2012计算智能-9.模糊控制
自动控制讲座-模糊控制

11.if 12.if 13.if 14.if 15.if 16.if 17.if 18.if 19.if 20.if 21.if
E=NO E=NO E=NO E=PS E=PS E=PS E=PS E=PM E=PM E=PM E=PM
or PO and EC=O then U=O or PO and EC=PS then U=NS or PO and EC=PM or PB then U=NM and EC=NB or NM then U=PS and EC=NS then U=O and EC=O or PS then U=NM and EC=PM or PB then U=NM or PB and EC=NB or NM then U=O or PB and EC=NS then U=NM or PB and EC=O or PS then U=NB or PB and EC=PM or PB then U=NB
2012计算智能-9.模糊控制

明确 控制信号
模糊化
模糊推理 (控制规则)
去模糊化
模糊控制
输入 模糊化 的输入 模糊化的 控制信号 明确 控制信号
模糊化
模糊推理 (控制规则)
去模糊化
模糊化:将观测值转换为相应的模糊集合。如100℃转换为 温度“高”
模糊推理:利用经验中获得的模糊规则,在确值。
模糊控制
例12 某自动控制系统需要根据设备内温度和湿度确定设 备运转时间。温度的论域是[0℃,100℃],有3个模糊标记: 低、中、高。湿度的论域是[0%,60%],有3个模糊标记: 小、中、大。运转时间的论域是[0s,1000s],有3个标记: 短、中、长。隶属度函数如下图所示
模糊控制
模糊规则为:
0.075 1000 0.467 500 569 .2s 0.075 0.467
所以,需要运行569.2s
模糊控制
很多场合,系统很难通过精确计算来达到预定控制效果, 例如烹调的温度控制,飞机的航道校正等。 模糊控制应用模糊数学的知识,模拟人的思维方式,把自 然语言描述的策略改造成模糊控制规则,把输入输出作为 模糊集合按模糊推理的方法进行处理,进而确定控制量。 模糊控制分为3个步骤:
输入 模糊化 的输入
模糊化的 控制信号
隶属度为0.1∧0.467=0.1
模糊控制
确定模糊输出为: 规则(1)、(3)确定的输出为运转时间长,隶属度取较大值。 为max(0.075,0.075)=0.075
规则(2)、(4)确定的输出为运转时间中,隶属度取较大值。 为max(0.467,0.1)=0.467
3. 去模糊化 去模糊化一般采用“重心法”,即对每条规则的输出计算 平均值。
温度
智能控制中的模糊算法与应用

智能控制中的模糊算法与应用智能控制是指把智能技术应用到控制系统中,使得系统具备一定的自主学习、自适应和自适应能力。
智能控制中的模糊算法是一种常用的方法,它能够模拟人类的思维方式,处理模糊信息,具备很强的实时性和运算速度,已经在许多领域得到广泛应用。
一、模糊算法的概述模糊算法是模糊逻辑的计算方法,它模拟人类的模糊思维过程,可以对不明确、模糊的信息进行处理和推理。
模糊算法包括模糊集合、模糊关系、模糊逻辑和模糊控制四个部分,其中模糊控制是应用最广泛的部分。
二、模糊控制的原理模糊控制是一种基于模糊逻辑的自适应控制方法,它采用模糊规则进行控制决策,可以处理输入参数不准确、模糊的问题。
模糊控制系统的基本结构包括模糊化、规则库、推理机和去模糊化四个部分,其中模糊化和去模糊化是对输入和输出进行模糊化和去模糊化的过程,规则库包括一系列的模糊规则,推理机是根据模糊规则进行推理和决策的过程。
三、模糊控制的应用模糊控制已经应用到许多领域,如工业自动化、交通控制、机器人控制、电力系统控制等。
例如,工业生产中,模糊控制可以对温度、压力、流量等参数进行控制,提高生产效率和产品质量。
在交通控制中,模糊控制可以对路况、交通流量等进行分析和判断,调整信号等控制手段,减少交通拥堵。
在机器人控制中,模糊控制可以对机器人的运动、感知和决策进行控制,提高机器人的应用范围和实际效果。
在电力系统控制中,模糊控制可以对电力系统的电压、电流等参数进行控制,保证电力系统的稳定运行。
四、模糊算法的优势和趋势模糊算法相比其他算法具有以下优势:1. 对模糊、不确定、复杂的问题具有处理能力;2. 具有自适应性和实时性;3. 可以组合不同领域的知识,解决交叉学科的问题。
当前,模糊算法在人工智能、大数据、智能制造等领域得到广泛应用。
未来,模糊算法将趋向自主化、协作化和复杂化,应对更加复杂多变的现实问题。
总之,模糊算法在智能控制中具有重要作用,它能够模拟人类的模糊思维,处理模糊信息,具有广泛的应用前景和深远的发展趋势。
模糊控制及其应用

详细描述
模糊控制算法通过采集室内温度和人的舒适度信息,将这些信息模糊化处理后,根据模糊规则进行推理,输出相 应的温度调节指令,从而实现对空调温度的智能控制。这种控制方式能够避免传统控制方法中存在的过度制冷或 制热的问题,提高室内环境的舒适度。
易于实现
模糊控制器结构简单,易于实 现,能够方便地应用于各种控 制系统。
灵活性高
模糊控制器具有较强的灵活性 ,能够根据不同的需求和场景 进行定制和优化。
02
模糊控制的基本原理
模糊化
模糊化是将输入的精确值转换 为模糊集合中的隶属度函数的 过程。
模糊集合论是模糊控制的理论 基础,它通过引入模糊集合的 概念,将精确的输入值映射到 模糊集合中,从而实现了对精 确值的模糊化处理。
交通控制
智能交通系统
通过模糊控制技术,可以实现智 能交通系统的自适应调节,提高 道路通行效率和交通安全性能。
车辆自动驾驶
在车辆自动驾驶中,模糊控制技 术可以用于实现车辆的自主导航 、避障和路径规划等功能,提高 车辆的行驶安全性和舒适性。
04
模糊控制在现实问题中的应用案例
智能空调的温度控制
总结词
模糊控制器
模糊控制器是实现模糊控制的核心部件,通过将输入的精确量转 换为模糊量,进行模糊推理和模糊决策,最终输出模糊控制量。
模糊控制的发展历程
80%
起源
模糊控制理论起源于20世纪60年 代,由L.A.Zadeh教授提出模糊 集合的概念,为模糊控制奠定了 理论基础。
100%
发展
随着计算机技术的进步,模糊控 制技术逐渐得到应用和发展,特 别是在工业控制领域。
智能控制工程中的模糊控制算法

智能控制工程中的模糊控制算法随着科技的不断发展,人工智能开始走入人们的生活中,并渗透到了各个领域当中。
智能控制工程作为其中的一种应用,正在受到越来越多的关注。
而作为智能控制工程中的一个重要技术手段,模糊控制算法在这个领域中得到了广泛的应用。
模糊逻辑是一种基于模糊数学的逻辑体系,它允许分类和处理不确定的信息。
在计算机领域中,模糊控制就是一种基于模糊逻辑的控制方法,它用来解决那些有模糊性、不确定性或者非线性的控制问题。
模糊控制算法的核心在于将模糊推理原理运用到控制系统中。
首先需要通过分析控制系统的输入输出变量,建立数学模型。
接下来是规则库的建立,通过专家的判断和经验,将控制变量之间的关系作为规则库的内容记录下来。
最终,通过模糊推理来求解控制系统输出的控制量。
在实际的应用中,模糊控制算法具有以下几个优点。
首先,模糊控制算法不需要精确的数学模型来描述被控对象,只需要根据经验和专家知识建立一些模糊规则即可。
这样可以大大降低建模的难度和复杂度。
其次,模糊控制算法可以处理非线性系统和时变系统,可以解决传统的线性控制方法无法处理的问题。
最后,模糊控制算法可以很好地处理控制对象模糊不确定、噪声干扰等问题。
在实际的应用中,模糊控制算法得到了广泛的应用。
例如在工业自动化控制中,模糊控制算法可以应用于水处理、化工、轧钢等工业过程中的控制;在电力系统中,可以应用于电力厂调度、电网控制、发电机组控制等方面;在交通管理中,模糊控制算法可以应用于智能交通系统、车辆控制等方面。
虽然模糊控制算法在工程应用中具有广泛的应用前景,但是它也存在一些问题和挑战。
首先,模糊控制算法的规则库建立需要专家的知识和经验,对于某些复杂的系统,规则库的建立非常困难。
其次,模糊控制算法需要很好地解决模糊推理的问题,才能得到准确的控制量。
最后,模糊控制算法需要在实际的控制系统中进行充分的实验和验证,才能确保其有效性和可靠性。
综合而言,模糊控制算法是一种有效的控制方法,可以解决那些由于复杂性、非线性或者模糊性而难以进行精确控制的问题。
模糊控制的基本原理

模糊控制的基本原理模糊控制是以模糊集合理论、模糊语言及模糊逻辑为基础的控制,它是模糊数学在控制系统中的应用,是一种非线性智能控制。
模糊控制是利用人的知识对控制对象进行控制的一种方法,通常用“if条件,then结果”的形式来表现,所以又通俗地称为语言控制。
一般用于无法以严密的数学表示的控制对象模型,即可利用人(熟练专家)的经验和知识来很好地控制。
因此,利用人的智力,模糊地进行系统控制的方法就是模糊控制。
模糊控制的基本原理如图所示:模糊控制系统原理框图它的核心部分为模糊控制器。
模糊控制器的控制规律由计算机的程序实现,实现一步模糊控制算法的过程是:微机采样获取被控制量的精确值,然后将此量与给定值比较得到误差信号E;一般选误差信号E作为模糊控制器的一个输入量,把E的精确量进行模糊量化变成模糊量,误差E的模糊量可用相应的模糊语言表示;从而得到误差E的模糊语言集合的一个子集e(e实际上是一个模糊向量); 再由e和模糊控制规则R(模糊关系)根据推理的合成规则进行模糊决策,得到模糊控制量u为:式中u为一个模糊量;为了对被控对象施加精确的控制,还需要将模糊量u进行非模糊化处理转换为精确量:得到精确数字量后,经数模转换变为精确的模拟量送给执行机构,对被控对象进行一步控制;然后,进行第二次采样,完成第二步控制……。
这样循环下去,就实现了被控对象的模糊控制。
模糊控制(Fuzzy Control)是以模糊集合理论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制。
模糊控制同常规的控制方案相比,主要特点有:(1)模糊控制只要求掌握现场操作人员或有关专家的经验、知识或操作数据,不需要建立过程的数学模型,所以适用于不易获得精确数学模型的被控过程,或结构参数不很清楚等场合。
(2)模糊控制是一种语言变量控制器,其控制规则只用语言变量的形式定性的表达,不用传递函数与状态方程,只要对人们的经验加以总结,进而从中提炼出规则,直接给出语言变量,再应用推理方法进行观察与控制。
模糊系统与智能控制技术

模糊系统与智能控制技术随着人工智能技术的不断发展,智能控制技术作为重要的一部分也得到了快速的发展。
其中,模糊系统作为智能控制的重要手段之一,逐渐在工程技术中得到了广泛应用。
一、模糊系统概述模糊系统指的是一类基于模糊数学理论为基础的人工智能系统,用于处理不确定、模糊、复杂的信息和控制问题。
模糊系统一般由模糊集合、模糊逻辑、模糊推理和模糊控制等组成。
模糊集合是模糊系统中的基本概念,通过模糊集合的模糊度来描述信息的不确定性和模糊性。
二、模糊系统在智能控制中的应用在智能控制中,模糊系统应用广泛,主要表现在以下方面:1.模糊控制模糊控制是模糊系统在控制领域中的一种应用,其核心是建立模糊控制器,通过输入变量经过模糊化、规则匹配和解模糊等过程,输出模糊控制量,控制被控对象达到某种期望状态或优化目标。
2.模糊识别模糊识别是指将输出与输入之间的模糊关系进行建模,并通过一定的方法求解识别问题。
常用的模糊识别方法包括模糊C均值聚类、模糊决策树等。
3.模糊优化模糊优化是将模糊规划和优化算法相结合,通过求解模糊集合上的优化问题,确定最优决策方案。
三、模糊系统的优势和不足模糊系统作为一种智能控制技术,在实际应用中有其独特的优势,包括:1.建模简单对于一些复杂、模糊、不易准确建模的问题,采用模糊系统可以使建模过程更加容易,而且表现出的精度和可靠性也比较高。
2.适应性强模糊系统具有一定的自适应性和鲁棒性,在面对变化和不确定性的环境中,能够更好地适应环境变化。
但是,模糊系统也有一定的不足之处,主要包括:1.复杂性高由于模糊系统需要考虑许多未知且不可测的因素,因此其模型结构比较复杂,不易于实现。
2.性能不稳定模糊系统的性能受到多种因素的影响,因此在一些极端情况下,很难保证控制效果的稳定性。
四、结语综上所述,模糊系统作为一种智能控制技术,在实际应用中能够解决许多不确定、模糊、复杂的信息和控制问题,并具有一些独特的优势。
随着人工智能技术的不断发展,相信模糊系统在未来的应用中也会发挥更大的作用。
模糊控制

0 1 A (x) 1 ( 5 )2 x 50
0 x 50
50 x 200
其论域为[0,200]的连续区间,论域上任一元素的隶属度, 可通过隶属函数求得。
2)隶属度及隶属函数的确定
用模糊统计法确定隶属度的基本思想
康托(Cantor,G.F.P. 1845年—1918年), 德国数学家
属于 不属于
2.1 普通集合及其运算规则
1) 普通集合的基本概念 被讨论的对象的全体称作论域。论域常用大写 论域 字母U、X、Y、Z等来表示。 元素 论域中的每个对象称为元素。元素常用小写字 母a、b、x、y等来表示。 集合 给定一个论域,论域中具有某种相同属性的元素 的全体称为集合。 集合常用大写字母A、B、C等来表示。 集合的元素可用列举法(枚举法)和描述法表示。 列举法:将集合的元素一一列出, 如:A={a1,a2,a3,…an}。 描述法:通过对元素的定义来描述集合。 如:A={x│x≥0 and x/2=自然数}
模糊逻辑控制方法
把模糊数学理论应用于自动控制领域,从而产生的 控制方法称为模糊控制方法。 传统控制依赖于被控系统的
数学模型;
模糊逻辑控制依赖于被控系统的 物理特性。
优点
A. 无需预先知道被控对象的精确数学模型;
B. 容易学习和掌握模糊逻辑控制方法(规则由人的
经验总结出来、以条件语句表示);
C. 有利于人机对话和系统知识处理(以人的语言形
18~25
15~30 16~30 15~30
16~35
20~30 15~30 15~25
17~29
20~30 18~35 15~30
18~25
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模糊控制
例12 某自动控制系统需要根据设备内温度和湿度确定设 备运转时间。温度的论域是[0℃,100℃],有3个模糊标记: 低、中、高。湿度的论域是[0%,60%],有3个模糊标记: 小、中、大。运转时间的论域是[0s,1000s],有3个标记: 短、中、长。隶属度函数如下图所示
模糊控制
模糊规则为:
(1) 温度高且湿度小,运转时间长 由于是“且”的关系,因此,隶属度取∧操作 隶属度为0.1∧0.075=0.075 (2) 温度中且湿度中,运转时间中 隶属度为0.53∧0.467=0.467 (3) 温度中且湿度小,运转时间长 隶属度为0.53∧0.075=0.075 (4) 温度高且湿度中,运转时间中
0.075 1000 0.467 500 569 .2s 0.075 0.467
所以,需要运行569.2s
隶属度为0.1∧0.467=0.1
模糊控制
确定模糊输出为: 规则(1)、(3)确定的输出为运转时间长,隶属度取较大值。 为max(0.075,0.075)=0.075
规则(2)、(4)确定的输出为运转时间中,隶属度取较大值。 为max(0.467,0.1)=0.467
3. 去模糊化 去模糊化一般采用“重心法”,即对每条规则的输出计算 平均值。
温度
湿度 小 中 大 低 中 短 长 中 长 中 短 高 长 中 中
现在设备温度为64℃ ,湿度为22%,计算运行时间。 解:1.模糊化,计算隶属度
温度 低 中 隶属度 0 0.53 湿度 小 中 隶属度 0.075 0.467
高
0.1
大
0Leabharlann 模糊控制2. 模糊推理
隶属度为0的规则不被激活,因此激活的规则为:
明确 控制信号
模糊化
模糊推理 (控制规则)
去模糊化
模糊控制
输入 模糊化 的输入 模糊化的 控制信号 明确 控制信号
模糊化
模糊推理 (控制规则)
去模糊化
模糊化:将观测值转换为相应的模糊集合。如100℃转换为 温度“高”
模糊推理:利用经验中获得的模糊规则,在此基础上产生 “模糊输出”。
去模糊化:将“模糊输出”转换为实际控制精确值。
模糊控制
很多场合,系统很难通过精确计算来达到预定控制效果, 例如烹调的温度控制,飞机的航道校正等。 模糊控制应用模糊数学的知识,模拟人的思维方式,把自 然语言描述的策略改造成模糊控制规则,把输入输出作为 模糊集合按模糊推理的方法进行处理,进而确定控制量。 模糊控制分为3个步骤:
输入 模糊化 的输入
模糊化的 控制信号