做直接开平方
法. 2.把一元二次方程的左边配成一个完全平方
式,然后用开平方法求解,这种解一元二次方程的 方法叫做配方法.
注意:配方时, 等式两边同时加上的是一次项 系数一半的平方.
3.方程χ2=a(a≥0)的解为:χ= a
方程(χ-a)2=b(b≥0)的解为:χ= a b
小结中的两类方程为什么要加条件:a≥0,b≥0呢?
小练习
1.解方程:3x2+27=0得( ). (A)x=±3 (B)x=-3 (C)无实数 根 (D)方程的根有无数个 2.方程(x-1)2=4的根是( ). (A)3,-3 (B)3,-1 (C)2,-3 (D)3,-2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档