巧算——乘法分配律
第1讲 速算与巧算

第一章速算与巧算知识要点在速算与巧算中,主要是运算定律、性质和一些技巧方法的运用。
1.加法巧算。
(1)加法交换律:两个数相加,交换加数的位置,它们的和不变。
字母表示:a+b=b+a(2)加法结合律;三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,再同第一个数相加,它们的和不变。
字母表示:a+b+c=(a+b)+c=a+(b+c)交换律和结合律通常是在一起使用。
如果多个数相加,任意交换加数的位置,它们的和不变,或者先把其中的几个数结合成一组相加,再把所得的和同其他剩下的数相加,它们的和仍然不变。
字母表示:a+b+c+d+e=d+(b+d+e)+c2.减法巧算。
(1)减法的运算性质(有时可以将减法的运算性质理解成填括号或去括号的性质):一个数减去几个数的和,等于从这个数里依次减去和中的每一个加数。
字母表示:a-(b+c+d)=a-b-c-d(2)一个数连续减去几个数,等于从这个数中减去这几个数的和。
字母表示:a-b-c-d=a-(b+c+d)3.乘法巧算。
(1)乘法交换律:两个数相乘,交换因数的位置,积不变。
字母表示:a×b=b×a(2)乘法结合律:三个数相乘,可以先把前两个数结合起来相乘,再和第三个数相乘;也可以先把后两个数结合起来先乘,再和第一个数相乘,它们的积不变。
字母表示:a×b×c=(a×b)×c=a×(b×c)交换律和结合律通常是在一起使用。
如果多个数相乘,任意交换因数的位置,它们的积不变;可以选择两个因数相乘,得出便于运算的整十、整百、整千……的积,再将这个积与其他的因数相乘;有时可以把一个因数用几个因数相乘的形式表示,使其中一个因数与算式中其他的某个因数的积成为便于运算的数,然后再与其他的因数相乘,使计算快捷准确。
(3)积不变的规律:如果一个因数扩大若干倍,另一个因数缩小同样的倍数,那么它们的积不变。
巧算

速算与巧算的常用方法:方法很多主要有数学公式运算法、凑整计算法、基准数法、提取公因式法等。
加法巧算:①加法运算定律:加法交换律即:两个数相加,交换加数的位置,它们的和不变;加法结合律即:三个或三个以上数相加,任意交换加数的位置,它们的和不变;或者先把其中的几个数结合成一组相加,再把所得的和同其他剩下的数相加,它们的和仍然不变。
②和不变规律:如果一个加数加上一个数,另一个加数减去同一个数,它们的和不变。
③基准数法:当许多大小不同而又比较接近的数相加时,可以选择其中一个数作为计算的基础,这个数就叫基准数,计算时用基准数乘以加数个数的积和各加数与基准数相比较的多少相加减。
减法巧算:①减法的运算性质:一个数减去几个数的和等于从这个数里依次减去每个数,反之也成立;一个数减去两个数的差,等于从这个数中减去差里的被减数,再加上差里的减数;或者先加上差里的减数再减去差里的被减数;几个数的和减去一个数,等于从一个加数里减去这个数,再同其余加数相加。
②差不变规律:如果被减数和减数都增加(或减少)同一个数,那么它们的差不变。
乘法简算:①乘法运算定律:乘法交换律即:两个数相乘,交换乘数的位置,它们的积不变;加法结合律即:三个或三个以上数相乘,先把其中的几个数结合成一组相乘,再把所得的积同其他剩下的数相乘,它们的积仍然不变;乘法分配律即:两个加数的和与一个数相乘,可以用每一个加数分别与这个数相乘,再把所得的积相加。
②积不变规律:如果一个因数扩大若干倍,另一个因数缩小同样的倍数,那么它们的积不变。
③分解分组法:几个数相乘时,为了分组时能够“凑整”或凑成比较简单的数,常需要先把其中一个或几个因数进行分解,再来进行分组。
④提取公因数法:当几个乘积相加、减,而这些乘积中有相同的因数时,我们可以采用提取公因数的方法进行巧算。
除法巧算:①商不变规律:如果被除数和除数同乘以或除以一个数(0除外),它们的商不变。
②除法预算性质:两个数的和(或差)除以一个数,可以用这个数分别去除以这两个数,再把所得的商相加(或减)。
巧算乘除法

例1,下列算式中,△、○、□、☆ ,下列算式中, 各代表什么数字? 各代表什么数字?
(1)△ + △ + △ = 129 ) (2)○ + 25 = 125 - ○ ) (3)8×□ - 51÷3 = 47 ) ×□ ÷ (4)36 – 150 ÷ ☆ = 96 ÷ 16 )
解:
(1) △ + △ + △ = △× ,于是, △×3,于是, △ = 129 ÷ 3= 43 (2)先把左边(○ + 25) 看成一个数,根 )先把左边( ) 看成一个数, 被减数” 就有( 据“减数不清+ 差 = 被减数”,就有(○ + 减数不清 25)+ ○ = 125, ○× 2 = 125 - 25,所以 ) , , , ○ = 100 ÷ 2 = 50
□ × □= □ 2=□ □ ÷ □ □
分析: 积的个位是 ,由于所给的数字是0、 分析: 积的个位是2, 、 1、3、4、5、6中只有 × 4=12的个位是 ,所 中只有3 的个位是2, 、 、 、 、 中只有 的个位是
以可以把前面的式子填出来;余下的 、 、 要 以可以把前面的式子填出来;余下的0、5、6要 组成一个两位数除以一个一位数得商是12的除法 组成一个两位数除以一个一位数得商是 的除法 算式只能是60 算式只能是 ÷ 5。 。
随堂练习1 随堂练习1
计算: 计算: (1)25 × 96 × 125 ) = 25 ×4 × 8 ×3 ×125 =( 25 ×4 )×( 8 ×125 )×3 ( = 100 ×1000 ×3 = 300 000
(2)77 777 ×99 999÷11 111÷11 111 ) ÷ ÷ =(77 777÷11111)×(99 999÷11 111) ( ÷ ) ÷ ) =7×9 = 63
四年级乘法除法速算巧算

四年级乘法除法速算巧算TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】第2讲:乘除法巧算速算本讲,我们来学习一些比较复杂的用凑整法和分解法等方法进行的乘除的巧算。
这些计算从表面上看似乎不能巧算,而如果把已知数适当分解或转化就可以使计算简便。
对于一些较复杂的计算题我们要善于从整体上把握特征,通过对已知数适当的分解和变形,找出数据及算式间的联系,灵活地运用相关的运算定律和性质,从而使复杂的计算过程简化。
实际进行乘法、除法以及乘除法混合运算时,可利用以下性质进行巧算:①乘法交换律:A×B=B×A②乘法结合律:A×B×C=A×(B×C)③乘法分配律:(A+B)×C=A×C+B×C由此可以推出:A×B+A×C=A×(B+C)(A-B)×C=A×C-B×C④除法的性质:A÷B÷C=A÷C÷B=A÷(B×C)利用乘法、除法的这些性质,先凑整得10、100、1000……会使计算更简便。
例1:计算236×37×27分析:在乘除法的计算过程中,除了常常要将因数和除数“凑整”,有时为了便于口算,还要将一些算式凑成特殊的数。
例如,可以将27变为“3×9”,将37乘3得111,这是一个特殊的数,这样就便于计算了。
解:原式=236×(37×3×9)=236×(111×9)=236×999=236×(1000-1)=236000-236=235764随堂小练:计算下面各题:(1)132×37×27 (2)315×77×13例2:计算333×334+999×222分析:表面上,这道题不能用乘除法的运算定律、性质进行简便计算,但只要对数据作适当变形即可简算。
四年级奥数教程第2讲:巧算乘除法

四年级奥数教程第2讲:巧算乘除法1,乘法交换律:a×b = b×a2,乘法结合律:a×b×c = a×(b×c)3,乘法分配率:(a+b)×c=a×c+b×c由此可推出:a×c+b×c=(a+b)×c(a-b)×c=a×c-b×c4,除法的性质:a÷b÷c=a÷c÷b=a÷(b×c)利用乘法、除法的这些性质,先凑整得10、100、1000……会使计算更简便。
例1:计算:(1)25×5×64×125 (2)56×165÷7÷11 解(1)25×5×64×125=25×5×2×4×8×125=(25×4)×(5×2)×(8×125)=100×10×1000=1000000;(2)56×165÷7÷11=(56÷7)×(165÷11)=8×15=120例2:计算:(1)4000÷125÷8(2)9999×2222+3333×3334解(1)4000÷125÷:8=4000÷(125×8)=4000:1000=4;(2)999×2222+333X3334=33×3×2222+333×3334=33×(666+3334)=3333×10000=3330000随堂练习2:计算:(1)60 000÷125÷2÷5÷8(2)99 999×7+11 111×37(1)原式=60000÷(125×2×5×8)=60000÷(125×8X2×5)=60000÷(1000×10)=60000÷10000=6.原式=1111×9×7+11111×37=11111×(63+37)=11111×100=1111100例3:计算:218×730+7820×73=2180X73+7820×73=(2180+7820)×73=10000×73=730000;解法二218×730+7820×73=218×730+782×730=(218+782)×730=1000×730=730000随堂练习3:计算:(1)375×480-2750×48原式=375×480-275×480=(375-275)×480=100×480=48000例4:不用计算结果,请你指出下面哪道题得数大:452×458 453×457解452×458=452×(457+1)=452×457+452453×457=(452+1)×457=452×457+457显然,452×458<453×457随堂练习4:不用计算结果,请你指出下面哪道题得数大A=54 321×12 345 B=54 322×12 344 A=54321X(12344+1)=54321×12344+54321;B=(54321+1)×12344=54321X12344+12344.8显然,A>B例5:求1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)分析观察发现,算式中每个括号里的除数都是下一个括号里的到1被除数,根据运算性质a÷:(b÷c)=a÷b×c,计算时可以消去3,4,5解原式=1÷2×3÷3×4÷:=4×5÷5×6=1÷2×6=3.提高练习一个两位数乘以101的积,就等于把这个两位数连写两遍所得的四位数,如:32×101=3232;一个三位数乘以1001的积,就等于把这个三位数连写两遍所得的六位数,如:125×1001=125125下列计算题中,不能运用这两条规律进行巧算的是( )(A)573×101(B)252×1001(C)101×78(D)872×7×11×13简算下列各题:5445÷55原式=(5500-55)÷55=15500÷55-55÷55=100-1=99.25×77+55×14+15×77=(25+15)×77+55×14=40×77+55×14=40×7×11+14×5×11=(40×7+14×5)×11=(280+70)×11=350×11=3850981+5×9810+49×981=981+50×981+49×981=(1+50+49)×981=100×981=98100.10333×2222÷6666=3333×2×1111÷6666=(3333×2÷:6666)×1111=11111440×976÷488=1440×(976÷488)=1440×2=2880.2014×2016-2013×2017=(2013+1)×2016-2013×(2016+1)=2013×2016+2016一2013×2016-2013=2016-2013=3例4 计算。
第2讲巧算与速算

(2)同上利用交换律,将13乘在最后。
(3)一个数连续除以几个数就等于这个数除以这几个数 的积,用100000除以32、125和25的积。 (4)可以将2600和25同时乘以4,利用“商不变”的性 质进行巧算。
解:(1)241×345÷678÷345×678÷241 =(241÷241)×(345÷345)×(678÷678) =1×1×1 =1
(2)(13×4×5×6)÷(4×5×6) =13×4×5×6÷4÷5÷6 =13×(4÷4)×5÷5×(6÷6) =13
(3)100000÷32÷125÷25 =100000÷(32×125×25) =1
(4)2600÷25 =2600×4÷(25×4) =104
【例2】用简便方法计算。 (1)6666×6666 (2)999×222+333×334 (3)999×999+1999
第2讲 巧算与速算(二)
凑整法;分组求和
乘法分配律:a×(b+c)=a×b+a×c或a×(bc)=a×b-a×c 乘法分配律逆运算:a×b+a×c=a×(b+c)或 a×b-a×c=a×(b-c)
课前测试
1. 187+63+37-87 2. 93+90+89+87+93+95+88+91
3. 163×175-163×34-163×41 4. 8888×125 5. 6544+8953-4544-5953 6. 995+994+993+…+3+2+1-2-3-4-…-993-994
1. 456÷123×798÷456÷798×123 2. (12×5×7×13×7)÷(7×7×13) 3. 45000÷8÷125 4. 1037000÷125 5. 1976÷19 6. 9999×2222+3333×3334 7. 28×36+48×54 8. 19999+9999×9999
乘法巧算-奥数

=100 x 100
=1000 x100
=10000
=100000
课堂小测
【练一练】巧算下列各题 (4)102 x 18 =(100 +2)x 18 =100 x 18+ 2 x 18 =1800 + 36 =1836
(5)36 x 20 + 36 x 80 =36 x (20+80) =36 x 100 =3600
方法一:先算乘积是整十、整百、整千、整万的数
【例2】巧算 25 x48 x 125 x 2
分析:算式中没有直 接乘积是整十、整百、 整千的数,想办法把 其中一个数拆分
48=4 x 4 x 3
2.分解因素,凑整再相乘
25 x48 x 125 x 2 =25 x 4 x 4 x 3 x 125 x 2 =(25 x 4) x 3 x (125 x 2 x 4) =100 x 3 x 1000 =300 x 1000 =300000
课堂小测
【练一练】巧算下列各题
(1)25 x 17 x 4 =(25 x 4)x 17 =100 x 17 =1700
(2)16 x 25 x 25
(3)125 x 32 x 25
=4 x 4 x 25 x 25
=125 x 8 x 4 x 25
=(4 x 25) x( 25 x 4) =(125 x 8) x( 4 x 25)
方法二:应用乘法分配律
乘法分配律:两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相 加,叫做乘法分配律。用字母表示:a x (b+c)=a x b + a x c 此公式的变式:a x b + a x c = a x (b+c)
乘除法数的巧算

乘除法数的巧算知识解析同学们已经学会了整数加减法的巧算,大家已经学会了“凑整”的方法进行巧算,那么今天我们同样要运用凑整的方法进行乘除法的巧算。
1.特殊乘数2×5=10 4×25=100 8×125=10002.乘法三大规律乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c知识链接例1.乘法中的巧算25×18×4 8×25×4×12525×44 25×64×125例2. 乘法分配律15×37+15×63 88×99+8822×99 69×101例3特殊乘法的巧算首同尾合十(两位数乘两位数):十位上的数字乘十位上的数字加1的和的积再乘100,加上位数相乘的和。
62×68= 81×89= 56×54=尾同首合十(两位数乘两位数):十位上的数字相乘再加上个位上的一个数字的和乘100,再加上个位数字相乘的和34×74= 69×49= 53×53=例4除法中的巧算77×5÷11 7500÷(100÷3) 25×(32÷25)4200÷ 25 2000÷125÷8 110÷3-40÷3课堂训练1.巧算下列算式4×27×25 8×23×125 2×125×8×525×12 125×48 125×32×2573×77 56×54 97×9365×45 87×27 32×783200÷25 43000÷125 1200÷25÷4360×40÷60 2700÷(125×3) 3600÷(25×9÷2)125×102 1001×65—65 26×123+26×87798×32 300÷7+240÷7—50÷7提高训练(速算)124×25 5×64×25×125×209 125×79245000÷(25×90) 12×999 1421×11101+102+103+104+105+106+107+108+109+110家庭作业巧算125×16×25 79×71 43×63 105×65+36×65-41×65 27×15÷5 42000÷(125×7) 31200÷25入门测试8×25×4×125 88×99+88 69×10143000÷125 87×27 25×(32÷25)56×54 3600÷(25×9÷2) 22×99 1001×65—65。