Chapter 6 Negative-Index Metamaterials
HFSS和CST电磁媒质色散曲线dispersion diagram研究方法

Ansoft 2008 优秀论文
Ansoft HFSS 在周期性异向介质研究中的仿真方法
龚建强,褚庆昕 (华南理工大学电子与信息学院 广州 510640)
摘 要:本文介绍了三种采用 Ansoft HFSS 分析周期性异向介质结构特性的仿真方法,包括波导传 输法、色散模式法以及 Floquet 端口法。三种方法的适用范围和所求解的结果各有差异,使得设计 者能从多个角度对异向介质特性进行分析:波导传输法适用于电磁波垂直入射的情况,并且要求在 入射波矢方向仅有有限个异向介质元胞,由于使用的是波导端口,因此结果能以 S 参数的形式显示; 色散模式法主要用于求解二维异向介质结构的色散图特性,该方法的难点在于将布里渊三角中定义 的波矢与 HFSS 中 Master/Slave 周期性边界的设置一一对应;而 Floquet 端口则能够处理具有极化 的斜入射电磁波照射二维异向介质结构的问题,与波导端口类似,Floquet 端口的求解结果中能方 便的得到传输和反射波的幅度和相位特性。作为实例,本文采用上述三种方法分别分析了经典的 SRR/Wire 异向介质,Sievenpiper 蘑菇结构以及具有高度结构对称性的平面负折射结构。希望本文 能够推动 Ansoft HFSS 在仿真周期性异向介质中的广泛应用。 关键词:周期性异向介质,波导传输法,色散模式法,Floquet 端口,Master/Slave 边界条件
负折射率材料

超颖材料(Metamaterials)的发展李雄SC08009037 机密机械与精密仪器系本人博士阶段的课题方向为超颖材料(Metamaterials)的设计与应用。
Metamaterials这一概念在提出之初,通常指的是介电常数(ε)和磁导率(μ)都是负数的材料(物质),因此它又称负折射率材料、左手材料或双负材料,这在自然界中并不存在。
然而随着这一新兴领域的发展,其研究范围被不断扩展,目前,它的范围已包含负折射率材料,单负材料(人工复介电常数材料(ε)和人工复磁导率材料),人工超低折射率材料和超高折射率材料等等。
Metamaterials是本世纪物理学领域出现的一个新的学术词汇,正因为其具有自然界物质不存在的奇异特性,因而受到广泛关注,并已在其相关的几个实际应用领域显示出了巨大的应用前景。
1、Metamaterials的发展概述拉丁语“meta-”,可以表达“超出…、亚…、另类”等含义。
对于metamaterial 一词,目前尚未有一个严格的、权威的定义,各种不同的文献上给出的定义也各不相同。
但一般文献中都认为metamaterial是“具有天然材料所不具备的超常物理性质的人工复合结构或复合材料”。
从这一定义中,我们可以看到metamaterial重要的三个重要特征:(1)metamaterials通常是具有新奇人工结构的复合材料;(2)metamaterials具有超常的物理性质(往往是自然界的材料中所不具备的);(3)metamaterials性质往往不主要决定与构成材料的本征性质,而决定于其中的人工结构。
尽管metamaterials的概念出现于21世纪,但追溯其源头则可以找到上一世纪中后期几位杰出科学家的“灵光一闪”。
1967年,前苏联科学家维克托·韦谢拉戈(Victor Veselago)提出,如果有一种材料同时具有负的介电常数和负的磁导率,这种物质将能够颠覆光学世界,它能够使光波看起来如同倒流一般,并且在许多方面表现得有违常理的行为。
负折射率材料

左手材料中,电磁波的相速度和群速度方向相反。
波长(λ) 和波矢 (k)
k1 = 2π/λ1
1
1
sp eed
sp eed
c n1
1
2
2
c n2
2
k2 = 2π/λ2
c = light velocity in vacuum n1,2 = refractive indices
相速度和群速度
2001年,Shelby等人首次在实验上证实了当电磁波斜入
射到左手材料与右手材料的分界面时,折射波的方向与 入射波的方向在分界面法线的同侧。
The LHM sample consists of square copper split ring resonators and copper wire strips on fiber glass circuit board material. The rings and wires are on opposite sides of the boards.
Metamaterials, LHM)
k H E
k E H
E
k S H k
E
S H
> 0, > 0 (Right-handed)
< 0, < 0 (Left-handed)
左手材料又称为负折射率物质 由于电磁波能流的方向取决于玻印廷矢量S的方
____ is for the LHM data. ………… is for the regions where the index is expected to be either outside our limit of detection (|n|>3) or could not be reliably determined experimentally. ____ is the real component ……. is the imaginary component of the theoretical expression for the refractive index
微纳光学结构及应用

1引言微纳光学主要指微纳米尺度的光学效应,以及利用微纳米尺度的光学效应开发出的光学器件、系统及装置。
微纳光学不仅是光电子产业的重要发展方向之一,也是目前光学领域的前沿研究方向。
微纳光学的发展是由大规模集成电路工艺水平的进步所推动的。
早在20世纪50年代,德国著名教授A.W.Lohmann [1]就考虑到利用光栅的整体相移技术对光场相位编码,以实现对光波的人工控制。
1964年夏季,A.W.Lohmann 教授指导大学生Byron ,利用IBM 当时先进的制版设备演示了世界上第一张计算机全息图。
随后的衍射光学进展都可以看作是人为地控制或改变光的波前,从这个意义上说,这个工作具有革命性的意义。
随着半导体工艺技术的进步,微米尺度的任意线宽都可以加工出来。
由此,达曼提出一种新型的微光学分束器件,后人叫做达曼光栅[2]。
达曼光栅通过任意线宽的二值相位调制,将一束激光分成多束等强度的激光。
其制作充分利用了微电子工艺技术,是一个典型的微光学器件[3]。
达曼光栅一般能产生一维或者二维矩阵的光强分布。
周常河等[4]提出了圆环达曼光栅,也就是不同半径的圆孔相位调制,实现多级等光强的圆环分布。
我们知道,圆孔的傅里叶变换是贝塞尔函数,而矩形的傅里叶变换是SINC 函数,因此,虽然达曼光栅和圆环达曼光栅的物理本质一样,但是其数学处理却不相同[5]。
随着制造技术水平的进步,出现了一些纳米光学领域的新概念:光子晶体(Photonic Crystal )[6]、表面微纳光学结构及应用Micro-&Nano-Optical Structures and Applications摘要简短回顾微纳光学的几个重要研究方向,包括光子晶体、表面等离子体光学、奇异材料、负折射、隐身以及亚波长光栅等。
微纳光学不仅成为当前科学的热点研究领域,更重要的是,微纳光学是新型光电子产业的发展方向,在光通信、光存储、激光核聚变工程、激光武器、太阳能利用、半导体激光、光学防伪技术等诸多领域,起到了不可替代的作用。
超材料翻译

Naturematerials LETTERSPublished online : 18 APRIL 2010| DOI:10.1038/NMAT2747A single-layer wide-angle negative-index metamaterial at visible frequencies在可见光频率的一种单层广角负折射率超材料Metamaterials are materials with artificial electromagnetic properties defined by their sub-wavelength structure rather than their chemical composition.基于亚波长结构而非化学结构,超材料也叫人工电磁材料。
Negative-index materials(NIMs) are a special class of metamaterials characterized by an effective negative index that give rise to such unusual wave behavior as backwards phase propagation and negative refraction.负折射率材料(NIMs)是一类具有有效负折射率的特殊超材料,能够产生逆向传播和负折射的不同寻常的波行为。
These extraordinary properties lead to many interesting functions such as sub-diffraction imaging and invisibility cloaking.这些非凡的性能使得有有趣的功能,如子衍射成像和隐蔽伪装So far ,NIMs have been realized through layering of resonant structures,such as spilt-ring resonators ,and have been demonstrated at microwave to infrared frequencies over a narrow range of angles-of-incidence and polarization.到目前,负折射率材料(NIMs)已经通过谐振结构层实现,例如开环谐振器,而且在较窄范围的红外频率内的入射角和偏振也可以证明。
负泊松比结构研究进展

负泊松比结构研究进展摘要:在我们日常生活中,所遇见的材料大部分为正泊松比材料,即材料在拉伸时横向收缩,压缩时横向膨胀。
而负泊松比材料恰恰与此相反,具体表现为材料在拉伸时纵向膨胀,压缩时纵向收缩。
这种特性使得负泊松比材料在很多领域的应用中优于传统材料,也正因为这个原因,负泊松比材料成为热门的研究领域,例如纺织工业、航空航海航天、国防军事、生物医疗等。
研究表明,负泊松比效应通常是由于材料内部的结构(几何设置)和它在承受应力时所经历的变形机制之间的合作效应而产生的。
本文主要介绍了几种常见的负泊松比结构,例如重入凹角结构、手性/反手性结构、旋转刚体结构,希望能为负泊松比材料的发展研究添砖加瓦。
关键词:负泊松比;结构;变形机制;介绍1 泊松比的概念泊松比,即结构垂直于荷载方向的应变与荷载方向应变的比值,是一个无量纲常数,也是材料的一个基本属性。
泊松比的概念最先由法国科学家Simeon-Denis Poisson (1781~1840)提出,并以他的名字命名,具体表达式如下:(1)其中,ν表示泊松比,表示垂直于加载方向的应变,表示加载方向的应变。
2 负泊松比结构的种类即使材料本身也没有负泊松比行为,但通过设计的结构,我们可以得到负泊松比。
一些结构已被证明表现出辅助性行为,在过去的几十年里,机械超材料的研究进展迅速。
目前发现的负泊松比结构中,常见的有重入凹角结构、手性/反手性结构、旋转刚体结构等。
重入指的是“向内”或具有负角度(角度大于180°)的结构,重入凹角结构一般是由斜肋和连接的链铰组成的桁架结构构成的。
重入凹角结构主要包括重入四边形结构、曲线重入四边形结构、重入六边形结构等。
重入凹角结构的产生机理是沿着水平方向轴向拉伸结构时,斜肋将向水平方向旋转,这导致了结构的横向膨胀,从而导致整体结构负泊松比的产生。
重入凹角结构设计最开始由Lakes[1]等于1987年提出,随后人们按照他的思路设计出更多的重入凹角结构,例如Shen[2]等于2014年利用3D打印技术打印出一系列简单几何形状结构。
各向异性材料一维光子晶体的传输特性研究

各向异性材料一维光子晶体的传输特性研究高喜;李思敏;曹卫平;于新华;姜彦南【摘要】为研究由电各向异性材料和磁各向异性材料构建的一维光子晶体的电磁传输特性,分析了不同电等离子体频率和磁等离子体频率对TE极化波和TM极化波禁带宽度的影响规律.结果表明,磁等离子体频率对TE极化波及TM极化波的禁带宽度有较大的调节作用.当电导率和磁导率都为正的各向同性材料缺陷结构引入到光子晶体中时,会有电磁缺陷模式出现,而且缺陷模式的频率随缺陷厚度的增加而降低,同时缺陷的厚度对TM极化波缺陷模式的调谐作用大于对TE极化波的调谐作用,这对滤波器的频率调节具有潜在的应用价值.%The electromagnetic transmission properties of one-dimensional photonic crystals containing permittivity and permeability-anisotropic materials are studied by transfer matrix. The influence of electric and magnetic plasma frequencies on band gap of TE and TM polarization waves is analyzed. The results show that the magnetic plasma frequencies can effectively tune the width of TE and TM polarization waves. When an isotropic impurity is introduced, a defect mode appears and the defect mode moves to low frequency with the increasing thickness of defect. The characteristic will make this photonic crystal have potential applications in filters.【期刊名称】《桂林电子科技大学学报》【年(卷),期】2012(032)005【总页数】5页(P345-348,352)【关键词】各向异性材料;光子晶体;禁带;缺陷模式【作者】高喜;李思敏;曹卫平;于新华;姜彦南【作者单位】桂林电子科技大学信息与通信学院,广西桂林 541004;桂林电子科技大学信息与通信学院,广西桂林 541004;桂林电子科技大学信息与通信学院,广西桂林 541004;桂林电子科技大学信息与通信学院,广西桂林 541004;桂林电子科技大学信息与通信学院,广西桂林 541004【正文语种】中文【中图分类】TN914.3折射率周期分布的光子晶体[1]的显著特点是具有与半导体中电子态类似的带隙结构——光子带隙(即处于带隙内的光子是不能传播的)。
光电材料英文专业术语

光电材料英文专业术语English Terminology for Optoelectronic Materials:Optoelectronic materials are a class of materials that interact with light and electricity, enabling the conversion, manipulation, and detection of optical signals. These materials are crucial in the development of various electronic devices and systems, including displays, sensors, and communication technologies. Here are some of the key English terms associated with optoelectronic materials:1. Photoconductivity: The ability of a material to increase its electrical conductivity when exposed to light.2. Photovoltaic effect: The process by which a material, typically a semiconductor, converts light energy into electrical energy.3. Photodetectors: Devices that convert light signalsinto electrical signals, such as photodiodes, phototransistors, and photoconductors.4. Light-emitting diodes (LEDs): Semiconductor devices that emit light when an electric current is applied.5. Organic light-emitting diodes (OLEDs): LEDs that use organic compounds as the emissive layer, enabling thinner, more flexible, and energy-efficient displays.6. Quantum dots: Nanoscale semiconductor particles that exhibit unique optical and electronic properties due to quantum confinement effects.7. Optical waveguides: Structures that guide the propagation of light, such as optical fibers and planar waveguides.8. Photonic crystals: Periodic structures that can control the flow of light, enabling the development of optical devices and components.9. Optical amplifiers: Devices that increase the strength of an optical signal, such as erbium-doped fiber amplifiers (EDFAs).10. Optical modulators: Components that can control the amplitude, phase, or polarization of an optical signal, enabling optical signal processing and communication.11. Optical sensors: Devices that detect and measure various physical, chemical, or biological parameters usingoptical signals, such as fiber-optic sensors and optical encoders.12. Optoelectronic integrated circuits (OEICs): Integrated circuits that combine optical and electronic components on a single chip, enabling the integration of optical and electronic functionalities.13. Thin-film optoelectronics: The use of thin-film deposition techniques to fabricate optoelectronic devices, such as solar cells, displays, and sensors.14. Metamaterials: Artificial materials with unique electromagnetic properties, including negative refractive index, which can be used for optical applications.15. Plasmonics: The study and application of the interaction between light and the free electrons inmetallic nanostructures, enabling the manipulation of light at the nanoscale.中文术语:光电材料是一类能够与光和电互相作用的材料,可实现光信号的转换、操控和检测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
101
102
6 Negative-Index Metamaterials
consequences were discussed in works by Sir Arthur Schuster and Lamb as early as 1904 [1, 2]; later the optical properties of NIMs were studied by Russian physicists Mandel’stam [3] and Sivukhin [4]. The first systematic study of the general properties of a hypothetical medium with a negative refractive index is attributed to Veselago, then with the Lebedev Physical Institute in Moscow, who analyzed the consequences for electromagnetic waves interacting with such a medium and reported on his initial effort in searching for such materials [5]. He pointed out that when both " and are simultaneously negative, the negative square root must be chosen in the refractive index equation. Veselago coined the term “left-handed materials (LHMs)” for such media, because the field vectors E, H and the wave vector k form a left-handed system. He also noted that many remarkable properties would be associated with a negative index medium. The recent boom in NIMs was indeed inspired by Sir John Pendry, who not only provided a practical recipe on the building blocks for NIMs [6, 7], but also made critical predictions on the possible applications of metamaterials including perfect lenses and superlenses with subwavelength resolution [8], and an electromagnetic cloak of invisibility [9]. Left-handed materials are probably the most prominent class of metamaterials among all branches in the present metamaterial research. In fact, during the first few years of the metamaterial boom, the idea of a negative index of refraction was emphasized so much that the term metamaterial was often taken to be synonymous with negative index materials or left-handed materials. Although the term “left-handed materials” introduced by Veselago was initially assumed to be applicable for materials with "; and n being simultaneously negative (and real), this term now has been used in a much broader context and includes other optical systems that possess antiparallel phase velocity and Poynting vector. Such a “left-handedness” property can occur in a variety of systems, including photonic crystals, highly-anisotropic materials, metal-insulator-metal waveguides, and more. Some of these systems will be discussed in the last section of this chapter. Also it is worth noting that the term “left-handed materials” may introduce unnecessary confusion because this term also arises in the study of chiral materials. Therefore nowadays the term “negative-index (meta)materials” prevails among researchers in related fields. Another term used by metamaterial researchers for the same substance is “double-negative materials,” which emphasizes the fact that both " and have negative values in such a material. There are also other terms for NIMs, such as “backward wave media,” “negative phase-velocity media,” etc. These names, however, appear relatively sparsely in the literature. Because the index of refraction is a fundamental material parameter that enters into almost all basic formulae for optics, bringing the refractive index into a new domain of negative values has truly excited the imagination of researchers worldwide. These NIMs bring the concept of refractive index into a new domain of exploration and thus promise to create entirely new prospects for manipulating light, with revolutionary impacts on present-day optical technologies.
W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and ApplБайду номын сангаасcations, DOI 10.1007/978-1-4419-1151-3 6, c Springer Science+Business Media, LLC 2010
Chapter 6
Negative-Index Metamaterials
6.1 A Brief Historical Review
The refractive index is one of the most important parameters for an optical medium. Defined as n D c=v, it measures the comparative velocity of light in different media. When a light beam travels across the boundary between two different materials, it bends owing to the change in refractive index at the interface. This phenomenon, refraction, gives the reason why a water pool appears shallower than it actually is, why a straw placed partially in water at a slant seems to bend towards the surface, and why people can use eyeglasses to adjust the path of light in front of their eyes and alleviate the effects of conditions such as myopia. The refractive index is a complex number n D n0 C i n00 , where the imaginary part 00 n characterizes the losses in the material. Using the electromagnetic description of light given by Maxwell’s equations, the refractive index n is related to basic material parameters, namely the permittivity " and the permeability , via n2 D " . Therefore there is ambiguity in choosing the sign of n because mathematically there p are two solutions for the refractive index: n D ˙ " . For all known naturally occurring transparent materials like water or glass, both " and are positive and p thus the refractive index can be written as n D " . For anisotropic media like crystals or absorbing materials such as metals, the situation is more complicated and a tensor or complex value of the refractive index is required for describing the optical behavior of such materials. However, for any naturally existing material it is always true that the positive square root should be chosen. But what about a negative sign in front of the square root? Is there any fundamental law of physics that prevents such a thing from happening? If not, what would happen to electromagnetic fields in a medium with a negative index of refraction? And finally, how could we create such a material in reality? All these questions are to be addressed in this chapter. Although the research field of negative-index materials (NIMs) is a fairly new topic that has blossomed in the literature for fewer than 10 years, it is probably not that surprising to learn that a few scientific giants actually considered phenomena related to NIMs quite some time ago. These studies were perhaps so early that they could not be fully appreciated by contemporaries. Negative phase velocity and its