运动路径解析
机器人运动规划和路径规划算法分析设计整理

机器人运动规划和路径规划算法分析设计整理在现代自动化领域中,机器人已经成为各个产业的重要组成部分。
无论是在制造业、物流业还是服务业中,机器人的运动规划和路径规划算法都起着至关重要的作用。
本文将对机器人运动规划和路径规划算法进行深入分析和设计整理。
一、机器人运动规划算法分析设计整理机器人的运动规划算法主要是指如何使机器人在给定的环境中找到一条最优路径,以到达指定的目标点。
下面将介绍几种常用的机器人运动规划算法。
1.1 图搜索算法图搜索算法是一种基于图论的方法,将机器人的运动环境表示为一个图,每个位置都是图的一个节点,连接的边表示两个位置之间的可达性。
常用的图搜索算法有广度优先搜索(BFS)、深度优先搜索(DFS)和A*算法。
BFS和DFS适用于无权图的搜索,适用于简单的运动环境。
而A*算法将节点的代价函数综合考虑了节点的代价和距离,能够在复杂的运动环境中找到最优路径。
1.2 动态规划算法动态规划算法通过将问题分解为相互重叠的子问题,从而找到最优解。
在机器人运动规划中,动态规划算法可以将整个运动路径划分为一系列子路径,逐步求解子路径的最优解,然后将这些最优解组成整个路径的最优解。
动态规划算法的优点是对于复杂的运动环境能够找到全局最优解,但是由于需要存储中间结果,消耗的内存较大。
1.3 其他算法除了图搜索算法和动态规划算法外,机器人运动规划还可以采用其他一些算法。
例如,弗洛伊德算法可以用于解决带有负权边的最短路径问题,适用于一些复杂的运动环境。
此外,遗传算法和模拟退火算法等进化算法也可以用于机器人的运动规划,通过模拟生物进化的过程来找到最优解。
这些算法在不同的运动环境和问题中具有各自的优势和适用性。
二、机器人路径规划算法分析设计整理路径规划算法是指在机器人的运动规划基础上,通过考虑机器人的动力学约束,生成机器人的具体轨迹。
下面将介绍几种常用的机器人路径规划算法。
2.1 轨迹插值算法轨迹插值算法是一种基于多项式插补的方法,通过控制机器人的位置、速度和加速度等参数,生成平滑的轨迹。
运动路径长度问题

硬核:狙击2020中考数学重点/难点/热点想要对运动路径长度问题掌握得信手拈来,那么建议你对以下知识点进行提前学习会更好:1.《隐圆模型》2.《共顶点模型》-也可称“手拉手模型”3.《主从联动模型》-也可称“瓜豆原理模型”4.《旋转问题》—本系列的第二讲中所阐述的旋转相似模型此外,还需要明白的动点类型还有:5.线段垂直平分线——到线段两端点距离相等的动点一定在这条线段的垂直平分线上6.角平分线——到角两边距离相等的动点一定在这个角的角平分线上7.三角形中位线——动点到某条线的距离恒等于某平行线段的一半8.平行线分线段成比例——动点到某条线的距离与某平行线段成比例9.两平行线的性质——平行线间的距离,处处相等一、路径为圆弧型解题策略:①作出隐圆,找到圆心②作出半径,求出定长解题关键:通过《隐圆模型》中五种确定隐圆的基本条件作出隐圆,即可轻易得出结论.二、路径为直线型解题策略:①利用平行定距法或者角度固定法确定动点运动路径为直线型②确定动点的起点与终点,计算出路径长度即可解题关键:解题过程中常常出现中位线,平行线分线段成比例,相似证动角恒等于顶角等知识点三、路径为往返型解题策略:①通常为《主从联动模型》的衍生版②确定动点的起点与终点,感知运动过程中的变化③找出动点运动的最远点解题关键:解题过程中常常出现相似转线段长、《主从联动模型》中的滑动模型等【例题1】如图,等腰Rt△AOB中,∠AOB=90°,OA=,⊙O与AB相切,分别交OA、OB于N、M,以PB为直角边作等腰Rt△BPQ,点P在弧MN上由点M运动到点N,则点Q运动的路径长为()A.B.C.D.【例题2】已知⊙O,AB是直径,AB=4,弦CD⊥AB且过OB的中点,P是劣弧BC上一动点,DF垂直AP于F,则P从C运动到B的过程中,F运动的路径长度()A.πB.C.πD.2【例题3】如图,⊙O的半径为1,弦AB=1,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的最大面积是.【例题4】如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP 交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A. B. C.1 D.2【例题5】已知:如图1,平面直角坐标系中,点A的坐标是(0,6),点B在x轴上,且∠BAO=30°,点D是线段OA上的一点,以BD为边向下作等边△BDE.(1)如图2,当∠ODB=45°时,求证:OE平分∠BED.(2)如图3,当点E落在y轴上时,求出点E的坐标.(3)利用图1探究并说理:点D在y轴上从点A向点O滑动的过程中,点E也会在一条直线上滑动;并直接写出点E运动路径的长度.【例题6】如图,Rt△ABC中,BC=4,AC=8,Rt△ABC的斜边在x轴的正半轴上,点A与原点重合,随着顶点A由O点出发沿y轴的正半轴方向滑动,点B也沿着x轴向点O滑动,直到与点O重合时运动结束.在这个运动过程中,点C运动的路径长是.【例题7】如图1,已知抛物线y=x2+bx+c经过原点O,它的对称轴是直线x=2,动点P从抛物线的顶点A 出发,在对称轴上以每秒1个单位的速度向上运动,设动点P运动的时间为t杪,连结OP并延长交抛物线于点B,连结OA,AB.(1)求抛物线的函数解析式;(2)当△AOB为直角三角形时,求t的值;(3)如图2,⊙M为△AOB的外接圆,在点P的运动过程中,点M也随之运动变化,请你探究:在1≤t≤5时,求点M经过的路径长度.【例题8】如图,OM⊥ON,A、B分别为射线OM、ON上两个动点,且OA+OB=5,P为AB的中点.当B由点O向右移动时,点P移动的路径长为()A.2B.2C.D.5【例题9】如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0),在整个运动过程中,求出线段PQ中点M所经过的路径长.【例题10】(1)如图1,已知AB=2,点D是等腰Rt△ABC斜边AC上一动点,以BD为一边向右下方作等边△BDE,当点D由点A运动到点C时,求点E运动的路径长;(2)如图2,已知AB=2,点D是等腰Rt△ABC斜边AC上一动点,以BD为一边向右下方作以E为直角顶点的等腰Rt△BDE,当点D由点A运动到点C时,求点E运动的路径长;(3)如图3,已知AB=2,点D是等腰Rt△ABC斜边AC上一动点,以BD为一边向右下方作以D为直角顶点的等腰Rt△BDE,当点D由点A运动到点C时,求点E运动的路径长;(4)如图4,已知AB=2,点D是等腰Rt△ABC斜边AC上一动点,以BD为一边向右下方作以D为直顶点的等腰△BDE,且∠BDE=120°,当点D由点A运动到点C时,求点E运动的路径长;【例题11】如图,已知扇形AOB中,OA=3,∠AOB=120°,C是在上的动点.以BC为边作正方形BCDE,当点C从点A移动至点B时,点D经过的路径长是________.1.如图,在等腰Rt△ABC中,AC=BC=,点P在以斜边AB为直径的半圆上,M为PC的中点,当点P沿半圆从点A运动至点B时,点M运动的路径长是.2.已知线段AB=8,C、D是AB上两点,且AC=2,BD=4,P是线段CD上一动点,在AB同侧分别作等腰三角形APE和等腰三角形PBF,M为线段EF的中点,若∠AEP=∠BFP,则当点P由点C移动到点D时,点M移动的路径长度为.3.已知线段AB=10,P是线段AB上一动点,在AB同侧分别作等边三角形APE和等边三角形PBF,G为线段EF的中点,点P由点A移动到点B时,G点移动的路径长度为.4.如图,AB为⊙O的直径,AB=3,弧AC的度数是60°,P为弧BC上一动点,延长AP到点Q,使AP•AQ =AB2.若点P由B运动到C,则点Q运动的路径长为.5.如图,矩形ABCD中,AB=4,AD=6,点E在边AD上,且AE:ED=1:2.动点P从点A出发,沿AB 运动到点B停止.过点E作EF⊥PE交射线BC于点F.设点M是线段EF的中点,则在点P运动的整个过程中,点M的运动路径长为________.6.等边三角形ABC的边长为2,在AC,BC边上各有一个动点E,F,满足AE=CF,连接AF,BE相交于点P.(1)∠APB的度数;(2)当E从点A运动到点C时,试求点P经过的路径长;(3)连结CP,直接写出CP长度的最小值.7.如图,AB为半圆O的直径,AB=2,C,D为半圆上两个动点(D在C右侧),且满足∠COD=60°,连结AD,BC相交于点P若点C从A出发按顺时针方向运动,当点D与B重合时运动停止,则点P所经过的路径长为________.8.如图,A(﹣3,0),B(0,3),C(﹣1,4),P,C,M按逆时针顺序排列,动点P在线段AB上,∠C =90°,∠CPM=30°,请求出当P点从A运动到B点时,点M运动的路径时什么?并求出M点运动路径长度.9.如图,矩形ABCD中,AB=6,BC=6,动点P从点A出发,以每秒个单位长度的速度沿线段AD 运动,动点Q从点D出发,以每秒2个单位长度的速度沿折线段D﹣O﹣C运动,已知P、Q同时开始移动,当动点P到达D点时,P、Q同时停止运动.设运动时间为t秒.(1)当t=1秒时,求动点P、Q之间的距离;(2)若动点P、Q之间的距离为4个单位长度,求t的值;(3)若线段PQ的中点为M,在整个运动过程中;直接写出点M运动路径的长度为.10.(2019秋•江岸区校级月考)如图,正△ABC中,AB=2,AD⊥BC于D,P,Q分别是AB,BC上的动点,且PQ=AD,点M在PQ的右上方且PM=QM,∠M=120°,当P从点A运动到点B时,M运动的路径长为.(看成固定三角板滑动处理/或反其道而行之)11.如图,在四边形ABCD中,∠C=60°,∠A=30°,CD=BC.(1)求∠B+∠D的度数.(2)连接AC,探究AD,AB,AC三者之间的数量关系,并说明理由.(3)若BC=2,点E在四边形ABCD内部运动,且满足DE2=CE2+BE2,求点E运动路径的长度.12.已知在扇形AOB中,圆心角∠AOB=120°,半径OA=OB=8.(1)如图1,过点O作OE⊥OB,交弧AB于点E,再过点E作EF⊥OA于点F,则FO的长是,∠FEO=°;(2)如图2,设点P为弧AB上的动点,过点P作PM⊥OA于点M,PN⊥OB于点N,点M,N分别在半径OA,OB上,连接MN,则①求点P运动的路径长是多少?②MN的长度是否是定值?如果是,请求出这个定值;若不是,请说明理由;(3)在(2)中的条件下,若点D是△PMN的外心,直接写出点D运动的路经长.13.如图,AB为⊙O的直径,且AB=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点,过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM、PM.(1)求∠OMP的度数;(2)当点P在半圆上从点B运动到点A时,求内心M所经过的路径长.14.(2019•兴化市模拟)正方形ABCD的边长为4,P为BC边上的动点,连接AP,作PQ⊥PA交CD边于点Q.当点P从B运动到C时,线段AQ的中点M所经过的路径长()A.2B.1C.4D.15.(2019•武汉模拟)如图,半径为2cm,圆心角为90°的扇形OAB的弧AB上有一运动的点P,从点P 向半径OA引垂线PH交OA于点H.设△OPH的内心为I,当点P在弧AB上从点A运动到点B时,内心I所经过的路径长为()A.πB.πC.πD.π16.如图,BC是⊙O的直径,BC=4,M、N是半圆上不与B、C重合的两点,且∠MON=120°,△ABC的内心为E点,当点A在上从点M运动到点N时,点E运动的路径长是()A.B.C.D.17.(2020•河北模拟)如图,在正方形ABCD中,AB=1,P是边BC上的一个动点,由点B开始运动,运动到C停止.连接AP,以AP为直角边向右侧作等腰直角三角形,另一个顶点为Q.则点P从B运动到C的过程中,点Q的运动路径长为()A.πB.C.D.118.无论a取什么实数,点P(a﹣1,2a﹣3)都在直线l上.Q(m,n)是直线l上的点,则(2m﹣n+3)2的值等于.19.如图,已知点C是以AB为直径的半圆的中点,D为弧AC上任意一点,过点C作CE⊥BD于点E,连接AE,若AB=4,则AE的最小值为.20.如图,正方形OABC的边长为2,以O为圆心,EF为直径的半圆经过点A,连接AE,CF相交于点P,将正方形OABC从OA与OF重合的位置开始,绕着点O逆时针旋转90°,交点P运动的路径长是.21.如图,在平面直角坐标系中,点A(8,0),点P(0,m),将线段PA绕着点P逆时针旋转90°,得到线段PB,连接AB,OB,则BO+BA的最小值为.22.如图,P为边长为2的正方形ABCD的边BC上一动点,将线段DP绕P逆时针旋转90°得到线段PE (E为D的对应点),M为线段PE的中点,当点P从点C运动到点B的过程中,点M的运动路径长为____________.23.等边△ABC的边长为18,在AC,BC边上各取一点D,E,连接AE,BD相交于点P,若AE=BD,当D从点A运动到点C时,点P所经过的路径长为.24.(2020•武汉模拟)如图,定直线l经过圆心O,P是半径OA上一动点,AC⊥l于点C,当半径OA绕着点O旋转时,总有OP=OC,若OA绕点O旋转60°时,P、A两点的运动路径长的比值是.25.如图,已知正方形ABCD的边长为4,点P是AB边上一个动点,连接CP,过点P作PC的垂线交AD 于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE=;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.26.如图,正方形ABCD的边长为2,动点E从点A出发,沿边AB﹣BC向终点C运动,以DE为边作正方形DEFG(点D、E、F、G按顺时针方向排列).设点E运动速度为每秒1个单位,运动的时间为x秒.(1)如图1,当点E在AB上时,求证:点G在直线BC上;(2)设正方形ABCD与正方形DEFG重叠部分的面积为S,求S与x之间的函数关系式;(3)直接写出整个运动过程中,点F经过的路径长.。
AE中的运动路径和路径跟随技术解析

AE中的运动路径和路径跟随技术解析AE(Adobe After Effects)是一款非常强大的视觉特效软件,广泛应用于电影、电视制作、广告等领域。
在AE中,运动路径和路径跟随技术是非常常用且重要的功能,可以为动画添加更丰富的运动效果。
本文将深入解析AE中的运动路径和路径跟随技术,帮助读者更好地运用这些技巧。
首先,我们来谈谈AE中的运动路径。
运动路径是指物体在一个时间范围内的移动轨迹,可以是直线、曲线、自定义路径等。
在AE中,我们可以通过关键帧来设置物体在运动路径上的位置和移动方式。
具体操作步骤如下:首先,创建一个新的合成(composition),然后在时间轴面板(timeline panel)中选择要添加运动路径的物体图层。
接下来,在时间轴面板上选中该物体图层,在属性面板(property panel)中找到“Transform”选项。
展开“Transform”选项,可以看到“Position”属性。
点击右侧的时钟图标,可以为该属性添加关键帧。
然后,在时间轴上移动到新的时间点,再次修改“Position”属性的值,这样就创建了第二个关键帧。
在时间轴上可以看到两个关键帧,AE会自动计算并显示两个关键帧之间的运动路径。
可以通过调整关键帧之间的位置和属性值,来实现不同的运动效果。
另外,AE还提供了一些高级的运动路径调整工具,例如贝塞尔曲线编辑器(Bezier Curve Editor)和路径调整工具(Path Adjustment Tool),可以通过这些工具来精确调整运动路径的形状和曲线。
接下来,我们来探讨一下AE中的路径跟随技术。
路径跟随是指物体或文字沿着预先设定好的路径进行运动的效果。
在AE中,可以通过几个简单的步骤实现路径跟随效果。
首先,创建一个新的合成,然后在时间轴面板中选择要添加路径跟随效果的物体或文字图层。
接下来,在时间轴面板上选中该图层,在属性面板中找到“Position”属性。
点击右侧的时钟图标,为该属性添加关键帧。
路径的概念在物理中的应用(一)

路径的概念在物理中的应用(一)路径的概念在物理中的应用1. 轨迹和位移路径•轨迹:指的是物体运动时所经历的路径。
当一个物体在空间中运动时,可以通过观察它的位置变化得到一条连续的轨迹。
•位移路径:指的是物体从初始位置到最终位置之间的路径。
位移路径可以是直线、曲线、圆弧等形式。
2. 光的传输路径•光线传输路径:当光通过介质传播时,它会沿着一定的路径传输。
光的传输路径可以根据介质的不同而有所变化,例如在空气中的光线传输路径与在水中的光线传输路径是不同的。
•光的反射路径:当光从一个介质反射到另一个介质时,它会按照一定的规律发生反射。
通过研究光的反射路径,可以了解到光的反射规律,例如光的入射角等于反射角。
3. 电流的路径•电流路径:当电流在电路中流动时,电子会沿着一条闭合的路径流动。
电流路径的确定与电路的布局和元件的连接方式有关,例如在串联电路中,电流沿着从正极到负极的路径流动。
4. 直线运动的路径•经典力学中,当物体沿直线运动时,它的路径可以用一条直线来表示。
根据牛顿第一定律,物体在未受到力的作用时,会保持匀速直线运动。
5. 弧线运动的路径•当物体在弯曲的轨道上做运动时,它的路径可以被描述为一条弧线。
这种弧线运动常见于圆周运动或曲线运动,例如行星绕太阳的运动轨道。
6. 粒子在电磁场中的路径•在电磁场中,带电粒子会受到电场力和磁场力的作用。
根据洛伦兹力的定律,粒子在电磁场中的路径可以被描述为一条带曲线的轨迹。
这种应用在粒子加速器和磁共振成像等领域具有重要意义。
以上是在物理中应用路径概念的一些例子,这些应用对于理解物体运动、光的传播、电路、力学等领域起到了重要的作用。
路径的概念帮助我们描述和分析物理现象,推导出相应的物理定律和规律,进而实现对自然界和人造系统的控制和应用。
点运动的路径长问题

图5
图6
例 3 如图 7 , 正 方形 A B C D 的边 长 是 2 , 是
△A P B , 联结 B B 可 得 A D 的中点 , 点 E从点 A出发 , 沿A B运 动到点 B停
/ _P A B=/P B = 9 0 。 , 在 P从 点 0到 点 Ⅳ 的运动
1
一
4
3 2 1 >j
o
—
4
3 2 l
、
D 0 2 = ’ C - p c = √ 5 .
/
。 j
A P D
M 4
-
l
2
0 l
- ’
’
2
3
Ⅳ
3
N c
图 1
图 2
分析
如 图 2, 在线段 O N上另取点 P , 构 成 = = 因 为
( 2 ) 当 AA D P是 等腰 三角 形 时 , 求 m 的值 ; ( 3 ) 设 过 点 P, M, B的抛 物 线 与 轴 的正 半 轴
( z o l o年 江 苏省 南京市数 学 中考试 题 ) 分析 ( 1 ) Y= 2 x +2 , 其中 0 ≤ ≤2 .
交于点 E , 过点 0作直线 M E的垂线 , 垂足为 日 ( 如 图1 2 ) , 当点 P从原 点 0向点 C运 动 时 , 点 日也 随
止. 联结 E M 并延长交射线 C D 于点 F, 过 点 作 F的垂线 交射线 B C于点 G, 联结 E G, F G .
过程中始终存在 △ / l 一AA B B , 且相似 比为 ,
所 以点 B的 路 径 B = P 尸 , 当P P =( ) ~时 , 运
AE中的动路径技巧

AE中的动路径技巧在AE(Adobe After Effects)中,动路径技巧是一种强大的工具,可以让我们创建精确而流畅的动画效果。
通过利用动路径技巧,我们可以轻松地控制和调整对象在画面中的运动路径,使其符合我们的设计需求。
本文将介绍AE中的一些常用动路径技巧,以帮助读者提高动画制作的效率和质量。
一、创建动路径在AE中,我们可以使用多种方式来创建动路径。
最常见的方法是使用“形状层”和“路径”工具来绘制路径。
首先,我们可以创建一个新的形状层,并选择“路径”工具。
然后,我们可以通过点击和拖动鼠标来绘制路径。
完成路径绘制后,我们可以调整路径的顶点和曲线,以满足动画效果的要求。
二、调整动路径一旦创建了动路径,我们就可以对其进行调整,以达到我们想要的运动效果。
AE提供了一些工具和技巧,可用于精确调整动路径。
我们可以使用“直接选择工具”来选择和移动路径上的顶点。
通过调整顶点的位置和曲率,我们可以改变路径的形状和方向。
此外,AE还提供了“贝塞尔曲线”工具,可以调整路径上的曲线,使其更加平滑或锐利。
三、运用控制点除了调整路径上的顶点,我们还可以使用控制点来控制动路径的形状和运动方式。
控制点是位于路径上的特殊点,用于控制路径的切线和速度变化。
通过调整控制点的位置和方向,我们可以改变动路径的速度和曲率。
在AE中,我们可以使用“贝塞尔控制器”来添加和调整控制点。
通过点击和拖动控制器,我们可以自由地调整控制点的位置和曲线,以实现各种不同的动画效果。
四、运动跟随路径在AE中,我们可以将对象与动路径关联,使其沿着路径运动。
通过运动跟随路径技巧,我们可以实现对象在画面中的自动移动和旋转。
要实现运动跟随路径,我们只需将对象与路径进行关联,并设置关键帧来控制对象的起始位置、运动路径和结束位置。
通过调整关键帧的时间和数值,我们可以控制对象在路径上的运动速度和运动方式。
五、使用“插值”在AE中,我们可以使用“插值”来调整动路径的运动方式和效果。
第12讲:运动路径长度问题解析版

第12讲:运动路径长度问题解析版1.《隐圆模型》2.《共顶点模型》-也可称“手拉手模型”3.《主从联动模型》-也可称“瓜豆原理模型”4.《旋转问题》—旋转相似模型5.线段垂直平分线——到线段两端点距离相等的动点一定在这条线段的垂直平分线上6.角平分线——到角两边距离相等的动点一定在这个角的角平分线上7.三角形中位线——动点到某条线的距离恒等于某平行线段的一半8.平行线分线段成比例——动点到某条线的距离与某平行线段成比例9.两平行线的性质——平行线间的距离,处处相等一、路径为圆弧型解题策略:①作出隐圆,找到圆心②作出半径,求出定长二、路径为直线型解题策略:①利用平行定距法或者角度固定法确定动点运动路径为直线型②确定动点的起点与终点,计算出路径长度即可三、路径为往返型解题策略:①通常为《主从联动模型》的衍生版②确定动点的起点与终点,感知运动过程中的变化③找出动点运动的最远点【例题1】如图,等腰Rt△AOB中,△AOB=90°,OA=,△O与AB相切,分别交OA、OB于N、M,以PB为直角边作等腰Rt△BPQ,点P在弧MN上由点M运动到点N,则点Q运动的路径长为()A.B.C.D.解题标签:《共顶点模型》中的旋转相似、《隐圆模型》中的动点定长模型、《主从联动模型》【解析】如图,连接OP,AQ,设△O与AB相切于C,连接OC,则OC△AB,△OA=OB,△AOB=90°,OB=,△AB=2,OP=OC=AB=,△△ABO和△QBP均为等腰直角三角形,△=,△ABO=△QBP=45°,△=,△ABQ=△OBP,△△ABQ△△OBP,△△BAQ=△BOP,=,即=,△AQ=,又△点P在弧MN上由点M运动到点N,△0°≤△BOP≤90°,△0°≤△BAQ≤90°,△点Q的运动轨迹为以A为圆心,AQ长为半径,圆心角为90°的扇形的圆弧,△点Q运动的路径长为=,【例题2】已知△O,AB是直径,AB=4,弦CD△AB且过OB的中点,P是劣弧BC上一动点,DF垂直AP于F,则P从C运动到B的过程中,F运动的路径长度()A.πB.C.πD.2【分析】解题标签:“定边对直角”确定隐圆模型【解析】作DQ△AC于Q,如图,当P点在C点时,F点与Q重合;当P点在B点时,F点与E点重合,△△AFD=90°,△点F在以AD为直径的圆上,△点F运动的路径为,△弦CD△AB且过OB的中点,△OE=OD,CE=DE=,AC=AC=2,△△DOE=60°,△△DAC=60°,△△ACD为等边三角形,△MQ和ME为中位线,△MQ=,△QME=60°,△F运动的路径长度==.故选:A.【例题3】如图,已知扇形AOB中,OA=3,△AOB=120°,C是在上的动点.以BC 为边作正方形BCDE,当点C从点A移动至点B时,点D经过的路径长是________.【分析】解题标签:“定边对定角”确定隐圆模型、主从联动模型【解析】如图所示,易得点D的运动轨迹的长为=2 π.【例题4】等边三角形ABC的边长为2,在AC,BC边上各有一个动点E,F,满足AE =CF,连接AF,BE相交于点P.(1)△APB的度数;(2)当E从点A运动到点C时,试求点P经过的路径长;(3)连结CP,直接写出CP长度的最小值.【解析】(1)△△ABC为等边三角形,△AB=AC,△C=△CAB=60°,又△AE=CF,在△ABE和△CAF中,,△△ABE△△CAF(SAS),△AF=BE,△ABE=△CAF.又△△APE=△BPF=△ABP+△BAP,△△APE=△BAP+△CAF=60°.△△APB=180°﹣△APE=120°.(2)如图1,△AE=CF,△点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,且△ABP=△BAP=30°,△△AOB=120°,又△AB=2,△OA=2,点P的路径是l===;(3)如图2,△AE=CF,△点P的路径是一段弧,△当点E运动到AC的中点时,CP长度的最小,即点P为△ABC的中心,过B作BE′△AC于E′,△PC=BE′,△△ABC是等边三角形,△BE′=BC=3,△PC=2.△CP长度的最小值是2.方法二:由图1可知,CP最小值等于CO减OA,OA就是那圆弧的半径,可得PC的最小值为2.【例题5】已知线段AB=8,C、D是AB上两点,且AC=2,BD=4,P是线段CD上一动点,在AB同侧分别作等腰三角形APE和等腰三角形PBF,M为线段EF的中点,若△AEP=△BFP,则当点P由点C移动到点D时,点M移动的路径长度为4﹣3.【解析】如图,分别延长AE、BF交于点H.△△APE和△PBF都是等腰三角形,且△AEP=△BFP△△A=△FPB,△AH△PF,同理,BH△PE,△四边形EPFH为平行四边形,△EF与HP互相平分.△M为EF的中点,△M为PH中点,即在P的运动过程中,M始终为PH的中点,所以M的运行轨迹为三角形HCD的中位线QN.△CD=AB﹣AC﹣BD=8﹣6,△QN=CD=4﹣3,即M的移动路径长为4﹣3.故答案是:4﹣3.【例题6】.已知线段AB=10,P是线段AB上一动点,在AB同侧分别作等边三角形APE 和等边三角形PBF,G为线段EF的中点,点P由点A移动到点B时,G点移动的路径长度为5.【解析】如图,分别延长AE、BF交于点H,△△A=△FPB=60°,△AH△PF,△△B=△EP A=60°,△BH△PE,△四边形EPFH为平行四边形,△EF与HP互相平分.△G为EF的中点,△G正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为△HAB的中位线MN.△MN=AB=5,即G的移动路径长为5.故答案为:5【例题7】如图,AB为△O的直径,AB=3,弧AC的度数是60°,P为弧BC上一动点,延长AP到点Q,使AP•AQ=AB2.若点P由B运动到C,则点Q运动的路径长为3.【解析】连接BQ,如图,△AB为△O的直径,△△APB=90°,△AP•AQ=AB2.即=,而△BAP=△QAB,△△ABP△△AQB,△△ABQ=△APB=90°,△BQ为△O的切线,点Q运动的路径长为切线长,△弧AC的度数是60°,△△AOC=60°,△△OAC=60°,当点P在C点时,△BAQ=60°,△BQ=AB=3,即点P由B运动到C,则点Q运动的路径长为3.故答案为3.【例题8】.如图,矩形ABCD中,AB=4,AD=6,点E在边AD上,且AE:ED=1:2.动点P 从点A出发,沿AB运动到点B停止.过点E作EF△PE交射线BC于点F.设点M 是线段EF的中点,则在点P运动的整个过程中,点M的运动路径长为________.【答案】4【解析】如图所示:过点M作GH△AD.△AD△CB,GH△AD,△GH△BC.在△EGM和△FHM中,△△EGM△△FHM.△MG=MH.△点M的轨迹是一条平行于BC的线段当点P与A重合时,BF1=AE=2,当点P与点B重合时,△F2+△EBF1=90△,△BEF1+△EBF1=90△,△△F2=△EBF1.△△EF1B=△EF1F2,△△EF1B△△△EF1F2.△ ,即△F1F2=8,△M1M2是△EF1F2的中位线,△M1M2= F1F2=4.故答案为:4.【例题9】.正方形ABCD的边长为4,P为BC边上的动点,连接AP,作PQ⊥P A交CD 边于点Q.当点P从B运动到C时,线段AQ的中点M所经过的路径长()A.2B.1C.4D.【解析】如图,连接AC,设AC的中点为O′.设BP的长为xcm,CQ的长为ycm.∵四边形ABCD是正方形,∴∠B=∠C=90°∵PQ⊥AP,∴∠APB+∠QPC=90°∠APB+∠BAP=90°∴∠BAP=∠QPC∴△ABP∽△PCQ∴=,即=,∴y=﹣x2+x=﹣(x﹣2)2+1(0<x<4);∴当x=2时,y有最大值1cm.易知点M的运动轨迹是M→O→M,CQ最大时,MO=CQ=,∴点M的运动轨迹的路径的长为2OM=1,故选:B.经典练习:1.如图,Rt△ABC中,BC=4,AC=8,Rt△ABC的斜边在x轴的正半轴上,点A与原点重合,随着顶点A由O点出发沿y轴的正半轴方向滑动,点B也沿着x轴向点O滑动,直到与点O重合时运动结束.在这个运动过程中,点C运动的路径长是8﹣12.【分析】解题标签:“运动路径为来回型”【解析】△当A从O到现在的点A处时,如图2,此时C′A△y轴,点C运动的路径长是CC′的长,△AC′=OC=8,△AC′△OB,△△AC′O=△COB,△cos△AC′O=cos△COB==,△=,△OC′=4,△CC′=4﹣8;△当A再继续向上移动,直到点B与O重合时,如图3,此时点C运动的路径是从C′到C,长是CC′,CC′=OC′﹣BC=4﹣4,综上所述,点C运动的路径长是:4﹣8+4﹣4=8﹣12;故答案为:8﹣12.2.如图,OM⊥ON,A、B分别为射线OM、ON上两个动点,且OA+OB=5,P为AB的中点.当B由点O向右移动时,点P移动的路径长为()A.2B.2C.D.5【分析】解题标签:“利用解析法计算几何路径长”【解析】建立如图坐标系.设OB=t,则OA=5﹣t,∴B(t,0),A(0,5﹣t),∵AP=PB,∴P(,),令x=,y=,消去t得到,y=﹣x+(0≤x≤),∴点P的运动轨迹是线段HK,H(0,),K(,0),∴点P的运动路径的长为=,故选:C.3.如图,在等腰Rt△ABC中,AC=BC=,点P在以斜边AB为直径的半圆上,M为PC的中点,当点P沿半圆从点A运动至点B时,点M运动的路径长是.【解析】如图,连接OP,OC,取OC的中点K,连接MK.△AC=BC=,△ACB=90°,△AB==2,△OP=AB=1,△CM=MP,CK=OK,△MK=OP=,△当点P沿半圆从点A运动至点B时,点M运动的路径是以K为圆心,长为半径的半圆,△点M运动的路径长=•2•π•=,故答案为.4.如图,AB为半圆O的直径,AB=2,C,D为半圆上两个动点(D在C右侧),且满足△COD=60°,连结AD,BC相交于点P若点C从A出发按顺时针方向运动,当点D与B重合时运动停止,则点P所经过的路径长为________.【答案】解:点C从点A运动到点D与点B从何时,AD与BC的相点P运动的轨迹是一条弧,C,D 两点运动到恰好是半圆的三等分点时,AD与BC的相点P是弧的最高点,作AP,BP的中垂线,两线交于点E,点E是弧APB的圆心;由题意知:AD=BD,△PAB=△PBA=30°,连接AE,DE,根据圆的对称性得出A、O、E三点在同一直线上,易证△ADE是一个等边三角形,△AED=60°,在Rt△ADO中,△DOA=90°,△PAB=30°,AO=1,故AD=,△AE=AD=弧APB的长度==。
描述运动轨迹

描述运动轨迹运动轨迹是指运动员在进行运动过程中,身体各部位的运动路径。
它在运动生物力学、运动训练学和运动表现等方面具有重要意义。
本文将从运动轨迹的定义、分类、应用、测量与分析、优化策略等方面进行详细阐述。
一、运动轨迹的定义与重要性运动轨迹是指运动员在进行运动过程中,身体各部位的运动路径。
它是运动表现的基础,直接影响着运动员的技能水平和比赛成绩。
了解和掌握运动轨迹,对于提高运动技能、优化运动表现具有重要意义。
二、运动轨迹的分类及特点运动轨迹可分为线性轨迹、曲线轨迹和复杂轨迹。
线性轨迹表现为直线运动,如跑步、跳跃等;曲线轨迹表现为物体在空间中沿一定曲线运动,如投掷、击打等;复杂轨迹则包含多种曲线和折线,如花样滑冰、体操等。
不同类型的运动轨迹具有不同的特点,如速度、加速度、关节角度等。
三、运动轨迹在运动技能学习与训练中的应用运动轨迹在运动技能学习与训练中具有重要作用。
通过对运动轨迹的分析和比较,运动员和教练可以发现运动过程中的不足,从而针对性地进行改进和提高。
此外,运动轨迹还可作为评价运动员技能水平的重要指标。
四、运动轨迹在运动表现提升中的作用运动轨迹对运动表现的提升具有直接影响。
优化运动轨迹可以使运动员在比赛中发挥更高的水平,提高运动成绩。
例如,在田径项目中,优化投掷运动的轨迹可以提高投掷距离;在球类项目中,优化击球运动的轨迹可以提高命中率。
五、运动轨迹的测量与分析方法运动轨迹的测量与分析方法主要有以下几种:高速摄影、运动捕捉系统、三维重建技术、肌电信号检测等。
这些方法可以为运动员和教练提供详细的运动轨迹数据,为运动训练提供科学依据。
六、运动轨迹的优化策略运动轨迹的优化策略包括:技术改进、训练方法调整、运动器材改进等。
运动员和教练可根据运动轨迹的分析结果,制定针对性的优化方案,提高运动表现。
七、总结运动轨迹在运动生物力学、运动训练学和运动表现等方面具有重要意义。
了解和掌握运动轨迹,有助于提高运动员的技能水平和比赛成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3运动路径一.填空题(共6小题)1.(2010•南京)如图,正方形ABCD的边长是2,M是AD的中点,点E从点A出发,沿AB运动到点B停止,连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC于点G,连接EG、FG.(1)设AE=x时,△EGF的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围;(2)P是MG的中点,请直接写出点P的运动路线的长.2.(2012•福州)如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=,PD=.(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q 的速度;(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.3.(2010•桂林)如图:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是.4.(2013•桂林)如图,已知线段AB=10,AC=BD=2,点P是CD上一动点,分别以AP、PB为边向上、向下作正方形APEF和PHKB,设正方形对角线的交点分别为O1、O2,当点P从点C运动到点D时,线段O1O2中点G的运动路径的长是.5.(2014•义乌市)等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.6.(2014•连云港)某数学兴趣小组对线段上的动点问题进行探究,已知AB=8.问题思考:如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC、BPEF.(1)当点P运动时,这两个正方形的面积之和是定值吗?若是,请求出;若不是,请求出这两个正方形面积之和的最小值.(2)分别连接AD、DF、AF,AF交DP于点K,当点P运动时,在△APK、△ADK、△DFK 中,是否存在两个面积始终相等的三角形?请说明理由.问题拓展:(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向点D运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长.(4)如图3,在“问题思考”中,若点M、N是线段AB上的两点,且AM=BN=1,点G、H 分别是边CD、EF的中点,请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值.5.3运动路径5.3运动路径参考答案与试题解析一.填空题(共6小题)1.(2010•南京)如图,正方形ABCD的边长是2,M是AD的中点,点E从点A出发,沿AB运动到点B停止,连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC于点G,连接EG、FG.(1)设AE=x时,△EGF的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围;(2)P是MG的中点,请直接写出点P的运动路线的长.考点:正方形的性质;根据实际问题列二次函数关系式;全等三角形的判定与性质;相似三角形的判定与性质.专题:压轴题.分析:(1)①E、A重合时,三角形EFG的底和高都等于正方形的边长,由此可得到其面积;②E、A不重合时;易证得△AEM≌△FDM,则EM=FM,由勾股定理易求得EM的长,即可得出EF的长;下面求MG的长,过M作MN⊥BC于N,则AB=MN=2AM,由于∠AME和∠NMG同为∠EMN的余角,由此可证得△AEM∽△NGM,根据相似三角形得到的关于AM、MN、EM、MG的比例关系式,即可求得MG的表达式,进而可由三角形的面积公式求出y、x的函数关系式;(2)可分别作出E、A重合和E、B重合时P点的位置(即P为A与E重合时得到的对应点,P′为E与B重合时的对应点),此时可发现PP′正好是△EGG′的中位线,则P点运动的距离为GG′的一半;Rt△BMG′中,MG⊥BG′,易证得∠MBG=∠GMG′,根据∠MBG的正切值即可得到GG′、GM(即正方形的边长)的比例关系,由此得解.解答:解:(1)当点E与点A重合时,x=0,y=×2×2=2当点E与点A不重合时,0<x≤2在正方形ABCD中,∠A=∠ADC=90°∴∠MDF=90°,∴∠A=∠MDF在△AME和△DMF中,∴△AME≌△DMF(ASA)∴ME=MF在Rt△AME中,AE=x,AM=1,ME=∴EF=2ME=2过M作MN⊥BC,垂足为N(如图)则∠MNG=90°,∠AMN=90°,MN=AB=AD=2AM ∴∠AME+∠EMN=90°∵∠EMG=90°∴∠GMN+∠EMN=90°∴∠AME=∠GMN∴Rt△AME∽Rt△NMG∴=,即=∴MG=2ME=2∴y=EF×MG=×2×2=2x2+2∴y=2x2+2,其中0≤x≤2;(2)如图,PP′即为P点运动的距离;在Rt△BMG′中,MG⊥BG′;∴∠MBG=∠G′MG=90°﹣∠BMG;∴tan∠MBG==2,∴tan∠GMG′=tan∠MBG==2;∴GG′=2MG=4;△MGG′中,P、P′分别是MG、MG′的中点,∴PP′是△MGG′的中位线;∴PP′=GG′=2;即:点P运动路线的长为2.点评:此题考查了正方形的性质,等腰三角形、相似三角形、全等三角形的判定和性质以及二次函数等知识;综合性强,难度较大.2.(2012•福州)如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=8﹣2t,PD=t.(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q 的速度;(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.考点:相似三角形的判定与性质;一次函数综合题;勾股定理;菱形的判定与性质.专题:代数几何综合题;压轴题.分析:(1)根据题意得:CQ=2t,PA=t,由Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,即可得tanA==,则可求得QB与PD的值;(2)易得△APD∽△ACB,即可求得AD与BD的长,由BQ∥DP,可得当BQ=DP 时,四边形PDBQ是平行四边形,即可求得此时DP与BD的长,由DP≠BD,可判定▱PDBQ不能为菱形;然后设点Q的速度为每秒v个单位长度,由要使四边形PDBQ 为菱形,则PD=BD=BQ,列方程即可求得答案;(3)设E是AC的中点,连接ME.当t=4时,点Q与点B重合,运动停止.设此时PQ的中点为F,连接EF,由△PMN∽△PQC.利用相似三角形的对应边成比例,即可求得答案.解答:解:(1)根据题意得:CQ=2t,PA=t,∴QB=8﹣2t,∵在Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,∴∠APD=90°,∴tanA==,∴PD=t.故答案为:(1)8﹣2t,t.(2)不存在在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB=10∵PD∥BC,∴△APD∽△ACB,∴,即,∴AD=t,∴BD=AB﹣AD=10﹣t,∵BQ∥DP,∴当BQ=DP时,四边形PDBQ是平行四边形,即8﹣2t=,解得:t=.当t=时,PD==,BD=10﹣×=6,∴DP≠BD,∴▱PDBQ不能为菱形.设点Q的速度为每秒v个单位长度,则BQ=8﹣vt,PD=t,BD=10﹣t,要使四边形PDBQ为菱形,则PD=BD=BQ,当PD=BD时,即t=10﹣t,解得:t=当PD=BQ,t=时,即=8﹣,解得:v=当点Q的速度为每秒个单位长度时,经过秒,四边形PDBQ是菱形.(3)如图2,以C为原点,以AC所在的直线为x轴,建立平面直角坐标系.依题意,可知0≤t≤4,当t=0时,点M1的坐标为(3,0),当t=4时点M2的坐标为(1,4).设直线M1M2的解析式为y=kx+b,∴,解得,∴直线M1M2的解析式为y=﹣2x+6.∵点Q(0,2t),P(6﹣t,0)∴在运动过程中,线段PQ中点M3的坐标(,t).把x=代入y=﹣2x+6得y=﹣2×+6=t,∴点M3在直线M1M2上.过点M2作M2N⊥x轴于点N,则M2N=4,M1N=2.∴M1M2=2∴线段PQ中点M所经过的路径长为2单位长度.点评:此题考查了相似三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质以及一次函数的应用.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.3.(2010•桂林)如图:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是3.考点:梯形中位线定理;等边三角形的性质.专题:动点型.分析:分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出G为PH中点,则G的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度即可.解答:解:如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.∵CD=10﹣2﹣2=6,∴MN=3,即G的移动路径长为3.点评:本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.4.(2013•桂林)如图,已知线段AB=10,AC=BD=2,点P是CD上一动点,分别以AP、PB为边向上、向下作正方形APEF和PHKB,设正方形对角线的交点分别为O1、O2,当点P从点C运动到点D时,线段O1O2中点G的运动路径的长是3.考点:正方形的性质;轨迹.专题:压轴题.分析:根据正方形的性质以及勾股定理即可得出正方形对角线的长,进而得出线段O1O2中点G的运动路径的长.解答:解:如图所示:当P移动到C点以及D点时,得出G点移动路线是直线,利用正方形的性质即线段O1O2中点G的运动路径的长就是O2O″的长,∵线段AB=10,AC=BD=2,当P与C重合时,以AP、PB为边向上、向下作正方形APEF和PHKB,∴AP=2,BP=8,则O1P=,O2P=4,∴O2P=O2B=4,当P′与D重合,则P′B=2,则AP′=8,∴O′P′=4,O″P′=,∴H′O″=BO″=,∴O2O″=4﹣=3.故答案为:3.点评:此题主要考查了正方形的性质以及勾股定理等知识,根据已知得出G点移动的路线是解题关键.5.(2014•义乌市)等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.考点:相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.专题:证明题;压轴题;动点型.分析:(1)①证明△ABE≌△CAF,借用外角即可以得到答案;②利用勾股定理求得AF 的长度,再用平行线分线段成比例定理或者三角形相似定理求得的比值,即可以得到答案.(2)当点F靠近点C的时候点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,继而求得半径和对应的圆心角的度数,求得答案.点F靠近点B时,点P的路径就是过点B向AC做的垂线段的长度;解答:(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=180°﹣∠APE=120°.②∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE∽△ACF,∴,即,所以AP•AF=12(2)若AF=BE,有AE=BF或AE=CF两种情况.①当AE=CF时,点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,且∠ABP=∠BAP=30°,∴∠AOB=120°,又∵AB=6,∴OA=,点P的路径是.②当AE=BF时,点P的路径就是过点C向AB作的垂线段的长度;因为等边三角形ABC的边长为6,所以点P的路径为:.所以,点P经过的路径长为或3.点评:本题考查了等边三角形性质的综合应用以及相似三角形的判定及性质的应用,解答本题的关键是注意转化思想的运用.6.(2014•连云港)某数学兴趣小组对线段上的动点问题进行探究,已知AB=8.问题思考:如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC、BPEF.(1)当点P运动时,这两个正方形的面积之和是定值吗?若是,请求出;若不是,请求出这两个正方形面积之和的最小值.(2)分别连接AD、DF、AF,AF交DP于点K,当点P运动时,在△APK、△ADK、△DFK 中,是否存在两个面积始终相等的三角形?请说明理由.问题拓展:(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向点D运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长.(4)如图3,在“问题思考”中,若点M、N是线段AB上的两点,且AM=BN=1,点G、H 分别是边CD、EF的中点,请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值.考点:四边形综合题.专题:几何综合题;压轴题.分析:(1)设AP=x,则PB=8﹣x,根据正方形的面积公式得到这两个正方形面积之和=x2+(8﹣x)2,配方得到2(x﹣4)2+32,然后根据二次函数的最值问题求解.(2)根据PE∥BF求得PK=,进而求得DK=PD﹣PK=a﹣=,然后根据面积公式即可求得.(3)本问涉及点的运动轨迹.PQ的中点O所经过的路径是三段半径为4,圆心角为90°的圆弧,如答图3所示;(4)本问涉及点的运动轨迹.GH中点O的运动路径是与AB平行且距离为3的线段XY上,如答图4﹣1所示;然后利用轴对称的性质,求出OM+OB的最小值,如答图4﹣2所示.解答:解:(1)当点P运动时,这两个正方形的面积之和不是定值.设AP=x,则PB=8﹣x,根据题意得这两个正方形面积之和=x2+(8﹣x)2=2x2﹣16x+64=2(x﹣4)2+32,所以当x=4时,这两个正方形面积之和有最小值,最小值为32.(2)存在两个面积始终相等的三角形,它们是△APK与△DFK.依题意画出图形,如答图2所示.设AP=a,则PB=BF=8﹣a.∵PE∥BF,∴,即,∴PK=,∴DK=PD﹣PK=a﹣=,∴S△APK=PK•PA=••a=,S△DFK=DK•EF=•(8﹣a)=,∴S△APK=S△DFK.(3)当点P从点A出发,沿A→B→C→D的线路,向点D运动时,不妨设点Q在DA边上,若点P在点A,点Q在点D,此时PQ的中点O即为DA边的中点;若点Q在DA边上,且不在点D,则点P在AB上,且不在点A.此时在Rt△APQ中,O为PQ的中点,所以AO=PQ=4.所以点O在以A为圆心,半径为4,圆心角为90°的圆弧上.PQ的中点O所经过的路径是三段半径为4,圆心角为90°的圆弧,如答图3所示:所以PQ的中点O所经过的路径的长为:×2π×4=6π.(4)点O所经过的路径长为3,OM+OB的最小值为.如答图4﹣1,分别过点G、O、H作AB的垂线,垂足分别为点R、S、T,则四边形GRTH为梯形.∵点O为中点,∴OS=(GR+HT)=(AP+PB)=4,即OS为定值.∴点O的运动路径在与AB距离为4的平行线上.∵MN=6,点P在线段MN上运动,且点O为GH中点,∴点O的运动路径为线段XY,XY=MN=3,XY∥AB且平行线之间距离为4,点X与点A、点Y与点B之间的水平距离均为2.5.如答图4﹣2,作点M关于直线XY的对称点M′,连接BM′,与XY交于点O.由轴对称性质可知,此时OM+OB=BM′最小.在Rt△BMM′中,MM′=2×4=8,BM=7,由勾股定理得:BM′==.∴OM+OB的最小值为.点评:本题是中考压轴题,难度较大.解题难点在于分析动点的运动轨迹,需要很好的空间想象能力和作图分析能力;此外本题还综合考查了二次函数、整式运算、四边形、中位线、相似、轴对称与勾股定理等众多知识点,是一道好题.。