实验2流程图(按键数码管)
数码管显示的按键调整

班级学号姓名数码管显示的按键调整实验项目:一、实验目的:(1)掌握数码管的显示工作原理。
(2)掌握I/O口的使用。
(3)掌握数码管动态显示及程序设计方法。
二、实验内容:编程实现如下功能的倒计时秒表。
(1)数码管的初始显示为0;且当显示的数值小于10时,十位位置的数码管不显示。
(2)每按Key1(P1.0)键一次,数码管的显示值加1,并按照0→1→2→3…→20→0次序循环变化;每按Key2(P1.1)键一次,数码管显示值减1,按照20→19→18→17…→0→20次序循环变化;三、实验说明及实验电路图四、实验程序及分析#include<reg51.h>#define uchar unsigned char#define uint unsigned int#define smgdat P0 //数码管数据端sbit s1 = P2^1 ; //两位数码管控制端 s1 s2sbit s2 = P2^2 ;sbit key1 = P1^0 ; //按键端口key1 + key2 -sbit key2 = P1^1 ;uchar code tem_CA[] = {0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90} ; //共阳数码管0~9uchar sec5ms, sec1s, mark_0,count,flag=1;int num=0 ;//--------------------------------void Timer0_Init(void) //定时器初始化{TMOD = 0X01 ;TH0=(65536-5000)/256 ;TL0=(65536-5000)%256 ;EA=1 ;ET0=1 ;TR0=1 ;}void Timer0(void) interrupt 1 //定时器0进中断{TH0 = (65536-5000)/256 ;TL0 = (65536-5000)%256 ;sec5ms = 1 ; //标记count++ ;if(count==200){count=0; sec1s=1 ;if( sec1s==1 ){sec1s = 0 ;if(flag==1) {num++ ; }if( num==21 ) {num = 0 ; }}}}/*函数功能:延时1ms(3j+2)*i=(3×33+2)×10=1010(微秒),可以认为是1毫秒 */ //-------------------------------------------------- void delay1ms(){uchar i, j ;for( i=0 ; i<10 ; i++)for( j=0 ; j<33 ; j++) ;}/*函数功能:延时n毫秒*///------------------------------void delaynms(uchar n){uchar i ;for( i=0; i<n; i++){ delay1ms() ;}}//---------------------------void lwsmg_display() //定义两位数码管{s1 = 0; s2 = 0 ;mark_0 = ~mark_0 ; //标记if(mark_0==0) //动态显示{if(num<10){s1 = 1; s2 = 0 ;smgdat = 0xFF ;}else{s1 = 1; s2 = 0 ;smgdat = tem_CA[num/10]; //十位}}else{s1 = 0 ; s2 = 1 ;smgdat = tem_CA[num%10] ; //个位}}//------------------------------------------------- void read_anjian(){if( key1==0 ){delaynms(8) ;if( key1==0 ){if(flag==1) {flag=0;}num++ ;if( num==21 ) { num=0 ;}}while(!key1) ;delaynms(7) ;while(!key1) ;}if(key2==0){delaynms(8);if(key2==0){ if(flag==1) {flag=0;}num--;if(num<0) { num=20;}}while(!key2);delaynms(7);while(!key2);}}//------------------------------void main(){Timer0_Init() ; //while(1){if( sec5ms==1 ) //5ms 数码管显示一次{sec5ms=0 ;lwsmg_display() ;read_anjian();}}}实验原理:电路中K1~K2 是按键。
按键输入和LED数码管扫描显示实验

按键输入和LED数码管扫描显示实验设计内容:给8个按键键盘的每个键定义一个功能,从左到右按键一次按下时,分别显示数字1-8,当有两个及以上的按键按下时,显示数字9。
LCD初始显示个人学号,当有按键按下时,最后一位显示对应的数字。
实验程序:#include <reg51.h>sbit key=P0^6; //键盘公共线,见原理图sbit ls1=P0^2; //千位公共极sbit ls2=P0^3; //百位公共极sbit ls3=P0^4; //十位公共极sbit ls4=P0^5; //个位公共极unsigned char keyval; //读取的键值#define Dat P1 //数据输出端char a;char b[4]={0,3,3,0}; //初始值为学号后四位unsigned char tab[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};//延时----------------------------Delay(unsigned int t){ while(t--); }//显示----------------------------void Display(unsigned char mun){ unsigned char j;for(j=0;j<50;j++){ Dat=a;Dat=tab[b[0]]; //把得到7段显示码数据送P1端口ls1=0; //点亮千位Delay(100); //显示一会ls1=1; //关闭,显示下一位Dat=tab[b[1]];ls2=0; //点亮百位Delay(100);ls2=1;Dat=tab[b[2]];ls3=0; //点亮十位Delay(100);ls3=1; //个位Dat=tab[b[3]];ls4=0;Delay(100);ls4=1;}}Dat=0xff; //P1恢复为0xff}//--键盘扫描程序-------------------------------------- Scankey(){ unsigned char i;key=0; //拉低键盘公共线if(Dat!=0xff) //有键按下{ Delay(1000); //消抖动if(Dat!=0xff) //有键按下{ i=~Dat;a=Dat; //读取键盘状态,switch(i){ case 0x01: keyval=0x01;break; //K1case 0x02: keyval=0x02;break; //K2case 0x04: keyval=0x03;break; //K3case 0x08: keyval=0x04;break; //K4case 0x10: keyval=0x05;break; //K5case 0x20: keyval=0x06;break; //K6case 0x40: keyval=0x07;break; //K7case 0x80: keyval=0x08;break; //K8default: keyval=0x09;break; } //其它双键按下不处理,均为9 b[3]=b[2];b[2]=b[1];b[1]=b[0];b[0]=keyval;while(Dat!=0xff){key=1; //暂时关闭键盘,不干扰显示Display(keyval); //等待按键抬起key=0; //开启键盘检测}}}key=1; //释放键盘公共线}//--主程序--------------------------------------------------------- main(){while(1){ Display(keyval); //显示Scankey(); //键盘扫描}}。
按键控制数码管和流水灯设计报告实验报告要点

摘要单片机自20世纪70年代以来,以其极高的性价比,以及方便小巧受到人们极大的重视和关注。
本设计选用msp430f249芯片作为控制芯片,来实现矩阵键盘对LED数码管显示的控制。
通过单片机的内部控制实现对硬件电路的设计,从而实现对4*4矩阵键盘的检测识别。
用单片机的P3口连接4×4矩阵键盘,并以单片机的P3.0-P3.3口作键盘输入的列线,以单片机的P3.4-P3.7口作为键盘输入的行线,然后用P0.0-P0.7作输出线,通过上拉电阻在显示器上显示不同的字符“0-F”。
在硬件电路的基础上加上软件程序的控制来实现本设计。
其工作过程为:先判断是否有键按下,如果没有键按下,则继续检测整个程序,如果有键按下,则识别是哪一个键按下,最后通过LED数码管显示该按键所对应的序号。
关键字:单片机、流水灯、数码管、控制系统SCM since the nineteen seventies, with its high price, and a convenient compact attention and great concern. Thisdesign uses msp430f249 chip as the control chip, to realize the control of the LED digital tube display matrix keyboard. Through the internal control single chip to realize the hardware design of the circuit, so as to re alize the detection and recognition of 4*4 matrix keyboard. 4 * 4 matrix keyboard connected with the MCU P3 port, and the MCU P3.0 P3.3 port for a keyboard input, MCU P3.4P3.7 port as the lines of keyboard input, and then use theP0.0 P0.7 as the output line, by a pull-up resistor display different characters "0F on display". Control with software programs based on the hardware circuit to realize the design. The working process is: first to determine whether a key is pressed, if no key is pressed, it will continue to test the whole procedure, if a key is pressed, the Keywords: SCM, water lights, digital tubes, control system键盘控制流水灯和数码管实验报告目录一设计的目的 (2)二任务描述及方案设计 (3)1. 任务描述 (3)2. 方案设计 (3)三硬件设计方案 (3)1. Msp430f149单片机的功能说明 (3)2. 显示器功能 (4)3. 复位电路 (4)4. 按键的部分 (4)5. 74HC573的特点 (4)6. 流水灯和数码管电路原理图 (4)7. 元器件清单 (4)四程序设计方案 (5)1. 用IAR Embedded Workbench软件编程序 (5)2. 仿真电路图 (6)五实物实验 (7)1. 实物图 (7)2. 测试结果与分析 (7)六结论 (11)八参考文献 (16)一、设计目的1、进一步巩固和加深学生所学一门或几门相关专业课理论知识,培养学生设计、计算、绘画、计算机应用、文献查阅、报告撰写等基本技能;2、培养学生实践动手能力及独立分析和解决工程实践问题能力;3、培养学生的团队协作精神、创新意思、严肃认真的治学态度和严谨求实的工作作风。
实验二 数码管动态显示模块设计2

6、单片机中断系统结构及工作原理
标准51单片机的中断系统有五个中断源。分别为:
中断源入口地址优先级别(同级)
外部中断00003H最高
定时器0溢出000BH
外部中断10013H
定时器1溢出001BH
串行口中断0023H最低
使用中断之前,必须对中断允许寄存器IE进行设置,将中断允许标志EA和对应中断位置1,以将中断打开。中断控制结构如图4-10所示。
实验内容
1、在数码管上显示学号的后8位
2、设计一个以学号后两位加10秒的倒计时程序
实验步骤及现象
打开万利仿真机,接好单片机开发板,新建工程,下载安装程序。我们这次实验的程序如下:
#include<reg52.h>
#define uint unsigned int
#define uchar unsigned char
图4-10 MSC51中断结构图
CPU中断的过程为:当有中断源发生中断信号时,首先对IE中对应的中断位判断;如打开,则进行EA判断;如EA=1,将根据中断优先级IP的设置情况进行优先级判别;如该中断优先级较高,在硬件控制下,先将程序计数器PC的内容压入堆栈,同时把被响应的中断服务程序的入口地址装入PC中,以执行中断服务程序。中断服务程序的最后一条指令必须是中断返回指令RETI。CPU执行完这条指令后,将从堆栈中弹出两个字节内容(断点地址)装入PC中,从而执行被中断的程序。
图4-7定时器模式控制字格式
TCON寄存器用于定时器的计数控制和中断标志。如图4-8所示。
图4-8定时控制寄存器数据格式
编写程序控制这两个寄存器就可以控制定时器的运行方式。
单片机内部定时器/计数器的使用,简而概之:(1)如需用中断,则将EA和相关中断控制位置1;(2)根据需要设置工作方式,即对TMOD设置;(3)然后启动计数,即对TR0或TR1置1。(4)如使用中断,则计数溢出后硬件会自动转入中断入口地址;如使用查询,则必须对溢出中断标志位TF0或TF1进行判断。
实验二 数码管显示

实验二数码管显示本实验的目的是掌握数码管的工作原理与使用,实现数码管的静、动态显示。
静态数码管我们先看看什么是数码管,上图就是各种长相各种样子的数码管了,肯定很眼熟了吧。
不管将几位数码管连在一起,数码管的显示原理都是一样的,都是靠点亮内部的发光二极管来发光,下面就来我们讲解一个数码管是如何亮起来的。
数码管内部电路如下图所示,从右图可看出,一位数码管的引脚是10个,显示一个8字需要7个小段,另外还有一个小数点,所以其内部一共有8个小的发光二极管,最后还有一个公共端,生产商为了封装统一,单位数码管都封装10个引脚,其中第3和第8引脚是连接在一起的。
而它们的公共端又可分为共阳极和共阴极,中间图为共阴极内部原理图,右图为共阳极内部原理图。
上图展出了常用的两种数码管的引脚排列和内部结构。
总所周知,点亮发光二极管就是要给予它足够大的正向压降。
所以点亮数码管其实也就是给它内部相应的发光二极管正向压降。
如上图左(一共a、b、c、d、e、f、g、DP 八段),如果要显示“1”则要点亮b、c 两段LED;显示“A”则点亮a、b、c、e、f、g 这六段LED;我们还知道,既然LED 加载的是正向压降,它的两端电压必然会有高低之分:如果八段LED 电压高的一端为公共端,我们称之为共阳极数码管(如上图中);如果八段LED 电压低的一段为公共端,则称之为共阴极数码管(上图右)。
所以,要点亮共阳极数码管,则要在公共端给予高于非公共端的电平;反之点亮共阴极数码管,则要在非公共端给予较高电平。
对共阴极数码来说,其8个发光二极管的阴极在数码管内部全部连接在一起,所以称“共阴”,而它们的阳极是独立的,通常在设计电路时一般把阴极接地。
当我们给数码管的任意一个阳极加一个高电平时,对应的这个发光二极管就点亮了。
如果想要显示出一个8字,并且把右下角的小数点也点亮的话,可以给8个阳极全部送高电平,如果想让它显示出一个0字,那么我们可以除了给第“g, dp”这两位送低电平外,其余引脚全部都送高电平,这样它就显示出0字了。
单片机 实验2-外部中断程序设计-中断按键按下次数计数数码管显示-硬件和程序设计参考

硬件电路参考如下:程序参考如下:#pragma sfr#pragma interrupt INTP0 LED_INTP0 /* 定义使用INTP0中断,中断函数名LED_INTP0*/ #pragma di /*禁止使用中断功能声明*/#pragma ei /*允许使用中断功能声明*//*数码管编码数组*/unsigned char LED_light[10]={0x30,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,0x3F}; unsigned char j=0; /*按键次数变量*/void hdinit() /*硬件初始化*/{PM1=0; /*P1口输出数码管字型码,所以设置为输出*/PU1=0XFF; /*由于P1口直接驱动数码管显示,为增大驱动,设置为内部上拉*/PM12.0=0; /*P12.0口线要作为中断多功能,设置为输出和内部上拉 */PU12.0=1;PIF0=0; /*中断请求标志,没有中断请求*/PMK0=0; /*中断屏蔽标志,允许中断*/PPR0=1; /*中断优先级,低优先级*/EGP.0=1; /*与EGN组合,上升沿有效*/EGN.0=0;}void main (void){DI(); /*首先做准备,禁止中断*/IMS=0XCC;IXS=0X00;hdinit();EI(); /*准备完成,允许中断*/while(1){ /*啥也不干,就等待中断,仅是在这个实验中使用中断,实际不是这样/*}}__interrupt void LED_INTP0() /*中断函数*/{ P1= LED_light[j]; /*P1赋值,数码管显示相应数值*/j++; /*按键次数加一*/if(j==10) /*如果按键次数达到十次,按键计数归0*/{j=0;} }思考: 如果用两位数码管,从0—99循环计数又该怎样设计硬件和软件呢?。
EDA设计课程实验报告数码管动态显示实验报告

EDA设计课程实验报告实验题目:数码管动态显示实验学院名称:专业:电子信息工程班级:姓名:高胜学号小组成员:指导教师:一、实验目的学习动态扫描显示的原理;利用数码管动态扫描显示的原理编写程序,实现自己的学号的显示。
二、设计任务及要求1、在SmartSOPC实验箱上完成数码管动态显示自己学号的后八个数字。
2、放慢扫描速度演示动态显示的原理过程。
三、系统设计1、整体设计方案数码管的八个段a,b,c,d,e,f,g,h(h是小数点)都分别连接到SEG0~SEG7,8个数码管分别由八个选通信号DIG0~DIG7来选择,被选通的数码管显示数据,其余关闭。
如果希望8个数码管显示希望的数据,就必须使得8个选通信号DIG0~DIG7分别被单独选通,并在此同时,在段信号输入口SEG0~SEG7加上该对应数码管上显示的数据,于是随着选通信号的扫描就能实现动态扫描显示的目的。
虽然每次只有1个数码管显示,但只要扫描显示速率足够快,利用人眼的视觉余辉效应,我们仍会感觉所有的数码管都在同时显示。
2、功能模块电路设(1)输入输出模块框图(见图1)图1(2)模块逻辑表达(见表1)表1(数码管显示真值表)clk_1k dig seg↑01111111 C0↑10111111 F9注:数码管显示为01180121(3)算法流程图(见图2)(4)Verilog源代码module scan_led(clk_1k,d,dig,seg); //模块名scan_ledinput clk_1k; //输入时钟input[31:0] d; //输入要显示的数据output[7:0] dig; //数码管选择输出引脚output[7:0] seg; //数码管段输出引脚reg[7:0] seg_r; //定义数码管输出寄存器reg[7:0] dig_r; //定义数码管选择输出寄存器reg[3:0] disp_dat; //定义显示数据寄存器reg[2:0]count; //定义计数寄存器assign dig = dig_r; //输出数码管选择assign seg = seg_r; //输出数码管译码结果always @(posedge clk_1k) //定义上升沿触发进程begincount <= count + 1'b1;endalways @(posedge clk_1k)begincase(count) //选择扫描显示数据3'd0:disp_dat = d[31:28]; //第一个数码管3'd1:disp_dat = d[27:24]; //第二个数码管3'd2:disp_dat = d[23:20]; //第三个数码管3'd3:disp_dat = d[19:16]; //第四个数码管3'd4:disp_dat = d[15:12]; //第五个数码管3'd5:disp_dat = d[11:8]; //第六个数码管3'd6:disp_dat = d[7:4]; //第七个数码管3'd7:disp_dat = d[3:0]; //第八个数码管endcasecase(count) //选择数码管显示位3'd0:dig_r = 8'b01111111; //选择第一个数码管显示3'd1:dig_r = 8'b10111111; //选择第二个数码管显示3'd2:dig_r = 8'b11011111; //选择第三个数码管显示3'd3:dig_r = 8'b11101111; //选择第四个数码管显示3'd4:dig_r = 8'b11110111; //选择第五个数码管显示3'd5:dig_r = 8'b11111011; //选择第六个数码管显示3'd6:dig_r = 8'b11111101; //选择第七个数码管显示3'd7:dig_r = 8'b11111110; //选择第八个数码管显示endcaseendalways @(disp_dat)begincase(disp_dat) //七段译码4'h0:seg_r = 8'hc0; //显示04'h1:seg_r = 8'hf9; //显示14'h2:seg_r = 8'ha4; //显示24'h3:seg_r = 8'hb0; //显示34'h4:seg_r = 8'h99; //显示44'h5:seg_r = 8'h92; //显示54'h6:seg_r = 8'h82; //显示64'h7:seg_r = 8'hf8; //显示74'h8:seg_r = 8'h80; //显示84'h9:seg_r = 8'h90; //显示94'ha:seg_r = 8'h88; //显示a4'hb:seg_r = 8'h83; //显示b4'hc:seg_r = 8'hc6; //显示c4'hd:seg_r = 8'ha1; //显示d4'he:seg_r = 8'h86; //显示e4'hf:seg_r = 8'h8e; //显示fendcaseendendmodule四、系统调试(1)仿真代码`timescale 1ns/1nsmodule scan_ledfz;reg clk_1k;reg[31:0] d;wire[7:0] dig;wire[7:0] seg;parameter dely=100;scan_led u1(clk_1k,d,dig,seg);always #(dely/2)clk_1k=~clk_1k;initial beginclk_1k=0;d=32'h01180134;#dely ;#dely ;#dely ;#dely ;#dely ;#(dely*20);#dely $finish;endinitial $monitor($time,,,"%b,%d,%h,%h",clk_1k,d,dig,seg); endmodulemodule scan_led(clk_1k,d,dig,seg); //模块名scan_ledinput clk_1k; //输入时钟input[31:0] d; //输入要显示的数据output[7:0] dig; //数码管选择输出引脚output[7:0] seg; //数码管段输出引脚reg[7:0] seg_r; //定义数码管输出寄存器reg[7:0] dig_r; //定义数码管选择输出寄存器reg[3:0] disp_dat; //定义显示数据寄存器reg[2:0] count=3'b000; //定义计数寄存器assign dig = dig_r; //输出数码管选择assign seg = seg_r; //输出数码管译码结果always @(posedge clk_1k) //定义上升沿触发进程begincount <= count + 1'b1;endalways @(posedge clk_1k)begincase(count) //选择扫描显示数据3'd0:disp_dat = d[31:28]; //第一个数码管3'd1:disp_dat = d[27:24]; //第二个数码管3'd2:disp_dat = d[23:20]; //第三个数码管3'd3:disp_dat = d[19:16]; //第四个数码管3'd4:disp_dat = d[15:12]; //第五个数码管3'd5:disp_dat = d[11:8]; //第六个数码管3'd6:disp_dat = d[7:4]; //第七个数码管3'd7:disp_dat = d[3:0]; //第八个数码管endcasecase(count) //选择数码管显示位3'd0:dig_r = 8'b01111111; //选择第一个数码管显示3'd1:dig_r = 8'b10111111; //选择第二个数码管显示3'd2:dig_r = 8'b11011111; //选择第三个数码管显示3'd3:dig_r = 8'b11101111; //选择第四个数码管显示3'd4:dig_r = 8'b11110111; //选择第五个数码管显示3'd5:dig_r = 8'b11111011; //选择第六个数码管显示3'd6:dig_r = 8'b11111101; //选择第七个数码管显示3'd7:dig_r = 8'b11111110; //选择第八个数码管显示endcaseendalways @(disp_dat)begincase(disp_dat) //七段译码4'h0:seg_r = 8'hc0; //显示04'h1:seg_r = 8'hf9; //显示14'h2:seg_r = 8'ha4; //显示24'h3:seg_r = 8'hb0; //显示34'h4:seg_r = 8'h99; //显示44'h5:seg_r = 8'h92; //显示54'h6:seg_r = 8'h82; //显示64'h7:seg_r = 8'hf8; //显示74'h8:seg_r = 8'h80; //显示84'h9:seg_r = 8'h90; //显示94'ha:seg_r = 8'h88; //显示a4'hb:seg_r = 8'h83; //显示b4'hc:seg_r = 8'hc6; //显示c4'hd:seg_r = 8'ha1; //显示d4'he:seg_r = 8'h86; //显示e4'hf:seg_r = 8'h8e; //显示fendcaseendendmodule位码代码仿真代码`timescale 1ns/1nsmodule smg_tp; //测试模块的名字reg [2:0] c; //测试输入信号定义为reg型wire[7:0] dig; //测试输出信号定义为wire型parameter DEL Y=100; //延时100秒wei u1(c,dig); //调用测试对象initial begin //激励波形设定c=3'b0;#DEL Y c=3'b001 ;#DEL Y c=3'b010 ;#DEL Y c=3'b100 ;#DEL Y c=3'b101 ;#DEL Y c=3'b110 ;#DEL Y c=3'b111 ;#DEL Y $finish;endinitial $monitor($time,,,"dig=%d,c=%b ",dig,c); //输出格式i定义endmodulemodule wei(c,dig); //命名模块名字input[2:0] c;output[7:0] dig; //定义输入与输出reg[7:0] dig_r;reg[2:0] c_r; // 定义dig_r与c_r2个reg型数据assign dig=dig_r; //将reg型数据转化为wire型数据always @(*) //检测c_r的数据是否变化begin c_r=c;case (c_r)3'b000:dig_r=8'b11111110; //c_r的数据变化而dig_r对于的数据变化3'b001:dig_r=8'b11111101;3'b010:dig_r=8'b11111011;3'b011:dig_r=8'b11110111;3'b100:dig_r=8'b11101111;3'b101:dig_r=8'b11011111;3'b110:dig_r=8'b10111111;3'b111:dig_r=8'b01111111;default: dig_r=8'b11111111;endcase //结束case语句end //结束always语句endmodule //结束程序译码器代码仿真代码`timescale 1ns/1nsmodule duan_tp; //测试模块的名字reg[3:0] a; //测试输入信号定义为reg型wire[7:0] seg; //测试输出信号定义为wire型parameter DEL Y=100; //延时100秒duan u1(a,seg); //调用测试对象initial begin //激励波形设定a=4'b0;#DELY a=4'b0001;#DELY a=4'b0010;#DELY a=4'b0011;#DELY a=4'b0100;#DELY a=4'b0101;#DELY a=4'b0110;#DELY a=4'b0111;#DELY a=4'b1000;#DELY a=4'b1001;#DELY a=4'b1010;#DELY a=4'b1011;#DELY a=4'b1100;#DELY a=4'b1101;#DELY a=4'b1110;#DELY a=4'b1111;#DELY $finish;endinitial $monitor($time,,,"seg=%d,a=%b",seg,a); //输出格式i定义endmodulemodule duan(a,seg); //命名模块名字input[3:0] a;output[7:0] seg; //定义输入与输出reg[7:0] seg_r;reg[3:0] a_r; // 定义seg_r与a_r2个reg型数据assign seg=seg_r; //将reg型数据转化为wire型数据always @(*) //检测c_r的数据是否变化begin a_r=a;case(a_r) //七段译码4'b0000:seg_r = 8'hc0; //显示04'b0001:seg_r = 8'hf9; //显示14'b0010:seg_r = 8'ha4; //显示24'b0011:seg_r = 8'hb0; //显示34'b0100:seg_r = 8'h99; //显示44'b0101:seg_r = 8'h92; //显示54'b0110:seg_r = 8'h82; //显示64'b0111:seg_r = 8'hf8; //显示74'b1000:seg_r = 8'h80; ///显示84'b1001:seg_r = 8'h90; //显示94'b1010:seg_r = 8'h88; //显示a4'b1011:seg_r = 8'h83; //显示b4'b1100:seg_r = 8'hc6; //显示c4'b1101:seg_r = 8'ha1; //显示d4'b1110:seg_r = 8'h86; //显示e4'b1111:seg_r = 8'h8e; ///显示f endcase //结束case语句end //结束always语句endmodule //结束程序(2)仿真波形图(3)引脚图五、实验感想通过这次实验,让我学习动态扫描显示的原理;利用数码管动态扫描显示的原理编写程序,实现自己的学号的显示。
实验2:8255七段数码管静动态显示

微机实验报告书学号:姓名:班级:同组名单:实验日期: 2012.12.21实验题目:七段数码管的静态显示实验目标:掌握数码管显示数字的原理(功能:键盘输入一位十进制数字(0~9),用七段数码管显示。
)解题思路:1.静态显示:按图 10(a)连接好电路,将8255的A口PA0-PA6分别与七段数码管的断码驱动输入端a-g项链,位码驱动输入端S1接+5V,S0、dp接地。
编程从键盘输入一位十进制数字,在七段数码管上显示出来。
2.动态显示:按图10(b)连接好电路,七段数码管段码连接不变,位码驱动输入端S1,S0接8255C口的PC1,PC0。
编程在两个数码管上显示“56”。
程序框图:静态显示见图11(a),动态显示见图11(b)。
关键问题分析(静态显示):1、按键判断和程序结束判断按键来说,由于程序中必须输入数字,所以没有必要对是否按键进行判断,只需要判断按键是否在0-9之间即可。
用以下程序即可:cmp al,'0'jl exit ; jl,条件转移指令,即在小于时转移cmp al,'9'jg exit ;jg, 条件转移指令,即在大于时转移程序中还要用到“cmp”即比较指令,用来比较输入数与0、9的大小关系。
程序结束:如若输入的数字小于0或者大于9,必须直接跳出程序,即结束指令必须单独占用一个程序段,这样,程序顺序执行完毕也可以顺利返回DOS。
2、七段码显示。
实验指导书中给出了七段码的字型代码。
这样一来,七段码的显示只需要用换码指令“XLAT”便可以轻松实现。
前提是必须将七段码字型编成数码表以字符串的形式写进程序中。
3、数字键ASCII码与数值间的转换。
因为0的ASCII码为30H,所以数字键ASCII码与数值间的转换时只需减去30H即可,可用下列语句实现:sub al,30h程序清单:静态显示:data segmentioport equ 0c800h-0280hio8255a equ ioport+288hio8255b equ ioport+28bhled db 3fh,06h,5bh,4fh,66h,6dh,7dh,07h,7fh,6fhmesg1 db 0dh,0ah,'Input a num (0--9h):',0dh,0ah,'$'data endscode segmentassume cs:code,ds:datastart: mov ax,datamov ds,axmov dx,io8255b ;使8255的A口为输出方式mov al,80h ;10000000B,控制字PA以方式0输出out dx,alzby: mov dx,offset mesg1 ;显示提示信息mov ah,09hint 21hmov ah,01 ;从键盘接收字符int 21hcmp al,'0' ;是否小于0jl exit ;如若小于0,则跳转到exit退出程序cmp al,'9' ;是否大于9jg exit ; 如若大于9,则跳转到exit退出程序sub al,30h ;将所得字符的ASCII码减30H,数字键ascii码同数值转换mov bx,offset led ;bx为数码表的起始地址xlat ;求出相应的段码mov dx,io8255a ;从8255的A口输出out dx,aljmp zby ;转zbyexit: mov ah,4ch ;返回DOSint 21hcode endsend start动态显示:data segmentioport equ 0c800h-0280hio8255a equ ioport+28ahio8255b equ ioport+28bhio8255c equ ioport+288hled db 3fh,06h,5bh,4fh,66h,6dh,7dh,07h,7fh,6fh ;段码buffer1 db 5,6 ;存放要显示的个位和十位bz dw ? ;位码data endscode segmentassume cs:code,ds:datastart: mov ax,datamov ds,axmov dx,io8255b ;将8255设为A口输出mov al,80h ;10000000B,控制字PA以方式0输出out dx,almov di,offset buffer1 ;设di为显示缓冲区loop2: mov bh,02zby: mov byte ptr bz,bhpush didec diadd di, bzmov bl,[di] ;bl为要显示的数pop dimov al,0mov dx,io8255aout dx,almov bh,0mov si,offset led ;置led数码表偏移地址为SIadd si,bx ;求出对应的led数码mov al,byte ptr [si]mov dx,io8255c ;自8255A的口输出out dx,almov al,byte ptr bz ;使相应的数码管亮mov dx,io8255aout dx,almov cx,3000delay: loop delay ;延时mov bh,byte ptr bzshr bh,1jnz zbymov dx,0ffhmov ah,06int 21hje loop2 ;有键按下则退出mov dx,io8255amov al,0 ;关掉数码管显示out dx,almov ah,4ch ;返回int 21hcode endsend start运行结果:静态显示:在键盘上输入一个0-9的任意数字,会显示在数码管上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行和列的计算,都是通 过比较,移位,再比较, 同时用 bx,cx 保存相关
信息
计算出行和列后,用 行*4+列,就是按键序 号,也就是数码管要显 算法,一种思路,同学们可以自己想其他的,或者网上参考其他的, 主要思想,就是怎么把所按按键的序号给记录下来,并输出到数码管上显示。
首先让 OUT1 输出 0, 即数码管显示为 0
初始化 DL=0001,让 OUT2 输出此值,开
始扫描
为0 把 INT1 端口的数据读
入,与 0 比较
不为 0
表示此列无按键按 下,不跳转,DL 左移 一位,跳转,让 OUT2 输出 0010,同理,扫 描下去,扫描完四列,
又重新开始扫描
表示有按键按下,跳转 到后边,先计算按键所 在列,后计算所在行, 列信息和行信息分别