九年级动点问题知识点

合集下载

九年级动点几何知识点

九年级动点几何知识点

九年级动点几何知识点动点几何是数学中的一个重要分支,主要研究平面及空间中的动点所固有的性质,涉及到直线、曲线、轨迹等几何概念。

九年级的动点几何知识点包括直线的位置关系、平行线与角的性质、相交线与角的性质等。

以下是对九年级动点几何知识点的详细介绍:一、直线的位置关系在平面几何中,两条直线的位置关系有重合、相交和平行三种情况。

如果两条直线重合,则它们完全重合,所有的点都是重合的。

如果两条直线相交,则它们有一个或者多个交点。

如果两条直线平行,则它们始终保持相同的距离,永远不会相交。

二、平行线与角的性质两条平行线之间的夹角称为同位角,同位角具有以下性质:1. 同位角相等:如果一条直线与一对平行线相交,那么同位角必定相等。

2. 内错角互补:如果两条平行线被一条截断,则同位角相互之和等于180度。

3. 外错角互补:如果一条直线与两条平行线相交,那么外错角相互之和等于180度。

三、相交线与角的性质在平面几何中,当两条直线相交时,可以得到许多有趣的角。

其中一些常见的角包括:1. 对顶角:当两条直线相交时,形成的两对相对的角称为对顶角。

对顶角相等。

2. 邻补角:当两条直线相交时,形成的相邻的补角称为邻补角。

邻补角之和等于180度。

四、动点的轨迹动点的轨迹是动点在平面上所经过的所有点的集合。

在动点几何中,常见的轨迹有:1. 直线的轨迹:动点在平面上沿着一条直线运动,其轨迹就是这条直线。

2. 圆的轨迹:动点在平面上距离一个固定点的距离始终相等,其轨迹就是一个圆。

3. 椭圆的轨迹:动点在平面上距离两个固定点的距离之和始终相等,其轨迹就是一个椭圆。

五、实际应用动点几何在实际生活中有着广泛的应用。

例如,我们可以利用动点几何的原理来设计道路、桥梁和建筑物,以确保它们的稳定性和平衡性。

此外,动点几何还可以应用于机器人、航天器和汽车的轨迹规划等领域,以实现精确控制和导航。

总结:动点几何是九年级数学的一个重要知识点,涉及到直线的位置关系、平行线与角的性质、相交线与角的性质以及动点的轨迹等内容。

中考动点知识点总结

中考动点知识点总结

中考动点知识点总结一、动点的概念动点是指在一定时间内作出某种运动的物体所达到的位置。

在物理学中,动点是指移动的物体通过一条轨迹,从一个位置到达另一个位置的过程。

动点的位置可以用坐标表示,它的运动状态可以用速度、加速度等物理量描述。

二、动点的描述1. 位置的描述动点的位置可以用坐标来表示,通常用直角坐标系或极坐标系来描述。

在直角坐标系中,动点的位置由横坐标和纵坐标来表示,而在极坐标系中,动点的位置由极径和极角来表示。

2. 运动状态的描述动点的运动状态可以用速度和加速度等物理量来描述。

速度是指动点在单位时间内所能走过的距离,它的方向与动点的运动方向一致。

加速度是指动点在单位时间内速度变化的大小,它的方向与速度的变化方向一致。

三、动点的运动规律1. 匀速直线运动当动点在直线上以恒定的速度运动时,称为匀速直线运动。

在匀速直线运动中,动点的位移、速度和加速度都是恒定的,它们的大小和方向都不会改变。

2. 变速直线运动当动点在直线上的速度不断变化时,称为变速直线运动。

在变速直线运动中,动点的位移、速度和加速度都会随着时间的变化而变化,它们之间存在一定的函数关系。

3. 运动图像动点运动的轨迹称为运动图像。

运动图像可以是直线、曲线、圆等不同形状。

在运动图像中,动点的位置和运动状态都可以用函数来描述。

四、动点的运动方程1. 匀速直线运动的运动方程在匀速直线运动中,动点的位移与时间成正比,它们之间的函数关系可以用数学方程来表示。

位移与时间之间的函数关系可以表示为:x = v * t + x0,其中x是动点在时间t时的位移,v是动点的速度,x0是动点在初始时刻的位置。

2. 变速直线运动的运动方程在变速直线运动中,动点的位置、速度和加速度之间存在一定的函数关系。

根据运动学的基本原理,可以得到变速直线运动的运动方程:x = x0 + v0 * t + (1/2) * a * t^2,其中x0是动点在初始时刻的位置,v0是动点在初始时刻的速度,a是动点的加速度。

九年级中考压轴——动点问题集锦

九年级中考压轴——动点问题集锦

九年级中考压轴——动点问题集锦1、已知等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上沿AB方向以1厘米/秒的速度向B点运动。

过点M、N分别作AB边的垂线,与△ABC的其它边交于P、Q两点,线段MN运动的时间为t秒。

1) 当四边形MNQP为矩形时,有MN=QP,即MN在运动t秒后,线段QP的长度为3+t。

因为三角形ABC是等边三角形,所以三角形ABC的高等于边长的一半,即2根号3.因此,四边形MNQP的面积为2根号3*t平方+2t。

2) 四边形MNQP的面积为S,运动时间为t。

因为三角形ABC是等边三角形,所以三角形ABC的高等于边长的一半,即2根号3.因此,四边形MNQP的高为2根号3.由于四边形MNQP是矩形,所以MN=QP=3+t,PQ=2根号3.因此,S=PQ*MN=2根号3*(3+t)。

函数关系式为S=2根号3*t+6根号3,t的取值范围为t≥0.2、在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=42,∠B=45度。

动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动。

设运动的时间为t 秒。

1) 因为三角形ABD和三角形CBD相似,所以BD=AB-AD=39.由于三角形BCD是直角三角形,所以BC=BD/根号2=39/根号2.2) 当MN∥AB时,由于三角形BMD和三角形BAC相似,所以BD/AB=MD/MN,即39/42=2t/(3+t),解XXX13秒。

3) 当△MNC为等腰三角形时,由于三角形MNC和三角形ABD相似,所以CN/AD=MN/BD,即CN/3=(3+t)/39,XXX13秒。

3、在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(4,3),点C在y轴的正半轴上。

动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点。

动点问题知识点总结

动点问题知识点总结

动点问题知识点总结一、动点问题概念动点问题是指在力学中考虑质点的运动情况。

质点是一个物理点,具有质量,但没有空间体积,所以可以看作质点沿某条轨迹运动。

动点问题是力学中的一个重要问题,研究质点在力的作用下的运动规律,可以帮助我们更好地理解物体的运动状态和动力学定律。

二、动点问题的基本概念1. 位移、速度和加速度:质点在运动过程中的位置变化称为位移,位移的大小和方向决定了物体的运动状态。

速度是描述质点运动状态的基本物理量,是位移对时间的比值。

而加速度是速度对时间的比值,它描述了速度的变化情况。

2. 牛顿运动定律:牛顿运动定律包括三个基本定律,分别是惯性定律、动量定律和作用与反作用定律。

这些定律描述了质点在受力作用下的运动规律,是研究动点问题的重要基础。

3. 弹性碰撞和非弹性碰撞:碰撞是研究质点运动的重要问题之一,弹性碰撞要求碰撞前后能量守恒且动量守恒,而非弹性碰撞不满足这两个条件。

三、动点问题的研究方法1. 采用牛顿第二定律:牛顿第二定律是研究质点在力作用下的运动规律的基本方法,根据牛顿第二定律可以得到质点在力作用下的运动方程。

2. 采用能量守恒定律:能量守恒定律是描述质点在力场中运动时,系统总能量守恒的原理,通过能量守恒定律可以求解质点的运动轨迹和速度。

3. 采用动量守恒定律:动量守恒定律是描述碰撞问题时常用的方法,通过动量守恒定律可以求解碰撞后质点的速度和运动方向。

四、动点问题的应用1. 机械运动:在机械运动中,常常需要研究质点在受力作用下的运动规律,如机械臂的运动、机械传动系统等。

2. 弹道学问题:在弹道学中,需要研究弹丸在飞行过程中的运动规律,如炮弹的射击、导弹的飞行等。

3. 天体运动:在天体物理学中,需要研究星球、卫星、流星等天体在引力作用下的运动规律。

五、动点问题的解决过程1. 建立运动方程:首先要根据物体所受的力或者速度等信息,建立质点的运动方程,包括位置、速度和加速度。

2. 求解运动方程:根据质点的运动方程,可以求解质点在不同时间的位置和速度,进而分析质点的运动状态。

(完整版)初中数学动点问题归纳

(完整版)初中数学动点问题归纳

BB动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.解:1、A (8,0) B (0,6)2、当0<t <3时,S=t2当3<t <8时,S=3/8(8-t)t提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。

然后画出各类的图形,根据图形性质求顶点坐标。

2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1单位和2个长度单位的速度沿OC 和BO 之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。

九年级数学专题复习:动态几何中的“点动型”问题

九年级数学专题复习:动态几何中的“点动型”问题

九年级数学专题复习————动态几何题中的“点动型”问题分析一、知识点回顾1、相似三角形的一些基本图形:A字型共角型共角共边型X型蝴蝶型母子相似图∠1=∠2=∠3型2、垂直平分线的性质:垂直平分线上的点的距离相等。

3、平行四边形的性质:平行四边形的对角线。

4、矩形的定义:有的平行四边形是矩形。

5、菱形的判定:对角线的平行四边形是菱形。

6、二次函数y=ax2+bx+c(a>0),当x=时,y有最小值,y最小值=。

若a>0,当x=时,y有最大值,y最大值=。

7、一元二次方程ax2+bx+c=0(a≠0),当b2-4ac 0时,方程有2个不相等的实数根;当b2-4ac 0时,方程有2个相等的实数根;当b2-4ac 0时,方程没有实数根;一元二次方程ax2+bx+c=0(a≠0)的求根公式是。

8、两圆⊙O1、⊙O2的半径分别为R、r,若两圆外切,则O1 O2 、R、r的关系是。

9、二、强化训练:1、写出图中相似三角形的成比例的边:2、在平面直角坐标系中,有一点A(3,4),在x轴上取一点P,使△OAP是等腰三角形,这样的点P有个。

直接写出P点坐标。

三、综合提升:如图,已知△ABC中,AB=10cm,AC=8cm,BC=6 cm ,如果点P由B出发沿BA方向向点A匀速运动,速度为2cm /s,同时点Q由A出发沿AC方向向点C匀速运动,速度为1cm /s,连接PQ,设运动的时间为t(单位:s)(0≤t≤5).解答下列问题:(1)用含有t的代数式表示AP= 。

(2)当t为何值时,PQ平分△ABC的周长。

(3)当t为何值时,PQ∥BC.(4)当t为何值时,PQ⊥BC.(5)当t为何值时,△APQ为直角三角形。

(当t为何值时,△APQ与△ABC相似。

)(6)当t为何值时,△APQ为等腰三角形。

(7)当t为何值时,点P在CQ的垂直平分线上。

(8)以AQ、P Q为边作平行四边形AQPD,连接DQ,交AB于点E.①当t为何值时,平行四边形AQPD为矩形.并求出此时矩形的面积。

初中数学动点问题归纳

初中数学动点问题归纳

初中数学动点问题归纳动点问题是数学中常见的问题类型之一,它涉及到点在一定规律下的运动轨迹及相关的计算。

在初中数学学习过程中,学生们大多会接触到动点问题,并掌握解决此类问题的方法和技巧。

本文将对初中数学动点问题进行归纳总结,帮助初中学生更好地理解和解决这类问题。

1. 直线运动问题直线运动问题是最基本的动点问题之一。

在这类问题中,点按照直线路径运动,常涉及到时间、距离和速度的关系。

解决直线运动问题时,可以使用速度等于位移除以时间的公式来计算,即 v = s/t。

例子1:小明从家里骑自行车到学校,全程15公里,用时1小时。

求小明的平均速度。

解析:根据公式,平均速度 v = s/t = 15/1 = 15 km/h例子2:小红开车从A市到B市,全程200公里,平均时速60km/h。

求小红从A市到B市的行驶时间。

解析:根据公式,时间 t = s/v = 200/60 = 3.33 小时≈ 3小时20分2. 圆周运动问题圆周运动问题中,点按照圆形轨迹运动。

这类问题通常涉及到半径、圆周长和角度的计算与关系。

解决圆周运动问题时,需要掌握圆周长的计算公式,即 c = 2πr,其中 r 为半径。

例子1:一个半径为5米的圆,它的周长是多少?解析:根据公式,周长c = 2πr = 2 × 3.14 × 5 ≈ 31.4米例子2:一辆汽车在圆形赛道上行驶,赛道半径为100米,驾驶员开车一圈需要用时50秒。

求汽车的平均速度。

解析:首先计算圆周长c = 2πr = 2 × 3.14 × 100 = 628米然后计算平均速度v = c/t = 628/50 ≈ 12.56 m/s3. 直角三角形运动问题直角三角形运动问题是指点在直角三角形内运动,涉及到时间、速度和直角三角形边长的关系。

解决直角三角形运动问题时,可以利用勾股定理或三角函数来计算相关的未知量。

例子1:一个直角三角形的两条边长分别为3米和4米,角度为90度。

初中动点问题的方法归纳

初中动点问题的方法归纳

初中动点问题的方法归纳初中动点问题是初中物理学习中非常重要的内容,它涉及到物体在运动中所具有的一系列特性和规律。

在学习过程中,我们经常会遇到一些与动点问题相关的题目,这些题目需要我们运用一定的方法和技巧来解决。

下面将对初中动点问题的解决方法进行归纳总结。

一、描述物体的运动状态1.位置、速度和加速度在解决动点问题时,首先要对物体在运动过程中的状态进行描述,这包括物体的位置、速度和加速度。

位置是物体所处的空间位置,速度是物体在单位时间内所移动的距离,加速度是物体在单位时间内速度的变化量。

在描述物体的运动状态时,我们需要了解物体的初始位置、初速度、加速度等参数,这可以帮助我们解决动点问题。

2.坐标系的选择在描述物体的运动状态时,我们通常会选择合适的坐标系来进行描述。

常见的坐标系有直角坐标系和极坐标系。

在选择坐标系时,应该根据具体情况确定物体的运动方向和位置,选择合适的坐标系可以简化问题的分析和解决过程。

二、分析物体的运动规律1.运动图象的绘制在解决动点问题时,通常会涉及到物体的位移-时间图象、速度-时间图象和加速度-时间图象。

这些图象可以帮助我们直观地了解物体在运动过程中的变化规律。

绘制这些图象需要根据物体的运动状态和参数,通过计算得出相应的数值,并将其表示在坐标系中,从而得到相应的运动图象。

2.运动规律的表达物体在运动过程中,其运动规律可以用公式来表示。

常见的运动规律有匀速直线运动、匀变速直线运动和曲线运动。

在解决动点问题时,需要根据具体情况选用相应的运动规律,将其与物体的运动参数相结合,从而得出问题的解决方法。

三、解决动点问题的方法和技巧1.运动的方程在解决动点问题时,我们通常会使用位移、速度和加速度之间的关系来求解。

位移-时间关系、速度-时间关系和加速度-时间关系都可以用来描述物体的运动规律,通过这些关系可以得到相应的运动方程,从而求解出问题的答案。

2.分段计算在解决复杂的动点问题时,有时需要将问题分段计算,分别求解不同阶段的运动情况,然后综合得出整体的运动规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级动点问题知识点
动点问题是九年级数学中的重要知识点之一,主要涉及到对平面图形与运动的关系进行分析与计算。

本文将从定义、性质和解题方法三个方面进行论述,并结合示例详细说明。

以下是对九年级动点问题知识点的介绍。

1. 定义
动点问题是指在平面直角坐标系中,通过对点在平面中的位置与运动进行分析和计算来解决具体问题的数学问题。

动点可以沿直线、曲线或者其他规定的路线进行运动。

2. 性质
(1)运动的方向:动点的运动可以有向上、向下、向左、向右等不同的方向。

(2)运动的速度:动点的运动速度可以是恒定的、变化的或者被规定的。

(3)运动的路径:动点可以在平面上运动,其路径可以是直线、曲线或者特定的图形。

(4)坐标的变化:动点在运动过程中,其坐标会发生相应的变化。

3. 解题方法
(1)建立坐标系:根据题意,建立合适的平面直角坐标系。

(2)确定动点的位置:根据题目的描述,确定动点在平面上的初始位置和运动规律。

(3)列方程或函数:根据动点在平面上的位置与运动规律,利用代数方法列出方程或函数。

(4)解方程或函数:对所列出的方程或函数进行求解,得到动点的位置或相关数据。

(5)分析解答:根据求解结果,结合问题的要求进行分析和答题。

以下是一个例子,通过该例子来说明动点问题的解题方法。

【示例】
小明在操场上做直线运动,他从一端A出发,以每秒6米的速
度向另一端B跑去,到达B后立即折返,以每秒8米的速度返回A。

已知AB的长度为80米,请问他什么时候回到起点A?
解答过程:
(1)建立坐标系:以A点为原点,假设横坐标表示时间,纵
坐标表示距离。

(2)确定动点的位置:小明从A点出发,向B点跑去,然后
又返回A点。

(3)列方程或函数:假设小明运动的时间为t秒,则小明到达
B点的距离为6t米,小明从B点返回到A点的时间为80/8=10秒,所以小明到达A点的距离为6t-8*10=80-6t米。

(4)解方程或函数:根据所列的方程6t=80-6t,解得t=5秒。

(5)分析解答:小明在运动了5秒后回到起点A。

通过以上的解题步骤,我们可以求解出小明什么时候回到起点A。

在实际的动点问题中,根据题目给出的条件,我们可以灵活应用解题方法来解决动点问题。

综上所述,九年级动点问题是一个重要且常见的数学知识点。

通过对动点问题的定义、性质和解题方法的详细介绍,我们可以更好地理解和应用该知识点,提高解决实际问题的能力。

希望本文对你理解九年级动点问题有所帮助。

相关文档
最新文档