人教版九年级数学上册知识点总结

合集下载

人教版九年级上册数学知识点总结

人教版九年级上册数学知识点总结

人教版九年级上册数学知识点总结九年级上册知识点:二次根式考点1:无理数无限不循环的小数被称为无理数,其中常见的无理数包括π以及π的有理数倍数等。

考点2:二次根式的概念形如√a的式子被称为二次根式,其中a是一个非负数,且二次根式也是一个非负数。

若有限个二次根式的和等于0,则每个二次根式的被开方数必须是0.考点3:移因式于根号内、外的方法移因式于根号外的方法包括:当根号外的数是一个负数时,把负号留在根号外,然后把这个数平方后移到根号内;当根号内的数是一个正数时,直接把这个数平方后移到根号内。

移因式于根号内的方法包括:当根号内的数是正数时直接开方移到根号外,当根号内的数是负数时开方移到根号外后要添上负号。

考点4:最简二次根式最简二次根式满足被开方数的因数是整数,因式是整式,并且被开方数中不含能开得尽方的因数或因式。

最简二次根式中一定不含有分母,且对于数或代数式,它们不能写成a×m的形式。

考点5:二次根式的化简与计算二次根式的化简实际上就是把二次根式化成最简二次根式,然后通过合并同类二次根式的方法进行二次根式的加减运算。

二次根式的加减运算可以表示为√a±√b=√(a±b),乘法运算可以表示为√a×√b=√(ab),除法运算可以表示为√a÷√b=√(a/b),乘方运算可以表示为(√a)^2=a,开方运算可以表示为√(a^2)=|a|。

考点6:方根与二次根式的异同点XXX表示一个正数a的算术平方根,而二次根式表示一个实数a的平方的算术平方根。

它们表示的意义是不同的。

当被开方数都是非负数时,方根和二次根式相等;当被开方数为负数时,方根无意义,而二次根式为虚数。

一元二次方程考点一:一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程被称为一元二次方程。

一元二次方程的一般形式为ax^2+bx+c=0,其中a是二次项系数,b是一次项系数,c是常数项。

考点二:一元二次方程的解法一元二次方程的解法包括直接开平方法和配方法。

人教版九年级上册数学课本知识点归纳总结全

人教版九年级上册数学课本知识点归纳总结全

人教版九年级上册数学课本知识点归纳总结全-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN九年级上册数学课本知识点归纳第21章一元二次方程一、学习目标1、理解一元二次方程的概念2、学会一元二次方程的解法3、了解方程的根与系数的关系4、掌握一元二次方程的实际应用 二、重点一、一元二次方程 1、一元二次方程含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。

2、一元二次方程的一般形式)0(02≠=++a c bx ax ,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

二、降次----解一元二次方程1.降次:把一元二次方程化成两个一元一次方程的过程(不管用什么方法解一元二次方程,都是要一元二次方程降次)2、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如x 2=b 或b a x =+2)(的一元二次方程。

根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。

3、配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。

配方法解一元二次方程的步骤是:①移项、②配方(写成平方形式)、③用直接开方法降次、④解两个一元一次方程、⑤判断2个根是不是实数根。

4、公式法:公式法是用求根公式,解一元二次方程的解的方法。

一元二次方程)0(02≠=++a c bx ax 的求根公式: )04(2422≥--±-=ac b a acb b x当ac b 42->0时,方程有两个实数根。

当ac b 42-=0时,方程有两个相等实数根。

人教版九年级上册数学知识点汇总

人教版九年级上册数学知识点汇总

一、一元二次方程1. 定义•等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

一般形式为:ax² + bx + c = 0(a ≠ 0)。

2. 解法•配方法:通过配成完全平方形式来解一元二次方程。

步骤包括:移项、除二次项系数、配方、开平方。

•公式法:利用一元二次方程的求根公式x = [-b ± √(b² - 4ac)] / (2a)(当b² - 4ac ≥ 0时)求解。

•因式分解法:将方程的一边化为0,另一边分解为两个一次因式的积,从而转化为求解两个一元一次方程。

3. 根与系数的关系•若一元二次方程x² + px + q = 0的两个根为x₁和x₂,则有:x₁ + x₂ = -p,x₁x₂ = q。

二、实际问题与一元二次方程1. 应用步骤•审:读懂题目,弄清题意,明确已知量和未知量以及它们之间的等量关系。

•设:设出未知数。

•列:列出方程,这是关键步骤,需找出能够表达应用题全部含义的相等关系,并列出含有未知数的等式。

•解:解方程,求出未知数的值。

•验:检验方程的解是否保证实际问题有意义,符合题意。

•答:写出答案。

2. 常见类型•数字问题:如三个连续整数、连续偶数(奇数)的表示。

•增长率问题:设初始量为a,终止量为b,平均增长率或降低率为x,则经过两次的增长或降低后的等量关系为a(1±x)² = b。

•利润问题:常用关系式有总利润=总销售价-总成本,或总利润=单位利润×总销售量,或利润=成本×利润率。

•图形的面积问题:根据图形的面积与图形的边等高等相关元素的关系,将图形的面积用含有未知数的代数式表示出来,建立一元二次方程。

三、二次函数1. 定义•一般地,形如y = ax² + bx + c(a, b, c是常数,a ≠ 0)的函数,叫做二次函数。

2. 性质•抛物线的开口方向由a的符号决定:a > 0时,开口向上;a < 0时,开口向下。

(完整版)人教版数学九年级上册知识点归纳,推荐文档

(完整版)人教版数学九年级上册知识点归纳,推荐文档

一元二次方程 ax2 bx c 0(a 0) 的求根公式: x b b2 4ac (b2 4ac 0)
2a
有括号的先算括号里的(或先去括号)。
4、因式分解法
我去人也就有人!为UR扼腕入站内信不存在向你偶同意因式调分解剖法沙就是龙利用课因反式分倒解的是手龙段,卷求出风方前程的一解的天方我法,分这种页方符法简Z单N易BX吃噶十 行,是解一元二次方程最常用的方法。
开方数 a 必须是非负数。
ax2 bx c 0(a 0) ,它的特征是:等式左边十一个关于未知数 x 的二次多
2、最简二次根式 若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开
项式,等式右边是零,其中 ax2 叫做二次项,a 叫做二次项系数;bx 叫做一次项,
得尽方的因数或因式,这样的二次根式叫做最简二次根式。
弧也相等。
三、垂径定理及其推论
推论 2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论 1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
推论 3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三
尽方的因数或因式开出来。 3、同类二次根式
直接开平方法适用于解形如 (x a)2 b 的一元二次方程。根据平方根的定义可知,
几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫 做同类二次根式。
x a 是 b 的平方根,当 b 0 时, x a b , x a b ,当 b<0 时,方程没有
b 叫做一次项系数;c 叫做常数项。
化二次根式为最简二次根式的方法和步骤:

人教版九年级数学上册知识点总结

人教版九年级数学上册知识点总结

人教版九年级数学上册知识点总结
1.代数
(1)多项式的概念、加减乘除、因式分解、配方法、公式法。

(2)一元二次方程及其解法、判别式、因式分解法、公式法、图像。

(3)一元二次不等式及其解法、图像、应用。

2.几何
(1)角的概念、角的度量、角平分线、垂线、平行线、角的和差倍角公式。

(2)三角形的概念、分类、性质、面积公式、勾股定理、正弦、余弦、正切等基本概念和公式。

(3)相似三角形的概念、判定、性质、应用。

(4)圆的概念、性质、圆周角、弧、切线、割线、圆的面积和周长公式。

(5)立体几何的概念、长方体、正方体、棱锥、棱台、圆锥、圆台的表面积和体积公式。

3.数据与概率
(1)数据的收集、整理、统计和分析。

(2)概率的基本概念、频率和概率的关系、事件的概率、互斥事件、独立事件。

4.函数
(1)函数的概念、函数的表示、函数的性质、函数的图像、函
数的基本变换、函数的复合。

(2)一次函数、二次函数、反比例函数、指数函数、对数函数。

以上是九年级数学上的主要知识点,需要注意的是,这些知识点是相互联系和影响的,需要理解和掌握它们的内在关系,才能真正运用自如。

人教版数学九年级上册知识点整理

人教版数学九年级上册知识点整理
6.直线和圆的位置关系
位置关系
相离
相切
相交
图形
公共点个数
0个
1个
2个
数量关系
d>r
d=r
d<r
知识点六:切线的性质与判定
7.切线
的判定
(1)与圆只有一个公共点的直线是圆的切线(定义法).
(2)到圆心的距离等于半径的直线是圆的切线.
(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.
8.切线
的性质
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.
延伸
根据圆的对称性,如图所示,在以下五条结论中:
1弧AC=弧BC;
②弧AD=弧BD;
③AE=BE;
④AB⊥CD;⑤CD是直径.
只要满足其中两个,另外三个结论一定成立,即推二知三
.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.
(1)切线与圆只有一个公共点.
(2)切线到圆心的距离等于圆的半径.
(3)切线垂直于经过切点的半径.
*9.切线长
(1)定义:从圆外一点作圆的切线,这点与切点之间的线段长叫做这点到圆的切线长.
(2)切线长定理:从圆外一点可以引圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.
知识点七:三角形与圆
第二十一章 一元二次方程
知识点一:一元二次方程及其解法
1.一元二次方程的相关概念
(1)定义:只含有一个未知数,且未知数的最高次数是2的整式方程.
(2)一般形式:ax2+bx+c=0(a≠0),其中ax2、bx、c分别叫做二次项、一次项、常数项,a、b、c分别称为二次项系数、一次项系数、常数项.

初中数学九年级上册知识点及公式总结大全(人教版)

初中数学九年级上册知识点及公式总结大全(人教版)

九年级数学(上)知识点(2)被开方数中不含有开得尽方的整数或整式。

3、同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。

7、二次根式的加减:二次根式相加减,先把各个二次根式化成最简二次根式,在合并同类二次根式,合并同类二次根式与合并同类项类似,将同类二次根式的“系数”相加减,被开方数和根指数不变。

注意:二次根式加减混合运算的实质就是合并同类二次根式,不是同类二次根式不能合并。

8、二次根式的混合运算:二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的。

在运算过程中,有理数(式)中的运算率及乘法公式在二次根式的运算中仍然适用。

9、比较两数大小的常用方法:(1)平方法:若a>0,b>0,且a²>b²,则a>b;(2)把跟号外的非负因式移到根号内,然后比较被开方数的大小。

第二十二章一元二次根式一.知识框二.知识概念1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2 (二次)的方程,叫做一元二次方程.2 一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax +bx+c=0(a≠0).2这种形式叫做一元二次方程的一般形式.其中ax 是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.2.一元二次方程的解法:2(1)运用开平方法解形如(x+m) =n(n≥0)的方程;领会降次──转化的数学思想.2(2)配方法:将一元二次方程变形为(x+p) =q的形式,如果q≥0,方程的根是x=-p±√q;如果q <0,方程无实根.2 2(3)公式法:将方程化为一般形式ax +bx+c=0,当b -4ac≥0时,将a、b、c代入式子第二十三章旋转一.知识框架二.知识概念 1.旋转:在平面内,将一个图形绕一个点按某个方向转动一个角度,这样的运动叫做图形的旋转。

九年级上册数学人教版知识点

九年级上册数学人教版知识点

九年级上册数学人教版知识点
以下是九年级上册数学人教版的一些主要知识点:
1. 实数与数轴:介绍了实数的概念和性质,以及如何在数轴上表示实数。

2. 整式与分式:讲解了整式和分式的定义、运算法则,以及它们之间的转化关系。

3. 一元一次方程与不等式:学习了一元一次方程和不等式的解法,包括整数解、有理数解和图像法。

4. 相交线与平行线:研究了平面内两条直线相交的条件和性质,以及平行线的判定方法。

5. 平面图形的认识:探索了平面图形的基本概念,如三角形、四边形、多边形等,并学习了它们的性质和分类。

6. 平面图形的计算:介绍了计算平面图形的周长和面积的方法,包括三角形、四边形、圆等的计算公式。

7. 数据的处理:学习了数据的收集、整理、展示和分析方法,包括频数表、频率表、折线图、柱状图等。

8. 几何变换:研究了平面内的平移、旋转、对称和放缩等基本几何变换的定义、性质和应用。

以上只是九年级上册数学人教版的一些主要知识点,具体内容可能会根据不同版本的教材有所差异。

如果需要更详细的信息,请参考相关教材或与您的数学老师进行沟通。

1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级数学上册知识点总结第二十一章 二次根式 21.1 二次根式知识点一 二次根式的概念 (1) 一般地,我们把形如a (a ≥0)的式子叫做二次根式。

二次根式a 的实质是一个非负数a的算术平方根。

其中“”叫做二次根号。

(2) 正确理解二次根式的概念,要把握以下几点: ① 二次根式是在形式上定义的,必须含有二次根号“”。

如4是二次根式,虽然4=2,但2不是二次根式。

② 被开方数a 必须是非负数,即a ≥0.如3-就不是二次根式,但式子)3(-2是二次根式。

③ “”的根指数为2,即“2”,一般省略根指数2,写作“”,注意,不可误认为根指数是“1”或“0”。

提示:判断是不是二次根式,一看形式,二看数值,即形式上要有二次根号,被开方数要是非负数。

知识点二 二次根式的性质(1)a (a ≥0)既是二次根式,又是非负数的算术平方根,所以它一定是非负数,即a ≥(a ≥0),我们把这个性质叫做二次根式的非负性。

(2)(a )2= a (a ≥0),这个性质可以正用,也可以逆用,正用时常用于二次根式的化简和计算,可以去掉根号;逆用时可以把一个非负数写成完整平方数的形式,常用于多项式的因式分解。

(3)a2= a (a ≥0),这个性质可以正用,也可以逆用,正用时用于二次根式的化简,即当被开方数能化为完全平方数(式)时,就可以利用该性质去掉根号;逆用时可以把一个非负数化为一个二次根式。

知识点三 代数式定义:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子,叫做代数式。

21.2 二次根式的乘除知识点一 二次根式的乘法法则一般地,对二次根式的乘法规定:a ·b=ab (a ≥0,b ≥0),即二次根式相乘,把被开方数相乘,根指数不变。

知识点二 积的算术平方根的性质 ab =a ·b(a ≥0,b ≥0),积的算术平方根等于积中各个因式的算术平方根的积。

知识点三 二次根式的除法法则一般地,对二次根式的除法规定:ba =ba (a ≥0,b >0),即两个二次根式相除,把被开方数相除,根指数不变。

知识点四 商的算术平方根的性质ba=ba (a ≥0,b >0),即商的算术平方根等于被除式的算术平方根除以除式的算术平方根。

知识点五 最简二次根式 必须满足以下两个条件:(1) 被开方数不含分母;(2) 被开方数中不含能开得尽方的因数或因式。

21.3 二次根式的加减知识点一 二次根式的加减二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式合并,二次根式加减法的实质是将被开方数相同的二次根式合并,合并时只把系数相加减,根指数和被开方数不变。

知识点二 二次根式的混合运算(1) 二次根式的混合运算顺序与整式的混合运算顺序相同:先乘方开方,再乘除,最后加减,有括号的先算括号里面的。

(2) 在二次根式的运算中乘法法则和乘法公式仍然适用。

22.1 一元二次方程知识点一 一元二次方程的定义等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

注意一下几点:① 只含有一个未知数;②未知数的最高次数是2;③是整式方程。

知识点二 一元二次方程的一般形式 一般形式:ax2+ bx + c = 0(a ≠ 0).其中,ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。

知识点三 一元二次方程的根使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。

方程的解的定义是解方程过程中验根的依据。

22.2 降次——解一元二次方程 22.2.1 配方法知识点一 直接开平方法解一元二次方程(1) 如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。

一般地,对于形如x 2=a(a ≥0)的方程,根据平方根的定义可解得x 1=a ,x 2=a .(2) 直接开平方法适用于解形如x 2=p 或(mx+a)2=p(m ≠0)形式的方程,如果p ≥0,就可以利用直接开平方法。

(3) 用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。

(4) 直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。

知识点二配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。

配方法的一般步骤可以总结为:一移、二除、三配、四开。

(1)把常数项移到等号的右边;(2)方程两边都除以二次项系数;(3)方程两边都加上一次项系数一半的平方,把左边配成完全平方式;(4)若等号右边为非负数,直接开平方求出方程的解。

22.2.2 公式法知识点一公式法解一元二次方程(1)一般地,对于一元二次方程ax2+bx+c=0(a≠0),如果b2-4ac≥0,那么方程的两个根为x=a acb b24 2-±-,这个公式叫做一元二次方程的求根公式,利用求根公式,我们可以由一元二方程的系数a,b,c的值直接求得方程的解,这种解方程的方法叫做公式法。

(2)一元二次方程求根公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0)的过程。

(3)公式法解一元二次方程的具体步骤:①方程化为一般形式:ax2+bx+c=0(a≠0),一般a化为正值②确定公式中a,b,c的值,注意符号;③求出b2-4ac的值;④若b2-4ac≥0,则把a,b,c和b-4ac的值代入公式即可求解,若b2-4ac<0,则方程无实数根。

知识点二一元二次方程根的判别式式子b2-4ac叫做方程ax2+bx+c=0(a≠0)根的判别式,通常用希腊字母△表示它,即△=b2-4ac.△>0,方程ax2+bx+c=0(a≠0)有两个不相等的实数根一元二次方程△=0,方程ax2+bx+c=0(a≠0)有两个相等的实数根根的判别式△<0,方程ax2+bx+c=0(a≠0)无实数根22.2.3 因式分解法知识点一因式分解法解一元二次方程(1)把一元二次方程的一边化为0,而另一边分解成两个一次因式的积,进而转化为求两个求一元一次方程的解,这种解方程的方法叫做因式分解法。

(2)因式分解法的详细步骤:①移项,将所有的项都移到左边,右边化为0;②把方程的左边分解成两个因式的积,可用的方法有提公因式、平方差公式和完全平方公式;③令每一个因式分别为零,得到一元一次方程;④解一元一次方程即可得到原方程的解。

知识点二用合适的方法解一元一次方程22.2.4 一元二次方程的根与系数的关系若一元二次方程x 2+px+q=0的两个根为x 1,x 2,则有x 1+x 2=-p,x 1x 2=q. 若一元二次方程a 2x+bx+c=0(a ≠0)有两个实数根x 1,x 2,则有x 1+x 2=,ab -,x 1x 2=a c22.3 实际问题与一元二次方程知识点一 列一元二次方程解应用题的一般步骤:(1) 审:是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间的等量关系。

(2) 设:是指设元,也就是设出未知数。

(3) 列:就是列方程,这是关键步骤,一般先找出能够表达应用题全部含义的一个相等含义,然后列代数式表示这个相等关系中的各个量,就得到含有未知数的等式,即方程。

(4) 解:就是解方程,求出未知数的值。

(5) 验:是指检验方程的解是否保证实际问题有意义,符合题意。

(6) 答:写出答案。

知识点二 列一元二次方程解应用题的几种常见类型 (1) 数字问题三个连续整数:若设中间的一个数为x ,则另两个数分别为x-1,x+1。

三个连续偶数(奇数):若中间的一个数为x ,则另两个数分别为x-2,x+2。

三位数的表示方法:设百位、十位、个位上的数字分别为a,b,c ,则这个三位数是100a+10b+c. (2) 增长率问题设初始量为a ,终止量为b ,平均增长率或平均降低率为x ,则经过两次的增长或降低后的等量关系为a (1x ±)2=b 。

(3)利润问题利润问题常用的相等关系式有:①总利润=总销售价-总成本;②总利润=单位利润×总销售量;③利润=成本×利润率 (4)图形的面积问题根据图形的面积与图形的边、高等相关元素的关系,将图形的面积用含有未知数的代数式表示出来,建立一元二次方程。

第二十三章 旋转 23.1 图形的旋转知识点一 旋转的定义在平面内,把一个平面图形绕着平面内某一点O 转动一个角度,就叫做图形的旋转,点O 叫做旋转中心,转动的角叫做旋转角。

我们把旋转中心、旋转角度、旋转方向称为旋转的三要素。

知识点二 旋转的性质旋转的特征:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等。

理解以下几点:(1) 图形中的每一个点都绕旋转中心旋转了同样大小的角度。

(2)对应点到旋转中心的距离相等,对应线段相等,对应角相等。

(3)图形的大小和形状都没有发生改变,只改变了图形的位置。

知识点三 利用旋转性质作图旋转有两条重要性质:(1)任意一对对应点与旋转中心所连线段的夹角等于旋转角;(2)对应点到旋转中心的距离相等,它是利用旋转的性质作图的关键。

步骤可分为: ① 连:即连接图形中每一个关键点与旋转中心;②转:即把直线按要求绕旋转中心转过一定角度(作旋转角)③截:即在角的另一边上截取关键点到旋转中心的距离,得到各点的对应点;④接:即连接到所连接的各点。

23.2 中心对称知识点一中心对称的定义中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。

注意以下几点:中心对称指的是两个图形的位置关系;只有一个对称中心;绕对称中心旋转180°两个图形能够完全重合。

知识点二作一个图形关于某点对称的图形要作出一个图形关于某一点的成中心对称的图形,关键是作出该图形上关键点关于对称中心的对称点。

最后将对称点按照原图形的形状连接起来,即可得出成中心对称图形。

知识点三中心对称的性质有以下几点:(1)关于中心对称的两个图形上的对应点的连线都经过对称中心,并且都被对称中心平分;(2)关于中心对称的两个图形能够互相重合,是全等形;(3)关于中心对称的两个图形,对应线段平行(或共线)且相等。

知识点四中心对称图形的定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

相关文档
最新文档