初中数学竞赛辅导讲义:第4讲-明快简捷—构造方程的妙用(含习题解答)
初中数学竞赛平面几何讲座---巧添辅助-- 妙解竞赛题

初中数学巧添辅助-- 妙解竞赛题在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路.1 挖掘隐含的辅助圆解题有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化.1.1 作出三角形的外接圆例1如图1,在△ABC中,AB=AC,D是底边BC上一点,E是线段AD上一点且∠BED=2∠CED=∠A.求证:BD=2CD.ABGC DFE 图1例 2 凸四边形ABCD 中,∠ABC =60°,∠BAD =∠BCD =90°, AB =2,CD =1,对角线AC 、BD 交于点O ,如图2.则sin ∠AOB =____.例3 已知:如图3,AB =BC =CA =AD ,AH ⊥CD 于H ,CP ⊥BC ,CP 交AH 于P . 求证:△ABC 的面积S =43AP ·BD .A图3BP QD HC ABCDPO图22 构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决. 2.1 联想圆的定义构造辅助圆例4 如图4,四边形ABCD 中,AB ∥CD ,AD =DC =DB =p ,BC =q .求对角线AC 的长.2.2 联想直径的性质构造辅助圆例5 已知抛物线y =-x 2+2x +8与x 轴交于B 、C 两点,点D 平分BC .若在x 轴上侧的A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____.A EDCB图4图5例6 AD 是Rt △ABC 斜边BC 上的高,∠B 的平行线交AD 于M ,交AC 于N . 求证:AB 2-AN 2=BM ·BN .例7 如图7,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E ,延长AB 和DC 相交于E ,延长AD 和BC 相交于F ,EP 和FQ 分别切⊙O 于P 、Q .求证:EP 2+FQ 2=EF 2.EANCD B FM 12345图6例8 如图8,△ABC 与△A 'B 'C '的三边分别为a 、b 、c 与a '、b '、c ',且∠B =∠B ',∠A +∠A '=180°.试证:aa '=bb '+cc '.同步练习题1. 作一个辅助圆证明:△ABC 中,若AD 平分∠A ,则AC AB =DCBD.2. 已知凸五边形ABCDE 中,∠BAE =3a ,BC =CD =DE ,∠BCD =∠CDE =180°-2a . 求证:∠BAC =∠CAD =∠DAE .3. 在△ABC 中AB =BC ,∠ABC =20°,在AB 边上取一点M ,使BM =AC .求∠AMC 的度数.(1)(2)图8ABCA'B'C'cb a'c'b'3. 如图10,AC 是ABCD 较长的对角线,过C 作CF ⊥AF ,CE ⊥AE .求证:AB ·AE +AD ·AF =AC 2.4. 如图11.已知⊙O 1和⊙O 2相交于A 、B ,直线CD 过A 交⊙O 1和⊙O 2于C 、D ,且AC =AD ,EC 、ED 分别切两圆于C 、D . 求证:AC 2=AB ·AE .6.已知E 是△ABC 的外接圆之劣弧BC 的中点. 求证:AB ·AC =AE 2-BE 2.7. 若正五边形ABCDE 的边长为a ,对角线长为b ,试证:a b -ba=1.F DAB EC图10C图11初中数学巧添辅助-- 妙解竞赛题答案在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路.1 挖掘隐含的辅助圆解题有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化. 1.1 作出三角形的外接圆例1 如图1,在△ABC 中,AB =AC ,D 是底边BC 上一点,E 是线段AD 上一点且∠BED =2∠CED = ∠A .求证:BD =2CD .分析:关键是寻求∠BED =2∠CED 与结论的联系. 容易想到作∠BED 的平分线,但因BE ≠ED ,故不能 直接证出BD =2CD .若延长AD 交△ABC 的外接圆 于F ,则可得EB =EF ,从而获取.证明:如图1,延长AD 与△ABC 的外接圆相交于点F ,连结CF 与BF ,则∠BFA =∠BCA =∠ABC =∠AFC ,即∠BFD =∠CFD .故BF :CF =BD :DC .又∠BEF =∠BAC ,∠BFE =∠BCA ,从而∠FBE =∠ABC =∠ACB =∠BFE . 故EB =EF .作∠BEF 的平分线交BF 于G ,则BG =GF . 因∠GEF =21∠BEF =∠CEF ,∠GFE =∠CFE ,故△FEG ≌△FEC .从而GF =FC . 于是,BF =2CF .故BD =2CD . 1.2 利用四点共圆例2 凸四边形ABCD 中,∠ABC =60°,∠BAD = ∠BCD =90°,AB =2,CD =1,对角线AC 、BD 交于点O ,如图2. 则sin ∠AOB =____.ABGCD FE图1ABCDPO 图2分析:由∠BAD =∠BCD =90°可知A 、B 、C 、D四点共圆,欲求sin ∠AOB ,联想到托勒密定理,只须求出BC 、AD 即可.解:因∠BAD =∠BCD =90°,故A 、B 、C 、D 四点共圆.延长BA 、CD 交于P ,则∠ADP =∠ABC =60°.设AD =x ,有AP =3x ,DP =2x .由割线定理得(2+3x )3x =2x (1+2x ).解得AD =x =23-2,BC =21BP =4-3. 由托勒密定理有BD ·CA =(4-3)(23-2)+2×1=103-12.又S ABCD =S △ABD +S △BCD =233. 故sin ∠AOB =263615 . 例3 已知:如图3,AB =BC =CA =AD ,AH ⊥CD 于H ,CP ⊥BC ,CP 交AH 于P .求证: △ABC 的面积S =43AP ·BD . 分析:因S △ABC =43BC 2=43AC ·BC ,只 须证AC ·BC =AP ·BD ,转化为证△APC ∽△BCD .这由A 、B 、C 、Q 四点共圆易证(Q 为BD 与AH 交点).证明:记BD 与AH 交于点Q ,则由AC =AD ,AH ⊥CD 得∠ACQ =∠ADQ . 又AB =AD ,故∠ADQ =∠ABQ .从而,∠ABQ =∠ACQ .可知A 、B 、C 、Q 四点共圆. ∵∠APC =90°+∠PCH =∠BCD ,∠CBQ =∠CAQ , ∴△APC ∽△BCD . ∴AC ·BC =AP ·BD . 于是,S =43AC ·BC =43AP ·BD . A图3BPQDHC2 构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决. 2.1 联想圆的定义构造辅助圆例4 如图4,四边形ABCD 中,AB ∥CD ,AD =DC =DB =p ,BC =q .求对角线AC 的长.分析:由“AD =DC =DB =p ”可知A 、B 、C 在 半径为p 的⊙D 上.利用圆的性质即可找到AC 与 p 、q 的关系.解:延长CD 交半径为p 的⊙D 于E 点,连结AE . 显然A 、B 、C 在⊙D 上. ∵AB ∥CD ,∴BC =AE . 从而,BC =AE =q .在△ACE 中,∠CAE =90°,CE =2p ,AE =q ,故 AC =22AE CE -=224q p -. 2.2 联想直径的性质构造辅助圆例5 已知抛物线y =-x 2+2x +8与x 轴交于B 、C 两点,点D 平分BC .若在x 轴上侧的A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____.分析:由“∠BAC 为锐角”可知点A 在以定线段BC 为直径的圆外,又点A 在x 轴上侧,从而可确定动点A 的范围,进而确定AD 的取值范围. 解:如图5,所给抛物线的顶点为A 0(1,9), 对称轴为x =1,与x 轴交于两点B (-2,0)、 C (4,0).分别以BC 、DA 为直径作⊙D 、⊙E ,则两圆与抛物线均交于两点P (1-22,1)、A EDCB图4图5Q (1+22,1).可知,点A 在不含端点的抛物线PA 0Q 内时,∠BAC <90°.且有3=DP =DQ <AD ≤DA 0=9,即AD 的取值范围是3<AD ≤9. 2.3 联想圆幂定理构造辅助圆例6 AD 是Rt △ABC 斜边BC 上的高,∠B 的平行线交AD 于M ,交AC 于N .求证:AB 2-AN 2=BM ·BN .分析:因AB 2-AN 2=(AB +AN )(AB -AN )=BM ·BN ,而由题设易知AM =AN ,联想割线定理,构造辅助圆即可证得结论. 证明:如图6,∵∠2+∠3=∠4+∠5=90°, 又∠3=∠4,∠1=∠5, ∴∠1=∠2.从而,AM =AN . 以AM 长为半径作⊙A ,交AB 于F ,交 BA 的延长线于E .则AE =AF =AN . 由割线定理有 BM ·BN =BF ·BE =(AB +AE )(AB -AF ) =(AB +AN )(AB -AN ) =AB 2-AN 2, 即 AB 2-AN 2=BM ·BN .例7 如图7,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E ,延长AB 和DC 相交于E ,延长AD 和BC 相交于F ,EP 和FQ 分别切⊙O 于P 、Q .求证:EP 2+FQ 2=EF 2. 分析:因EP 和FQ 是⊙O 的切线,由结论联想到切割线定理,构造辅助圆使EP 、FQ 向EF 转化.证明:如图7,作△BCE 的外接圆交EF 于G ,连 结CG .因∠FDC =∠ABC =∠CGE ,故F 、D 、C 、G 四点共圆.EA N D BFM 12345图6由切割线定理,有 EF 2=(EG +GF )·EF =EG ·EF +GF ·EF =EC ·ED +FC ·FB=EC ·ED +FC ·FB =EP 2+FQ 2,即 EP 2+FQ 2=EF 2.2.4 联想托勒密定理构造辅助圆 例8 如图8,△ABC 与△A 'B ' C '的三边分别为a 、b 、c 与a '、 b '、c ',且∠B =∠B ',∠A +∠A '=180°.试证:aa '=bb '+cc '. 分析:因∠B =∠B ',∠A +∠A '=180°,由结论联想到托勒密定理,构造圆内接四边形加以证明.证明:作△ABC 的外接圆,过C 作CD ∥AB 交圆于D ,连结AD 和BD ,如图9所示. ∵∠A +∠A '=180°=∠A +∠D , ∠BCD =∠B =∠B ',∴∠A '=∠D ,∠B '=∠BCD .∴△A 'B 'C '∽△DCB .有DC B A ''=CB C B ''=DBC A '',即 DC c '=a a '=DB b '.故DC =''a ac ,DB =''a ab .又AB ∥DC ,可知BD =AC =b ,BC =AD =a . 从而,由托勒密定理,得 AD ·BC =AB ·DC +AC ·BD , 即 a 2=c ·''a ac +b ·''a ab . 故aa '=bb '+cc '.练习题(1)(2)图8ABCA'B'C'ca b a'c'b'A BCDa b b c图91. 作一个辅助圆证明:△ABC 中,若AD 平分∠A ,则AC AB =DCBD. (提示:不妨设AB ≥AC ,作△ADC 的外接圆交AB 于E ,证△ABC ∽△DBE ,从而AC AB =DEBD=DCBD.) 2. 已知凸五边形ABCDE 中,∠BAE =3a ,BC =CD =DE ,∠BCD =∠CDE =180°-2a .求证:∠BAC =∠CAD =∠DAE .(提示:由已知证明∠BCE =∠BDE =180°-3a ,从而A 、B 、C 、D 、E 共圆,得∠BAC =∠CAD =∠DAE .)3. 在△ABC 中AB =BC ,∠ABC =20°,在AB 边上取一点M ,使BM =AC .求∠AMC 的度数. (提示:以BC 为边在△ABC 外作正△KBC ,连结KM ,证B 、M 、C 共圆,从而∠BCM =21∠BKM =10°,得∠AMC =30°.) 4.如图10,AC 是ABCD 较长的对角线,过C 作CF ⊥AF ,CE ⊥AE .求证:AB ·AE +AD ·AF =AC 2. (提示:分别以BC 和CD 为直径作圆交AC 于点 G 、H .则CG =AH ,由割线定理可证得结论.) 5. 如图11.已知⊙O 1和⊙O 2相交于A 、B ,直线CD 过A 交⊙O 1和⊙O 2于C 、D ,且AC =AD ,EC 、ED 分别切两圆于C 、D .求证:AC 2=AB ·AE . (提示:作△BCD 的外接圆⊙O 3,延长BA 交⊙O 3 于F ,证E 在⊙O 3上,得△ACE ≌△ADF ,从而AE =AF ,由相交弦定理即得结论.)6.已知E 是△ABC 的外接圆之劣弧BC 的中点. 求证:AB ·AC =AE 2-BE 2.(提示:以BE 为半径作辅助圆⊙E ,交AE 及其延长线于N 、M ,由△ANC ∽△ABM 证AB ·AC =AN ·AM .)7. 若正五边形ABCDE 的边长为a ,对角线长为b ,试证:a b -ba=1. (提示:证b 2=a 2+ab ,联想托勒密定理作出五边形的外接圆即可证得.)FDAEC图10图11。
2018年中考数学方法技巧:专题四-构造法训练(含答案)

5.如图F4-3,直线y=kx+b经过A(3,1)和B(6,0)两点,则不等式0<kx+b<x的解为________.方法技巧专题四构造法训练构造法是一种技巧性很强的解题方法,它能训练思维的创造性和敏捷性.常见的构造形式有:1.构造方程;2.构造函数;3.构造图形.一、选择题图F4-11.如图F4-1,OA=OB=OC,且∠ACB=30°,则∠AOB的大小是()A.40°B.50°C.60°D.70°2.已知a≥2,m2-2am+2=0,n2-2an+2=0,则(m-1)2+(n-1)2的最小值是()A.6B.3C.-3D.03.设关于x的一元二次方程(x-1)(x-2)=m(m>0)的两根分别为α,β,且α<β,则α,β满足() A.1<α<β<2B.1<α<2<βC.α<1<β<2D.α<1且β>2二、填空题4.如图F4-2,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于________.图F4-213图F4-36.关于x的方程a(x+m)2+b=0的解是x1=-2,x2=1(a,m,b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是________.7.[2016·成都]如图F4-△4,ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB =________.图F4-48.如图F4-5,在四边形ABCD中,AB∥DC,E是AD的中点,EF⊥BC于点F,BC=5,EF=3.图F4-5(1)若AB=DC,则四边形ABCD的面积S=________;(2)若AB>DC,则此时四边形ABCD的面积S′________S(用“>”或“=”或“<”填空).三、解答题9.如图F4-6,直立于地面上的电线杆A B,在阳光下落在水平地面和坡面上的影子分别是BC,CD,测得BC=6m,CD=4m,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度.(结果保留根号)图F4-6参考答案1.C[解析]以点O为圆心,以OA为半径作⊙O.∵OA=OB=OC,∴点B,C在⊙O上.∴∠AOB=2∠ACB=60°.故选C.注:此题构造了圆.2.A[解析](1)当m=n时,(m-1)2+(n-1)2=2(m-1)2.此时当m=1时,有最小值0.而m=1时,代入原方程求得a=.=(m+n)2-2mn-2(m+n)+2=4a2-4-4a+2=4(a-)2-3.∵a≥2,∴当a=2时,(m-1)2+(n-1)2有最小值.∴(m-1)2+(n-1)2的最小值=4(2-)2-3=6.故选A.5.3<x<6[解析]作直线OA,易知直线OA的解析式为y=x.由图可知,不等式kx+b>0的解为x<6;不等式kx+b<x的解为x>3.所以不等式0<kx+b<x的解为3<x<6.注:此题构造了一次函数y=x.7.[解析]如图,作直径AE,连结CE,则∠ACE=90°.32∵不满足条件a≥2,∴舍去此种情况.(2)当m≠n时,∵m2-2am+2=0,n2-2an+2=0,∴m,n是关于x的方程x2-2ax+2=0的两个根.∴m+n=2a,mn=2,∴(m-1)2+(n-1)2=m2-2m+1+n2-2n+11212注:此题根据两个等式构造了一个一元二次方程.3.D[解析]一元二次方程(x-1)(x-2)=m(m>0)的两根实质上是抛物线y=(x-1)(x-2)与直线y=m两个交点的横坐标.如图所示,显然α<1且β>2.故选D.注:此题构造了二次函数.4.15[解析]分别将线段AB,CD,EF向两端延长,延长线构成一个等边三角形,边长为8.则EF=2,AF=4,故所求周长=1+3+3+2+2+4=15.注:此题构造了等边三角形.131133136.x1=-4,x2=-1[解析]根据方程的特点联想二次函数的顶点式.将函数y=a(x+m)2+b的图象向左平移2个单位得函数y=a(x+m+2)2+b的图象,因此将方程a(x+m)2+b=0的解x1=-2,x2=1分别减去2,即得所求方程的解.注:此题构造了二次函数.392∴=.∴AB=.∴AB==.∴AB=BE×tan E=(6+43)×3∵AH⊥BC,∴∠AHB=90°.∴∠ACE=∠AHB.∵∠B=∠△E,∴ABH∽△AEC.AB AH AE·AHAE AC AC∵AC=24,AH=18,AE=2OC=26,18×2639242注:此题构造了直角三角形.8.(1)15(2)=[解析](1)平行四边形的面积等于底乘高;(2)如图,连结BE,并延长BE交CD的延长线于点G,连结CE.易证△EAB≌△EDG.∴BE=EG.∴S四边形ABCD=△SBCG=2△SBCE=BC·EF=15.注:此题根据平行线间线段的中点构造了全等三角形.9.解:如图,延长AD交BC的延长线于E,过点D作DF⊥BE于F.∵∠BCD=150°,∴∠DCF=30°.∵CD=4,∴DF=2,CF=2 3.由题意得∠E=30°,∴DC=DE.∴CE=2CF=43.∴BE=BC+CE=6+4 3.3=23+4.答:电线杆的高度为(23+4)m.注:此题构造了直角三角形.三角函数只能应用于直角三角形中,因此用三角函数解决四边形或斜三角形的问题时,必须构造直角三角形.。
数论专题:构造

数论专题:构造法解题梁久阳前言:“构造法”作为一种重要的化归手段,在数学解题中有着重要的作用。
历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构造法”成功地解决过数学上的难题。
数学是一门创造性的艺术,蕴含着丰富的美,而灵活、巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。
构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提,根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带,使解题另辟蹊径、水到渠成。
本文可能并不仅仅局限于数论方面,对函数也有一定的涉及。
一.构造法解题过程的大致模式二.经典例题(1) 构造辅助函数 ①构造一次函数【例1】已知x,y,z ∈(0,1),求证:x(1-y)+y(1-z)+z(1-x)<1(第15届俄罗斯数学竞赛题)题前分析:此题条件、结论均具有一定的对称性,然而难以直接证明,不妨用构造法一试。
例7还给出了它的另一种构造方法。
特点:一题两构,各有千秋证明:构造函数f(x)=(y+z-1)x+(yz-y-z+1),∵y,z ∈(0,1),∴f(0)=yz-y-z+1=(y-1)(z-1)>0f(1)=(y+z-1)+(yz-y-z+1)=yz >0,而f(x)是一次函数,其图象是直线,∴由x ∈(0,1)恒有f(x)>0即(y+z-1)x+(yz-y-z+1)>0,整理可得x(1-y)+y(1-z)+z(1-x)<1。
题后分析:由上题我们可以看出,理解和掌握函数的思想方法有助于实现数学从常量到变量的这个认识上的飞跃。
很多数学命题繁冗复杂,难寻入口,若巧妙运用函数思想,能使解答别具一格,耐人寻味。
而这构造的只是一次函数,还有更高次的函数等着我们去构造。
②构造二次函数我们大家都在初中学过一元二次方程。
我们都知道,一元二次方程根的判别式原本是用来讨论一元二次方程的实根情况,然而它的作用远不止此.在有些证明中,将题目或结论适当变形,再依据变形后的式子构造二次函数来解决问题,是一种十分巧妙的方法。
2022年九年级数学上册《用一元二次方程解决问题》教材预习辅导讲义(附解析)

初中数学《用一元二次方程解决问题》教材讲义及过关练列一元二次方程解应用题的一般步骤1.利用方程解决实际问题的关键是寻找等量关系.2.解决应用题的一般步骤:审(审题目,分清已知量、未知量、等量关系等);设(设未知数,有时会用未知数表示相关的量);列(根据题目中的等量关系,列出方程);解(解方程,注意分式方程需检验,将所求量表示清晰);验(检验方程的解能否保证实际问题有意义)答(写出答案,切忌答非所问).【点拨】列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.一元二次方程应用题的主要类型1.数字问题(1)任何一个多位数都是由数位和数位上的数组成.数位从右至左依次分别是:个位、十位、百位、千位……,它们数位上的单位从右至左依次分别为:1、10、100、1000、……,数位上的数字只能是0、1、2、……、9之中的数,而最高位上的数不能为0.因此,任何一个多位数,都可用其各数位上的数字与其数位上的单位的积的和来表示,这也就是用多项式的形式表示了一个多位数.如:一个三位数,个位上数为a ,十位上数为b ,百位上数为c ,则这个三位数可表示为:100c+10b+a.(2)几个连续整数中,相邻两个整数相差1.如:三个连续整数,设中间一个数为x ,则另两个数分别为x-1,x+1.几个连续偶数(或奇数)中,相邻两个偶数(或奇数)相差2.如:三个连续偶数(奇数),设中间一个数为x ,则另两个数分别为x-2,x+2. 2.平均变化率问题列一元二次方程解决增长(降低)率问题时,要理清原来数、后来数、增长率或降低率,以及增长或降低的次数之间的数量关系.如果列出的方程是一元二次方程,那么应在原数的基础上增长或降低两次.(1)增长率问题:平均增长率公式为(1)na xb += (a 为原来数,x 为平均增长率,n 为增长次数,b 为增长后的量.)(2)降低率问题:平均降低率公式为(1)n a x b -= (a 为原来数,x 为平均降低率,n 为降低次数,b 为降低教材知识总结后的量.)3.利息问题(1)概念:本金:顾客存入银行的钱叫本金;利息:银行付给顾客的酬金叫利息;本息和:本金和利息的和叫本息和; 期数:存入银行的时间叫期数;利率:每个期数内的利息与本金的比叫利率。
初中数学解题方法之一构造法之构造方程

初中数学解题方法之一构造法之构造方程构造法是初中数学解题的常用方法之一,它通过构造合适的问题结构,将问题转化为可解的方程或等式,从而帮助我们解决问题。
构造方程是其中一种常见的构造法。
构造方程的基本思路是先找出问题中的未知量和已知条件,然后通过逻辑推理或运用已知条件,构造出一个或多个与问题有关的关系式,最终得到方程,并解方程求解。
下面以一些具体的数学问题为例,介绍构造方程的基本步骤和一些常用的技巧。
1.确定未知量和已知条件:首先要明确问题中的未知量是什么,已知条件有哪些。
例如,问题中可能涉及到未知数的个数、长度、面积等。
2.运用逻辑关系或条件构造方程:根据问题中的逻辑关系或条件,构造方程。
可以采用等量关系、比例关系等。
3.解方程求解:得到方程后,通过计算求解方程,得到未知量的值。
下面通过几个具体问题的例子,来说明构造方程的应用。
例1:甲、乙两人同时从甲地骑自行车去乙地,甲总共骑了3小时,乙总共骑了2小时,两人相遇时甲比乙多骑36千米。
已知甲比乙骑得快一半,求甲、乙各骑的速度。
设甲的速度为x千米/小时,乙的速度为y千米/小时。
根据题意可得出以下的逻辑关系或条件:甲的骑行时间:3小时乙的骑行时间:2小时甲比乙多骑36千米甲比乙骑得快一半根据已知条件,可以构造出方程:甲的速度x乘以时间3小时等于乙的速度y乘以时间2小时再加上36千米。
即:3x=2y+36根据方程,我们可以求解未知量的值。
将方程进行变形:2y=3x-36y=(3x-36)/2由于甲比乙骑得快一半,即:x=(3x-36)/2解这个方程,可以得到甲的速度是24千米/小时,乙的速度是12千米/小时。
例2:已知一个正方形的周长是20厘米,求正方形的面积。
设正方形的边长为x厘米。
根据题意可得出以下的逻辑关系或条件:正方形的周长是20厘米根据已知条件,可以构造出方程:周长就是4条边的长度之和,所以可以得到:4x=20解这个方程,可以得到正方形的边长是5厘米。
初中数学竞赛-第4讲 调和点列与调和线束

调和点列与调和线束定义对于线段AB 的内分点C 和外分点D 满足AC ADCB DB,则称C 、D 调和分割线段AB 或者A 、B 、C 、D 是调和点列。
我们允许无穷远点的存在,即规定如果D 为无穷远点,则1ADDB,也可以说,当C 平分线段AB 时,A 、B 、C 以及直线AC 上的无穷远点四点成调和点列。
性质1 设,,,A B C D 是共线四点,点M 是线段AB 的中点,则,C D 调和分割线段AB 的充要条件是满足下列六个条件之一: (1) 点,A B 调和分割CD (2) 112AC AD AB(3) 22AB CD AD BC AC DB (4) CA CB CM CD (5) DA DB DM DC (6) 22MA MB MC MD性质2 (调和点列的角元形式)设A 、C 、B 、D 是共线四点,过共点直线外一点P 引射线PA ,PC ,PB ,PD .令1APC θ ,2CPB θ ,3BPD θ ,则AC BD CB AD 的充要条件132123sin sin sin sin()θθθθθθ .性质3 设,,,A B C D 是共线四点,过共点的直线外一点P 引射线,,,PA PC PB PD ,则,C D 调和分割线段AB 的充分必要条件是满足下列两个条件之一:(1) 线束,,,PA PC PB PD 其中一射线的任一平行线被其他三条射线截出相等的两线段;l 分别交射线,,,PA PC PB PD 于点(2) 另一直线',',','A C B D 时,点','C D 调和分割线段''A B 。
性质4对线段AB 的内分点C 和外分点D ,以及直线外一点P ,给出如下四个论断:AM CBD(1) PC 是APB 的平分线 (2) PD 是APB 的外角平分线 (3) ,C D 调和分割线段AB(4) PC PD以上四个论断中,任意两个作题设,另两个作结论组成的六个命题均为真命题。
应用“构造法”解题例析

应用“构造法”巧解数学问题例析河北省隆化县职业中学 曹瑞民(068150)构造法是初中数学的一种重要的数学方法,利用构造法可以巧妙的解决数学中的很多难题。
一、构造矛盾,巧证几何题例1、 求证:两条角平分线相等的三角形是等腰三角形。
证明:如图1,已知∆ABC ,BD 、CE 分别是ACB ABC ∠∠,的平分线。
BD=CE ,要证AB=AC 。
假设AB ,AC ≠不妨设AB>AC,则有ACB ∠>ABC ∠ A因而ACE ∠>ABD ∠构造ECF ∠=ABD ∠. F设CF 分别交AB 、BD 于G ,则CEF BFG ∆≈∆。
E G D 即BF :CF=BG :CE但BF>CF ∴BG>CE B C BD>BG ∴ BD>CE (图1)这显然与已知BD=CE 相矛盾,故AB ≠AC 的假设不成立,而必有AB=AC 。
二、构造对偶式,巧求非对称式的值例2、设x 21x 是方程x 2+5x +2=0的两根,不解方程;求21x x 的值。
分析:21x x 是非对称式,构造其对偶式12x x (即将21x x 中的2,1x x 互换位置)以后,组合成对称式再进行运算。
22124)5(2)(11,221212212122211221=--=-+=+=+∴==x x x x x x x x x x y y y x x y x x 则解:设即2y 2-21y +2=0,解之得 4175212,1±=y 三、构造方程,巧解几何最值问题例2、 如图2,平行四边形MNPQ 的一边在ABC ∆的边BC 上, A 另两个顶点分别在AB ,AC 上。
M H N 求证:平行四边形MNPQ 的面积的最大值为ABC ∆面积的一半。
分析:题设中出现两个相关图形——平行四边形,三角形;结论是证明面积最值问题,面积问题自然联想到作高AG , 与两个图形面积有关的元素有四个:MN 、HG 、BC 、AG 。
构造“对偶式”,巧解数学问题-解析版

构造“对偶式”,巧解数学问题在解答某些数学问题时,针对已知式M 的结构特征,构造一个或几个与之相关联的式子N ,使M 与N 经过相加、相减、相乘、相除等运算之后,所需解答的问题得到合理的转化和解决。
这种解题方法称之为构造“对偶式”解题,是一种极其巧妙的解题方法。
通过构造对偶式可以巧妙地解决多项式求值、恒等式证明、求函数的最值、解方程(组以及求解析式等,当然难点在于如何构造解题所需要的“对偶式”。
典型例题1求证:2sin 4x +3sin 2x cos 2x +5cos 4x ≤5。
【分析】本例是三角不等式的证明,运用一般的方法证明是困难的,若能运用对称的方法,构造对偶式,则比较容易证明【解析】【证明】设A =2sin 4x +3sin 2x cos 2x +5cos 4x ,B =2cos 4x +3cos 2x sin 2x +5sin 4x ,则 A +B =7sin 4x +cos 4x +6sin 2x cos 2x =7sin 2x +cos 2x 2-8sin 2x cos 2x=7-2sin 22x =5+2cos 22x ,①A -B =3cos 4x -sin 4x =3cos2x ,②①+②,得 2A =5+2cos 22x +3cos2x =5+2cos2x +342-916 ≤5+21+34 2-916=10所以A ≤5,命题得证2已知α,β是方程x 2-7x +8=0的两根,且α>β,不解方程,求2α+3β2的值。
【分析】 若要不解方程求2α+3β2的值, 因为2α+3β2是非对称式, 无法化为αβ及α+β的形式,所以需要构造2α+3β2相应的对偶式2β+3α2,两者结合就可以化为αβ及α+β的形式,然后运用韦达定理,从而求出2α+3β2的值.【解析】设A =2α+3β2,构造对偶式B =2β+3α2。
∵α,β是方程x 2-7x +8=0的两根,∴α+β=7,αβ=8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲明快简捷—构造方程的妙用
有些数学问题虽然表面与一元二次方程无关,但是如果我们能构造一元二次方程,那么就能运用一元二次方程丰富的知识与方法辅助解题,构造一元二次方程的常用方法是:1.利用根的定义构造
当已知等式具有相同的结构,就可把某两个变元看成是关于某个字母的一元二次方程的两根.
2.利用韦达定理逆定理构造
若问题中有形如,的关系式时,则、可看作方程的两
实根.
3.确定主元构造
对于含有多个变元的等式,可以将等式整理为关于某个字母的一元二次方程.
成功的构造是建立在敏锐的观察、恰当的变形、广泛的联想的基础之上的;成功的构造能收到明快简捷、出奇制胜的效果.
注:许多数学问题表面上看难以求解,但如果我们创造性地运用已知条件,以已知条件为素材,以所求结论为方向,有效地运用数学知识,构造出一种辅助问题及其数学形式,就能使问题在新的形式下获得简解,这就是解题中的“构造”策略,构造图形,构造方程、构造函数、构造反例是常用构造方法.
【例题求解】
【例1】已知、是正整数,并且,,则.
思路点拨,变形题设条件,可视、为某个一元二次方程两根,这样问题可从整体上获得简解.
【例2】若,且有及,则的值是( ) A.B.C.D.
思路点拨第二个方程可变形为,这样两个方程具有相同的结构,从利用定义构造方程入手.
【例3】已知实数、满足,且,求的取值范围.
思路点拨由两个等式可求出、的表达式,这样既可以从配方法入手,又能从构造方程的角度去探索,有较大的思维空间.
【例4】已知实数、、满足,.
(1)求、、中最大者的最小值;
(2)求的最小值.
思路点拨不妨设a≥b,a≥c,由条件得,.构造以b、c为实根的一元二次方程,通过△≥0探求的取值范围,并以此为基础去解(2).
注:构造一元二次方程,在问题有解的前提下,运用判别式△≥0,建立含参数的不等式,缩小范围逼近求解,在求字母的取值范围,求最值等方面有广泛的应用.
【例5】试求出这样的四位数,它的前两位数字与后两位数字分别组成的二位数之和的平方,恰好等于这个四位数.(2003年全国初中数学联赛试题)
思路点拨设前后两个二位数分别为,,则有,将此方程整理成关于(或)的一元二次方程,在方程有解的前提下,运用判别式确定(或)的取值范围.
学历训练
1.若方程的两个实数根的倒数和是,则的取值范围是.2.如图,在Rt△ABC中,斜边AB=5,CD⊥AB,已知BC、AC是一元二次方程
的两个根,则m的值是.
3.已知、满足,,则= .
4.已知,,,则的值为( )
A.2 B.-2 C.-1 D.0
5.已知梯形ABCD的对角线AC与BD相交于点O,若S△AOB=4,S△COD=9,则四边形ABCD的面积S的最小值为( )
A.21 B.25 C.26 D.36
6.如图,菱形A6CD的边长是5,两条对角线交于O点,且AO、BO的长分别是关于的方程的根,则m的值为( )
A.一3 B.5 C.5或一3 n一5或3
7.已知,,其中、为实数,求的值.
8.已知和是正整数,并且满足条件,,求的值.9.已知,,其中m、n为实数,则=.
10.如果、、为互不相等的实数,且满足关系式与,那么的取值范围是.
11.已知,则= ,= .;
12.如图,在Rt△ABC中,∠ACB=90°,AC=b,AB=c,若D、E分别是AB和AB延长线上的两点,BD=BC,CE⊥CD,则以AD和AE的长为根的一元二次方程是.
13.已知、、均为实数,且,,求的最小值.
14.设实数、、满足,求的取值范围.
15.如图,梯形ABCD中,AD∥BC,AD=AB,,梯形的高AE=,且.
(1)求∠B的度数;
(2)设点M为梯形对角线AC上一点,DM的延长线与BC相交于点F,当,求作以CF、DF的长为根的一元二次方程.
16.如图,已知△ABC和平行于BC的直线DE,且△BDE的面积等于定值,那么当
与△BDE之间满足什么关系时,存在直线DE,有几条?
参考答案。