陕西省中考数学真题试题
陕西中考数学真题(含答案)

2021年陕西省中考数学试卷参考答案与试题解析一、选择题〔共10个小题,共计30分,每题只有一个选项是符合题意的〕1.如果零上5℃记作+5℃,那么零下7℃可记作〔〕A.﹣7℃B.+7℃C.+12℃D.﹣12℃考点:正数和负数。
分析:在一对具有相反意义的量中,先规定其中一个为正,那么另一个就用负表示.解答:解:∵“正〞和“负〞相对,∴零上5℃记作+5℃,那么零下7℃可记作﹣7℃.应选A.点评:此题考查了正数与负数的定义.解题关键是理解“正〞和“负〞的相对性,确定一对具有相反意义的量.2.如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是〔〕A.B.C.D.考点:简单组合体的三视图。
分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定那么可.解答:解:从左边看竖直叠放2个正方形.应选C.点评:考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.3.计算〔﹣5a3〕2的结果是〔〕A.﹣10a5B.10a6C.﹣25a5D.25a6考点:幂的乘方与积的乘方。
分析:利用积的乘方与幂的乘方的性质求解即可求得答案.解答:解:〔﹣5a3〕2=25a6.应选D.点评:此题考查了积的乘方与幂的乘方的性质.注意幂的乘方法那么:底数不变,指数相乘;积的乘方法那么:把每一个因式分别乘方,再把所得的幂相乘.4.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况〔总分值100分〕如表,从中去掉一个最高分和一个最低分,那么余下的分数的平均分是〔 〕 分数〔分〕 89 92 95 96 97 评委〔位〕 122 1 1A . 92分B . 93分C . 94分D . 95分考点: 加权平均数。
分析: 先去掉一个最低分去掉一个最高分,再根据平均数等于所有数据的和除以数据的个数列出算式进行计算即可.解答: 解:由题意知,最高分和最低分为97,89,那么余下的数的平均数=〔92×2+95×2+96〕÷5=94. 应选C .点评: 此题考查了加权平均数,关键是根据平均数等于所有数据的和除以数据的个数列出算式. 5.如图,△ABC 中,AD 、BE 是两条中线,那么S △EDC :S △ABC =〔 〕 A . 1:2B . 2:3C . 1:3D . 1:4考点: 相似三角形的判定与性质;三角形中位线定理。
2024年陕西中考数学试卷及其答案

2024年陕西中考数学试卷及其答案一、选择题1.首先,我们来看看第一题。
小明在购物网站上购买了一双鞋子,原价为120元,打了8折。
请问小明购买这双鞋子时需要支付多少钱?A)100元 B)108元 C)112元 D)120元答案:B)108元解析:根据题意,小明购买时可以享受8折优惠,也就是原价的80%。
所以,所需支付的金额为120元乘以80%,即120\*0.8=96元,即108元。
2.接下来,我们看看第二题。
某班有60名学生,其中男生占总人数的40%,女生人数是男生人数的一半,那么女生的人数是多少?A)12人 B)16人 C)20人 D)24人答案:D)24人解析:根据题意,男生人数占总人数的40%,即0.4\*60=24人。
女生人数是男生人数的一半,所以女生人数为24人的一半,即12人。
3.下面是第三题。
某数的12倍减去3等于27,这个数是多少?A)2 B)3 C)4 D)5答案:B)3解析:设这个数为x,根据题意可以得到12x-3=27,将等式两边加上3,则有12x=30,再将等式两边除以12,可以得到x=2.5。
所以,这个数是3。
二、填空题1.请计算下面各式的结果:(1)16÷4×(2+4)=?答案:24解析:根据运算法则,先进行括号内的运算2+4=6,然后再进行除法运算16÷4=4,最后再进行乘法运算4×6=24。
(2)3\*5÷3+2=?答案:7解析:根据运算法则,先进行乘法运算3\*5=15,然后进行除法运算15÷3=5,最后进行加法运算5+2=7。
2.某公司现有员工300人,其中男员工占总人数的40%,女员工和其他员工人数的比值为2:3,那么女员工人数是多少?答案:120人解析:根据题意,男员工人数占总人数的40%,即0.4\*300=120人。
女员工和其他员工人数的比值为2:3,即女员工人数为总人数的2/5乘以300,即(2/5)×300=120人。
陕西省2022年中考数学真题试题(含答案)

陕西省 2022年中考数学真题试题一、选择题:〔本大题共10题,每题3分,总分值30分〕1、-711的倒数是A .711B .-711C .117D .-1172、如图,是一个几何体的外表展开图,那么该几何体是A .正方体B .长方体C .三棱柱D .四棱锥3、如图,假设l 1∥l 2,l 3∥l 4,那么图中与∠1互补的角有A .1个B .2个C .3个D .4个4、如图,在矩形ABCD 中,A (-2,0),B(0,1).假设正比例函数y =kx 的图像经过点C ,那么k 的取值为A .-12B .12C .-2D .2第2题图第3题图第4题图5、以下计算正确的选项是A .a 2·a 2=2a 4B .(-a 2)3=-a 6C .3a 2-6a 2=3a 2D .(a -2)2=a 2-46、如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,那么AE 的长为A .423B .2 2C .823D .3 2第6题图第8题图第9题图7、假设直线l 1经过点(0,4),l 2经过(3,2),且l 1与l 2关于x 轴对称,那么l 1与l 2的交点坐标为A .(-2,0)B .(2,0)C .(-6,0)D .(6,0)8、如图,在菱形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 和DA 的中点,连接EF 、FG 、yC B AO xGH 和HE .假设EH =2EF ,那么以下结论正确的选项是A .AB =2EFB .AB =2EFC .AB =3EFD .AB =5EF9、如图,△ABC 是⊙O 的内接三角形,AB =AC ,∠BCA =65°,作CD ∥AB ,并与○O 相交于点D ,连接BD ,那么∠DBC 的大小为A .15°B .35°C .25°D .45°10、对于抛物线y =ax 2+(2a -1)x +a -3,当x =1时,y >0,那么这条抛物线的顶点一定在A .第一象限B .第二象限C .第三象限D .第四象限二、填空题:〔本大题共4题,每题3分,总分值12分〕11、比拟大小:3<10(填<,>或=).12、如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,那么AFE 的度数为72°13、假设一个反比例函数的图像经过点A (m ,m )和B (2m ,-1),那么这个反比例函数的表达式为y =4x14、点O 是平行四边形ABCD 的对称中心,AD >AB ,E 、F 分别是AB 边上的点,且EF =12AB ;G 、H 分别是BC 边上的点,且GH =13BC ;假设S 1,S 2分别表示∆EOF 和∆GOH 的面积,那么S 1,S 2之间的等量关系是2S 1=3S 2第12题图第14题图二、解答题〔共11小题,计78分.解容许写出过程〕15.〔此题总分值5分〕计算:(-3)×(-6)+|2-1|+(5-2π)0解:原式=32+2-1+1=4 2 16.〔此题总分值5分〕 化简:⎝⎛⎭⎪⎫a +1a -1-a a +1÷3a +1a 2+a解:原式=3a +1(a +1)(a -1)×a (a +1)3a +1=aa -117.〔此题总分值5分〕如图,在正方形ABCD 中,M 是BC 边上一定点,连接AM ,请用尺规作图法,在AM 上求作一点P ,使得△DPA ∽△ABM 〔不写做法保存作图痕迹〕解:如图,P 即为所求点. 18、〔此题总分值5分〕如图,AB ∥CD ,E 、F 分别为AB 、CD 上的点,且EC ∥BF ,连接AD ,分别与EC 、BF 相交与点G 、H ,假设AB =CD ,求证:AG =DH .证明:∵AB ∥CD ,∴∠A =∠D ∵CE ∥BF ,∴∠AHB =∠DGC 在∆ABH 和∆DCG 中,∵⎩⎪⎨⎪⎧∠A =∠D∠AHB =∠DGC AB =CD∴∆ABH ≌∆DCG (AAS ),∴AH =DG ∵AH =AG +GH ,DG =DH +GH ,∴AG =HD19.〔此题总分值7分〕对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况〞问卷,并在本校随机抽取假设干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A 、B 、C 、D 四组,绘制了如下统计图表:“垃圾分类知识及投放情况〞问卷测试成绩统计表〔第19题图〕依据以上统计信息,解答以下问题: (1)求得m =30,n =19%;(2)这次测试成绩的中位数落在B 组; (3)求本次全部测试成绩的平均数.解:测试的平均成绩=2581+5543+5100+2796200=80.1.20.〔此题总分值7分〕周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D 竖起标杆DE ,使得点E 与点C 、A 共线.:CB ⊥AD ,ED ⊥AD ,测得BC =1m ,DE =1.5m ,BD =8.5m .测量示意图如下图.请根据相关测量信息,求河宽AB .解:∵CB ⊥AD ,ED ⊥AD , ∴∠CBA =∠EDA =90° ∵∠CAB =∠EAD ∴∆ABC ∽∆ADE ∴AD AB =DEBC ∴AB +8.5AB =1.51组别 分数/分 频数 各组总分/分A 60<x ≤70 38 2581B 70<x ≤80 72 5543C 80<x ≤90 60 5100D 90<x ≤100m2796A nD 、15%B 36%C 30%∴AB =17,即河宽为17米. 21.〔此题总分值7分〕经过一年多的精准帮扶,小明家的网络商店〔简称网店〕将红枣、小米等优质土特产迅速销往全国,小明家网店中红枣和小米这两种商品的相关信息如下表:商品 红枣 小米 规格1kg /袋2kg /袋 本钱〔元/袋〕 40 38 售价〔元/袋〕6054根据上表提供的信息,解答以下问题:(1)今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg ,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg ,其中,这种规格的红枣的销售量不低于600kg .假设这后五个月,销售这种规格的红枣味x 〔kg 〕,销售这种规格的红枣和小米获得的总利润为y 〔元〕,求出y 与x 之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.解:(1)设前五个月小明家网店销售这种规格的红枣a 袋,销售小米b 袋,根据题意列方程得:a +2b =3000,(60-40)a +(54-38)b =42000,解得:a =1500,b =750∴前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋 (2)根据题意得:y =(60-40)x +(54-38)×2000-x2=12x +16000y 随x 的增大而增大,∵x ≥600,∴当x =600时,y 取得最小值,最小值为y =12×600+16000=23200∴小明家网店销售这种规格的红枣和小米至少获得总利润23200元. 22.〔此题总分值7分〕如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1〞的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,那么该扇形内的数字即为转出的数字,此时,称为转动转盘一次〔假设指针指向两个扇形的交线,那么不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止〕(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.〔第22题图〕解:(1)由题意可知:“1〞和“3〞所占的扇形圆心角为120°,所以2个“-2〞所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为120°360°=13; (2)由(1)可知,该转盘转出“1〞“3〞“-2〞的概率相同,均为13,所有可能性如下表所示: 第一次 第二次 1-2 3 1 (1,1) (1,-2) (1,3) -2 (-2,1) (-2,-2) (-2,3) 3(3,1)(3,-2)(3,3)由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为923.〔此题总分值8分〕如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC 、BC 相交于点M 、N .(1)过点N 作⊙O 的切线NE 与AB 相交于点E ,求证:NE ⊥AB ; (2)连接MD ,求证:MD =NB .23题图 23题解图(1) 解:(1)如图,连接ON∵CD 是Rt △ABC 斜边AB 上的中线 ∴AD =CD =DB ∴∠DCB =∠DBC 又∵∠DCB =∠ONC ∴∠ONC =∠DBC ∴ON ∥AB∵NE 是⊙O 的切线,ON 是⊙O 的半径 ∴∠ONE =90°∴∠NEB =90°,即NE ⊥AB ;(2)如解图(1)所示,由(1)可知ON ∥AB ,O 为⊙O 的圆心,∴OC =OB ,∠CMD =90°∴CN =NB =12CB ,MD ∥CB又∵D 是AB 的中点,∴MD =12CB∴MD =NB .24.〔此题总分值10分〕抛物线L :y =x 2+x -6与x 轴相交于A 、B 两点〔点A 在点B 的左侧〕,并与y 轴相交于点C .(1)求A 、B 、C 三点的坐标,并求出△ABC 的面积;(2)将抛物线向左或向右平移,得到抛物线L ´,且L ´与x 轴相交于A ´、B ´两点〔点A ´在点B ´的左侧〕,并与y 轴交于点C ´,要使△A ´B ´C ´和△ABC 的面积相等,求所有满足条件的抛物线的函数表达式.解:(1)当y =0时,x 2+x -6=0,解得x 1=-3,x 2=2;当x =0时,y =-6 ∴A (-3,0),B (2,0),C (0,6) ∴S △ABC =12AB ·OC =12×5×6=15;(2)将抛物线向左或向右平移时,A´、B´两点间的距离不变,始终为5,那么要使△A´B´C´和△ABC的面积相等,高也只能是6设A(a,0),那么B(a+5,0),y=(x-a)(x-a-5),当x=0时,y=a2+5a当C点在x轴上方时,y=a2+5a=6,a=1或a=-6,此时y=x2-7x-6或y=x2+7x-6;当C点在x轴下方时,y=a2+5a=-6,a=-2或a=-3,此时y=x2-x-6或y=x2+x-6(与圆抛物线重合,舍去);所以,所有满足条件的抛物线的函数表达式为:y=x2-7x-6,y=x2+7x-6,y=x2-x-6.25.〔此题总分值12分〕问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,那么△ABC的外接圆半径R的值为.问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM 的最大值.问题解决(3)如图③所示,AB、AC、BC是某新区的三条规划路其中,AB=6km,AC=3km,∠BAC =60°,BC所对的圆心角为60°.新区管委会想在BC路边建物资总站点P,在AB、AC路边分别建物资分站点E、F.也就是,分别在BC线段AB和AC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷环保和节约本钱要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).图①图②图③解:(1)R=AB=AC=5;(2)如25题解图(2)所示,连接MO并延长交⊙O于N,连接OP显然,MP≤OM+OP=OM+ON=MN,ON=13,OM=132-122=5,MN=18∴PM的最大值为18;25题解图(2) 25题解图(3)(3)假设P点即为所求点,分别作出点P关于AB、AC的对称点P´、P"连接PP´、P´E,PE,P"F,PF,PP"由对称性可知PE+EF+FP=P´E+EF+FP"=P´P",且P´、E、F、P"在一条直线上,所以P´P"即为最短距离,其长度取决于PA的长度25题解图(4)作出弧BC的圆心O,连接AO,与弧BC交于P,P点即为使得PA最短的点∵AB=6km,AC=3km,∠BAC=60°,∴∆ABC是直角三角形,∠ABC=30°,BC=3 3 BC所对的圆心角为60°,∴∆OBC是等边三角形,∠CBO=60°,BO=BC=3 3∴∠ABO=90°,AO=37,PA=37-3 3∠P´AE=∠EAP,∠PAF=∠FAP",∴∠P´AP"=2∠ABC=120°,P´A=AP",∴∠AP´E =∠AP"F=30°∵P´P"=2P´A cos∠AP´E=3P´A=321-9所以PE+EF+FP的最小值为321-9km.。
陕西省中考数学试题(含答案解析)(共五则范文)

陕西省中考数学试题(含答案解析)(共五则范文)第一篇:陕西省中考数学试题(含答案解析)2020年陕西省中考数学试卷(共25题,满分120)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.﹣18的相反数是()A.18 B.﹣18 C. D. 2.若∠A=23°,则∠A余角的大小是()A.57° B.67° C.77° D.157° 3.2019年,我国国内生产总值约为990870亿元,将数字990870用科学记数法表示为()A.9.9087×105 B.9.9087×104 C.99.087×104 D.99.087×103 4.如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃ B.8℃ C.12℃ D.16℃ 5.计算:(x2y)3=()A.﹣2x6y3 B.x6y3 C.x6y3 D.x5y4 6.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△A BC的高,则BD的长为()A.B.C.D.7.在平面直角坐标系中,O 为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为()A.2 B.3 C.4 D.6 8.如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC=90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为()A.B.C.3 D.2 9.如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A.55° B.65° C.60° D.75° 10.在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共4小题,每小题3分,计12分)11.计算:(2)(2)=. 12.如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是.13.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y(k≠0)的图象经过其中两点,则m的值为.14.如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF的长为.三、解答题(共11小题,计78分.解答应写出过程)15.(5分)解不等式组:16.(5分)解分式方程:1.17.(5分)如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)18.(5分)如图,在四边形ABCD中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD=BE.19.(7分)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是,众数是.(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?20.(7分)如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B 处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角∠2的度数,竟然发现∠1与∠2恰好相等.已知A,B,C三点共线,CA⊥AM,NM⊥AM,AB=31m,BC=18m,试求商业大厦的高MN. 21.(7分)某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?22.(7分)小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.23.(8分)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长. 24.(10分)如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l 上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.25.(12分)问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是.问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y (m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.2020年陕西省中考数学试卷答案解析一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.﹣18的相反数是()A.18 B.﹣18 C. D.【解答】解:﹣18的相反数是:18.故选:A.2.若∠A=23°,则∠A余角的大小是()A.57° B.67° C.77° D.157° 【解答】解:∵∠A=23°,∴∠A的余角是90°﹣23°=67°.故选:B. 3.2019年,我国国内生产总值约为990870亿元,将数字990870用科学记数法表示为()A.9.9087×105 B.9.9087×104 C.99.087×104 D.99.087×103 【解答】解:990870=9.9087×105,故选:A. 4.如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃ B.8℃ C.12℃ D.16℃ 【解答】解:从折线统计图中可以看出,这一天中最高气温8℃,最低气温是﹣4℃,这一天中最高气温与最低气温的差为12℃,故选:C.5.计算:(x2y)3=()A.﹣2x6y3 B.x6y3 C.x6y3 D.x5y4 【解答】解:(x2y)3.故选:C. 6.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.B.C.D.【解答】解:由勾股定理得:AC,∵S△ABC=3×33.5,∴,∴,∴BD,故选:D.7.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为()A.2 B.3 C.4 D.6 【解答】解:在y=x+3中,令y=0,得x=﹣3,解得,∴A(﹣3,0),B(﹣1,2),∴△AOB的面积3×2=3,故选:B.8.如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC=90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为()A. B. C.3 D.2 【解答】解:∵E是边BC的中点,且∠BFC=90°,∴Rt△BCF中,EFBC=4,∵EF∥AB,AB∥C G,E是边BC的中点,∴F 是AG的中点,∴EF是梯形ABCG的中位线,∴CG=2EF﹣AB=3,又∵CD=AB=5,∴DG=5﹣3=2,故选:D.9.如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A.55° B.65° C.60° D.75° 【解答】解:连接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是边BC 的中点,∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODCBDC=65°,故选:B.10.在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m >1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵y=x2﹣(m﹣1)x+m=(x)2+m,∴该抛物线顶点坐标是(,m),∴将其沿y轴向下平移3个单位后得到的抛物线的顶点坐标是(,m3),∵m>1,∴m﹣1>0,∴0,∵m31<0,∴点(,m3)在第四象限;故选:D.二、填空题(共4小题,每小题3分,计12分)11.计算:(2)(2)= 1 .【解答】解:原式=22﹣()2 =4﹣3 =1.12.如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是144°.【解答】解:因为五边形ABCDE是正五边形,所以∠C108°,BC=DC,所以∠BDC36°,所以∠BDM=180°﹣36°=144°,故答案为:144°.13.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y(k≠0)的图象经过其中两点,则m的值为﹣1 .【解答】解:∵点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限,点A(﹣2,1)在第二象限,∴点C(﹣6,m)一定在第三象限,∵B(3,2)在第一象限,反比例函数y (k≠0)的图象经过其中两点,∴反比例函数y(k≠0)的图象经过B (3,2),C(﹣6,m),∴3×2=﹣6m,∴m=﹣1,故答案为:﹣1.14.如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD 上,且AE=2.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF的长为 2 .【解答】解:如图,过点A和点E作AG⊥BC,EH⊥BC于点G和H,得矩形AGHE,∴GH=AE=2,∵在菱形ABCD中,AB=6,∠B=60°,∴BG=3,AG=3EH,∴HC=BC﹣BG﹣GH=6﹣3﹣2=1,∵EF平分菱形面积,∴FC=AE=2,∴FH=FC﹣HC=2﹣1=1,在Rt△EFH中,根据勾股定理,得EF2.故答案为:2.三、解答题(共11小题,计78分.解答应写出过程)15.(5分)解不等式组:【解答】解:,由①得:x>2,由②得:x<3,则不等式组的解集为2<x<3. 16.(5分)解分式方程:1.【解答】解:方程1,去分母得:x2﹣4x+4﹣3x=x2﹣2x,解得:x,经检验x是分式方程的解.17.(5分)如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)【解答】解:如图,点P即为所求.18.(5分)如图,在四边形ABCD中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD=BE.【解答】证明:∵DE=DC,∴∠DEC=∠C.∵∠B=∠C,∴∠B=∠DEC,∴AB∥DE,∵AD∥BC,∴四边形ABED是平行四边形.∴AD=BE. 19.(7分)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是 1.45kg,众数是1.5kg .(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?【解答】解:(1)∵这20条鱼质量的中位数是第10、11个数据的平均数,且第10、11个数据分别为1.4、1.5,∴这20条鱼质量的中位数是1.45(kg),众数是1.5kg,故答案为:1.45kg,1.5kg.(2)1.45(kg),∴这20条鱼质量的平均数为1.45kg;(3)18×1.45×2000×90%=46980(元),答:估计王大伯近期售完鱼塘里的这种鱼可收入46980元. 20.(7分)如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M 的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角∠2的度数,竟然发现∠1与∠2恰好相等.已知A,B,C 三点共线,CA⊥AM,NM⊥AM,AB=31m,BC=18m,试求商业大厦的高MN.【解答】解:如图,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F,∴∠CEF=∠BFE=90°,∵CA⊥AM,NM⊥AM,∴四边形AMEC和四边形AMFB均为矩形,∴CE=BF,ME=AC,∠1=∠2,∴△BFN≌△CEM(ASA),∴NF=EM=31+18=49,由矩形性质可知:EF=CB=18,∴MN=NF+EM﹣EF=49+49﹣18=80(m).答:商业大厦的高MN为80m.21.(7分)某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?【解答】解:(1)当0≤x≤15时,设y=kx(k≠0),则:20=15k,解得k,∴y;当15<x≤60时,设y=k′x+b(k≠0),则:,解得,∴y,∴;(2)当y=80时,80,解得x=33,33﹣15=18(天),∴这种瓜苗移至大棚后.继续生长大约18天,开始开花结果. 22.(7分)小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.【解答】解:(1)小亮随机摸球10次,其中6次摸出的是红球,这10次中摸出红球的频率;(2)画树状图得:∵共有16种等可能的结果,两次摸出的球中一个是白球、一个是黄球的有2种情况,∴两次摸出的球中一个是白球、一个是黄球的概率.23.(8分)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.【解答】证明:(1)连接OC,∵CE与⊙O相切于点C,∴∠OCE=90°,∵∠ABC=45°,∴∠AOC=90°,∵∠AOC+∠OCE=180°,∴∴AD∥EC(2)如图,过点A作AF⊥EC交EC于F,∵∠BAC=75°,∠ABC=45°,∴∠ACB=60°,∴∠D=∠ACB=60°,∴sin∠A DB,∴AD8,∴OA=OC=4,∵AF⊥EC,∠OCE=90°,∠AOC=90°,∴四边形OAFC是矩形,又∵OA=OC,∴四边形OAFC是正方形,∴CF=AF=4,∵∠BAD=90°﹣∠D=30°,∴∠EAF=180°﹣90°﹣30°=60°,∵tan∠EAF,∴EFAF =12,∴CE=CF+EF=12+4.24.(10分)如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l 上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.【解答】解:(1)将点(3,12)和(﹣2,﹣3)代入抛物线表达式得,解得,故抛物线的表达式为:y=x2+2x ﹣3;(2)抛物线的对称轴为x=﹣1,令y=0,则x=﹣3或1,令x =0,则y=﹣3,故点A、B的坐标分别为(﹣3,0)、(1,0);点C(0,﹣3),故OA=OC=3,∵∠PDE=∠AOC=90°,∴当PD=DE=3时,以P、D、E为顶点的三角形与△AOC全等,设点P (m,n),当点P在抛物线对称轴右侧时,m﹣(﹣1)=3,解得:m=2,故n=22+2×2﹣5=5,故点P(2,5),故点E(﹣1,2)或(﹣1,8);当点P在抛物线对称轴的左侧时,由抛物线的对称性可得,点P (﹣4,5),此时点E坐标同上,综上,点P的坐标为(2,5)或(﹣4,5);点E的坐标为(﹣1,2)或(﹣1,8).25.(12分)问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是CF、DE、DF .问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C 在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m 时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.【解答】解:(1)∵∠ACB=90°,DE⊥AC,DF⊥BC,∴四边形CEDF是矩形,∵CD平分∠ACB,DE⊥AC,DF⊥BC,∴DE=DF,∴四边形CEDF是正方形,∴CE=CF=DE=DF,故答案为:CF、DE、DF;(2)连接OP,如图2所示:∵AB是半圆O的直径,2,∴∠APB=90°,∠AOP180°=60°,∴∠ABP=30°,同(1)得:四边形PECF是正方形,∴PF=CF,在Rt△APB中,PB=AB•cos∠ABP=8×cos30°=84,在Rt△CFB中,BFCF,∵PB=PF+BF,∴PB=CF+BF,即:4CFCF,解得:CF=6﹣2;(3)①∵AB为⊙O的直径,∴∠ACB=∠ADB=90°,∵CA=CB,∴∠ADC=∠BDC,同(1)得:四边形DEPF是正方形,∴PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB=90°,∴将△APE绕点P逆时针旋转90°,得到△A′PF,PA′=PA,如图3所示:则A′、F、B三点共线,∠APE=∠A′PF,∴∠A′PF+∠BPF=90°,即∠A′PB=90°,∴S△PAE+S△PBF=S△PA′BPA′•PBx(70﹣x),在Rt△ACB中,AC=BCAB70=35,∴S△ACBAC2(35)2=1225,∴y =S△PA′B+S△ACBx(70﹣x)+1225x2+35x+1225;②当AP=30时,A′P=30,PB=AB﹣AP=70﹣30=40,在Rt△A′PB中,由勾股定理得:A′B50,∵S△A′PBA′B•PFPB•A′P,∴50×PF40×30,解得:PF=24,∴S四边形PEDF=PF2=242=576(m2),∴当AP=30m时.室内活动区(四边形PEDF)的面积为576m2.第二篇:2019年陕西省中考数学试题(含解析)2019年中考数学真题(陕西省)一、选择题(共10小题,每小题3分,共30分)1.计算:()A.1B.0C.3D.2.如图,是由两个正方体组成的几何体,则该几何体的俯视图为()3.如图,OC是∠AOB的角平分线,l//OB,若∠1=52°,则∠2的度数为()A.52°B.54°C.64°D.69°4.若正比例函数的图象经过点O(a-1,4),则a的值为()A.-1B.0C.1D.25.下列计算正确的是()A.B.C.D.6.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E。
2023年陕西省数学中考试卷(含解析)

2023年陕西省中考数学试卷(A卷)一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 计算:3―5=( )A. 2B. ―2C. 8D. ―82. 下列图形中,既是轴对称图形,又是中心对称图形的是( )A. B.C. D.3.如图,l//AB,∠A=2∠B.若∠1=108°,则∠2的度数为( )A. 36°B. 46°C. 72°D. 82°4. 计算:6xy2⋅(―1x3y3)=( )2A. 3x4y5B. ―3x4y5C. 3x3y6D. ―3x3y65. 在同一平面直角坐标系中,函数y=ax和y=x+a(a为常数,a<0)的图象可能是( )A. B.C. D.6.如图,DE 是△ABC 的中位线,点F 在DB 上,DF =2BF.连接EF 并延长,与CB 的延长线相交于点M.若BC =6,则线段CM 的长为( )A. 132B. 7C. 152D. 87. 陕西饮食文化远流长,“老碗面”是陕西地方特色美食之一.图②是从正面看到的一个“老碗”(图①)的形状示意图.AB 是⊙O 的一部分,D 是AB 的中点,连接OD ,与弦AB 交于点C ,连接OA ,OB.已知AB =24cm ,碗深CD =8cm ,则⊙O 的半径OA 为( )A. 13cmB. 16cmC. 17cmD. 26cm8. 在平面直角坐标系中,二次函数y =x 2+mx +m 2―m(m 为常数)的图象经过点(0,6),其对称轴在y 轴左侧,则该二次函数有( )A. 最大值5B. 最大值154C. 最小值5 D. 最小值154二、填空题(本大题共5小题,共15.0分)9. 如图,在数轴上,点A表示3,点B与点A位于原点的两侧,且与原点的距离相等.则点B 表示的数是______ .10.如图,正八边形的边长为2,对角线AB、CD相交于点E.则线段BE的长为______ .11. 点E是菱形ABCD的对称中心,∠B=56°,连接AE,则∠BAE的度数为______ .12.如图,在矩形OABC和正方形CDEF中,点A在y轴正半轴上,点C,F均在x轴正半轴上,点D在边BC上,BC=2CD,AB=3.若点B,E在同一个反比例函数的图象上,则这个反比例函数的表达式是______ .13.如图,在矩形ABCD中,AB=3,BC=4.点E在边AD上,且ED=3,M、N分别是边AB、BC上的动点,且BM=BN,P是线段CE上的动点,连接PM,PN.若PM+PN=4.则线段PC的长为______ .三、解答题(本大题共13小题,共81.0分。
陕西省2022年中考数学真题试题(含解析)2

陕西省2022年中考数学真题试题(含解析)2陕西省2022年中考数学真题试题一、选择题:(本大题共10题,每题3分,总分值30分)1.“-”的倒数是A。
B。
- C。
D。
-答案】D解析】根据乘积为1的两个数互为倒数进行求解即可得。
详解】因为-×- = 1,所以“-”的倒数是“-”,应选D。
点睛】此题考查了倒数的定义,熟知乘积为1的两个数互为倒数是解题的关键。
2.如图,是一个几何体的外表展开图,那么该几何体是A。
正方体 B。
长方体 C。
三棱柱 D。
四棱锥答案】C解析】根据外表展开图中有两个三角形,三个长方形,由此即可判断出此几何体为三棱柱。
详解】观察可知图中有一对全等的三角形,有三个长方形,所以此几何体为三棱柱,应选C。
点睛】此题考查了几何体的展开图,熟记常见立体图形的展开图特点是解决此类问题的关键。
3.如图,假设$l_1\parallel l_2$,$l_3\parallel l_4$,那么图中与∠1互补的角有A。
1个 B。
2个 C。
3个 D。
4个答案】D解析】如图根据平行线的性质可得∠2=∠4,∠1+∠2=180°,再根据对顶角的性质即可得出与∠1互补的角的个数。
详解】如图,因为$l_1\parallel l_2$,$l_3\parallel l_4$,所以$\angle2=\angle4$,$\angle1+\angle2=180°$,又因为$\angle2=\angle3$,$\angle4=\angle5$,所以与∠1互补的角有$\angle2$、$\angle3$、$\angle4$、$\angle5$共4个,应选D。
点睛】此题考查了平行线的性质,熟练掌握平行线的性质是解题的关键。
4.如图,在矩形ABCD中,A(-2,0),B(0,1)。
假设正比例函数$y=kx$的图像经过点C,那么k的取值为A。
- B。
C。
-2 D。
2答案】A解析】根据可得点C的坐标为(-2,1),把点C坐标代入正比例函数解析式即可求得k。
2023年陕西省中考数学(A卷)试卷【附参考答案】

2023年陕西省中考数学试卷(A卷)一、选择题1.(3分)计算:3﹣5=()A.2B.﹣2C.8D.﹣82.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)如图,l∥AB,∠A=2∠B.若∠1=108°,则∠2的度数为()A.36°B.46°C.72°D.82°4.(3分)计算:=()A.3x4y5B.﹣3x4y5C.3x3y6D.﹣3x3y65.(3分)在同一平面直角坐标系中,函数y=ax和y=x+a(a为常数,a<0)的图象可能是()A.B.C.D.6.(3分)如图,DE是△ABC的中位线,点F在DB上,DF=2BF.连接EF并延长,与CB的延长线相交于点M.若BC=6,则线段CM的长为()A.B.7C.D.87.(3分)陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.图②是从正面看到的一个“老碗”(图①)的形状示意图.是⊙O的一部分,D是的中点,连接OD,与弦AB交于点C,连接OA,OB.已知AB=24cm,碗深CD=8cm,则⊙O的半径OA为()A.13cm B.16cm C.17cm D.26cm8.(3分)在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有()A.最大值5B.最大值C.最小值5D.最小值二、填空题9.(3分)如图,在数轴上,点A表示,点B与点A位于原点的两侧,且与原点的距离相等.则点B表示的数是.(3分)如图,正八边形的边长为2,对角线AB、CD相交于点E.则线段BE的长为.10.11.(3分)点E是菱形ABCD的对称中心,∠B=56°,连接AE,则∠BAE的度数为.12.(3分)如图,在矩形OABC和正方形CDEF中,点A在y轴正半轴上,点C,F均在x轴正半轴上,点D在边BC上,BC=2CD,AB=3.若点B,E在同一个反比例函数的图象上,则这个反比例函数的表达式是.13.(3分)如图,在矩形ABCD中,AB=3,BC=4.点E在边AD上,且ED=3,M、N分别是边AB、BC 上的动点,且BM=BN,P是线段CE上的动点,连接PM,PN.若PM+PN=4.则线段PC的长为.三、解答题14.(5分)解不等式:x.15.(5分)计算:.16.(5分)化简:().17.(5分)如图.已知角△ABC,∠B=48°,请用尺规作图法,在△ABC内部求作一点P.使PB=PC.且∠PBC=24°.(保留作图痕迹,不写作法)18.(5分)如图,在△ABC中,∠B=50°,∠C=20°.过点A作AE⊥BC,垂足为E,延长EA至点D.使AD=AC.在边AC上截取AF=AB,连接DF.求证:DF=CB.19.(5分)一个不透明的袋子中装有四个小球,这四个小球上各标有一个数字,分别是1,1,2,3.这些小球除标有的数字外都相同.(1)从袋中机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为;(2)先从袋中随机摸出一个小球,记下小球上标有的数字后,放回,摇匀,再从袋中随机摸出一个小球,记下小球上标有的数字,请利用画树状图或列表的方法、求摸出的这两个小球上标有的数字之积是偶数的概率.20.(5分)小红在一家文具店买了一种大笔记本4个和一种小笔记本6个,共用了62元.已知她买的这种大笔记本的单价比这种小笔记本的单价多3元,求该文具店中这种大笔记本的单价.21.(6分)一天晚上,小明和爸爸带着测角仪和皮尺去公园测量一景观灯(灯杆底部不可到达)的高AB.如图所示,当小明爸爸站在点D处时,他在该景观灯照射下的影子长为DF,测得DF=2.4m;当小明站在爸爸影子的顶端F处时,测得点A的仰角α为26.6°.已知爸爸的身高CD=1.8m,小明眼睛到地面的距离EF=1.6m,点F、D、B在同一条直线上,EF⊥FB,CD⊥FB,AB⊥FB.求该景观灯的高AB.(参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50)22.(7分)经验表明,树在一定的成长阶段,其胸径(树的主干在地面以上1.3m处的直径)越大,树就越高.通过对某种树进行测量研究,发现这种树的树高y(m)是其胸径x(m)的一次函数.已知这种树的胸径为0.2m时,树高为20m;这种树的胸径为0.28m时,树高为22m.(1)求y与x之间的函数表达式;(2)当这种树的胸径为0.3m时,其树高是多少?23.(7分)某校数学兴趣小组的同学们从“校园农场“中随机抽取了20棵西红柿植株,并统计了每棵植株上小西红柿的个数.其数据如下:28,36,37,39,42,45,46,47,48,50,54,54,54,54,55,60,62,62,63,64.通过对以上数据的分析整理,绘制了统计图表:分组频数组内小西红柿的总个数25≤x<3512835≤x<45n15445≤x<55945255≤x<656366根据以上信息,解答下列问题:(1)补全频数分布直方图:这20个数据的众数是;(2)求这20个数据的平均数;(3)“校园农场“中共有300棵这种西红柿植株,请估计这300棵西红柿植株上小西红柿的总个数.24.(8分)如图,△ABC内接于⊙O,∠BAC=45°,过点B作BC的垂线,交⊙O于点D,并与CA的延长线交于点E,作BF⊥AC,垂足为M,交⊙O于点F.(1)求证:BD=BC;(2)若⊙O的半径r=3,BE=6,求线段BF的长.25.(8分)某校想将新建图书楼的正门设计为一个抛物线型门,并要求所设计的拱门的跨度与拱高之积为48m3,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求给出了两个设计方案.现把这两个方案中的拱门图形放入平面直角坐标系中,如图所示:方案一,抛物线型拱门的跨度ON=12m,拱高PE=4m.其中,点N在x轴上,PE⊥ON,OE=EN.方案二,抛物线型拱门的跨度ON′=8m,拱高P'E'=6m.其中,点N′在x轴上,P′E′⊥O′N′,O′E′=E′N′.要在拱门中设置高为3m的矩形框架,其面积越大越好(框架的粗细忽略不计).方案一中,矩形框架ABCD的面积记为S1,点A、D在抛物线上,边BC在ON上;方案二中,矩形框架A'B'C′D'的面积记为S2,点A',D'在抛物线上,边B'C'在ON'上.现知,小华已正确求出方案二中,当A'B'=3m时,,请你根据以上提供的相关信息,解答下列问题:(1)求方案一中抛物线的函数表达式;(2)在方案一中,当AB=3m时,求矩形框架ABCD的面积S1并比较S1,S2的大小.26.(10分)(1)如图①,在△OAB中,OA=OB,∠AOB=120°,AB=24.若⊙O的半径为4,点P在⊙O上,点M在AB上,连接PM,求线段PM的最小值;(2)如图②所示,五边形ABCDE是某市工业新区的外环路,新区管委会在点B处,点E处是该市的一个交通枢纽.已知:∠A=∠ABC=∠AED=90°,AB=AE=10000m,BC=DE=6000m.根据新区的自然环境及实际需求,现要在矩形AFDE区域内(含边界)修一个半径为30m的圆型环道⊙O;过圆心O,作OM⊥AB,垂足为M,与⊙O交于点N.连接BN,点P在⊙O上,连接EP.其中,线段BN、EP及MN 是要修的三条道路,要在所修道路BN、EP之和最短的情况下,使所修道路MN最短,试求此时环道⊙O的圆心O到AB的距离OM的长.1.B.2.C.3.A.4.B.5.D.6.C.7.A.8.D.9..10.2+.11.62°.12.y=.13.2.14.解:x,去分母,得3x﹣5>4x,移项,得3x﹣4x>5,合并同类项,得﹣x>5,不等式的两边都除以﹣1,得x<﹣5.15.解:原式=﹣5﹣7+|﹣8|==﹣5+1.16.解:()====.17.解:如图,点P即为所求.18.证明:在△ABC中,∠B=50°,∠C=20°,∴∠CAB=180°﹣∠B﹣∠C=110°.∵AE⊥BC.∴∠AEC=90°.∴∠DAF=∠AEC+∠C=110°,∴∠DAF=∠CAB.在△DAF和△CAB中,,∴△DAF≌△CAB(SAS).∴DF=CB.19.(1);(2)由上可得,一共有16种等可能性,其中两数之积是偶数的可能性有7种,∴摸出的这两个小球上标有的数字之积是偶数的概率.20.设该文具店中这种大笔记本的单价是x元,则小笔记本的单价是(x﹣3)元,∵买了一种大笔记本4个和一种小笔记本6个,共用了62元,∴4x+6(x﹣3)=62,解得:x=8;答:该文具店中这种大笔记本的单价为8元.21.解:过点E作EH⊥AB,垂足为H,由题意得:EH=FB,EF=BH=1.6m,设EH=FB=xm,在Rt△AEH中,∠AEH=26.6°,∴AH=EH•tan26.6°≈0.5x(m),∴AB=AH+BH=(0.5x+1.6)m,∵CD⊥FB,AB⊥FB,∴∠CDF=∠ABF=90°,∵∠CFD=∠AFB,∴△CDF∽△ABF,∴=,∴=,∴AB=x,∴x=0.5x+1.6,解得:x=6.4,∴AB=x=4.8(m),∴该景观灯的高AB约为4.8m.22.解:(1)设y=kx+b(k≠0),根据题意,得,解之,得,∴y=25x+15;(2)当x=0.3m时,y=25×0.3+15=22.5(m).∴当这种树的胸径为0.3m时,其树高为22.5m.23.(1)54;(2)50;(3)15000个.24.(1)证明:如图,连接DC,则∠BDC=∠BAC=45°,∵BD⊥BC,∴∠BCD=90°﹣∠BDC=45°,∴∠BCD=∠BDC.∴BD=BC;(2)解:如图,∵∠DBC=90°,∴CD为⊙O的直径,∴CD=2r=6.∴BC=CD•sin=3,∴EC===3,∵BF⊥AC,∴∠BMC=∠EBC=90°,∠BCM=∠BCM,∴△BCM∽△ECB.∴,∴BM===2,CM=,连接CF,则∠F=∠BDC=45°,∠MCF=45°,∴MF=MC=,∴BF=BM+MF=2+.25.(1)由题意知,方案一中抛物线的顶点P(6,4),设抛物线的函数表达式为y=a(x﹣6)2+4,把O(0,0)代入得:0=a(0﹣6)2+4,解得:a=﹣,∴y=﹣(x﹣6)2+4=﹣x2+x;∴方案一中抛物线的函数表达式为y=﹣x2+x;(2)在y=﹣x2+x中,令y=3得:3=﹣x2+x;解得x=3或x=9,∴BC=9﹣3=6(m),∴S1=AB•BC=3×6=18(m2);∵18>12,∴S1>S2.26.(1)如图①,连接OP,OM,过点O作OM'⊥AB,垂足为M',则OP+PM≥OM.∵⊙O半径为4,∴PM≥OM﹣4≥OM'﹣4,∵OA=OB.∠AOB=120°,∴∠A=30°,∴OM'=AM'•tan30°=12tan30°=4,∴PM≥OM'﹣4=4﹣4,∴线段PM的最小值为4﹣4;(2)如图②,分别在BC,AE上作BB'=AA'=r=30(m),连接A'B',B'O、OP、OE、B′E.∵OM⊥AB,BB'⊥AB,ON=BB',∴四边形BB'ON是平行四边形.∴BN=B′O.∵B'O+OP+PE≥B'O+OE≥B'E,∴BN+PE≥B'E﹣r,∴当点O在B'E上时,BN+PE取得最小值.作⊙O',使圆心O'在B'E上,半径r=30(m),作O'M'⊥AB,垂足为M',并与A'B'交于点H.∴O'H∥A'E,∴△B'O'H∽△B'EA',∴,∵⊙O'在矩形AFDE区域内(含边界),∴当⊙O'与FD相切时,B′H最短,即B′H=10000﹣6000+30=4030(m).此时,O′H也最短.∵M'N'=O'H,∴M'N'也最短.∴O'H==4017.91(m),∴O'M'=O'H+30=4047.91(m),∴此时环道⊙O的圆心O到AB的距离OM的长为4047.91m.。
2022年陕西省中考数学真题(解析)

21.小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且AO⊥OD,EF⊥FG.已知小明的身高EF为1.8米,求旗杆的高AB.
【分析】连接OB,由2∠C=∠AOB,求出∠AOB,再根据OA=OB即可求出∠OAB.
【详解】连接OB,如图,
∵∠C=46°,
∴∠AOB=2∠C=92°,
∴∠OAB+∠OBA=180°-92°=88°,
∵OA=OB,
∴∠OAB=∠OBA,
∴∠OAB=∠OBA= ×88°=44°,
故选:A.
【点睛】本题主要考查了圆周角定理,根据圆周角定理的出∠AOB=2∠C=92°是解答本题的关键.
∴ ,
∵直角 中, ,
∴ ,
∴直角 中,由勾股定理可得, .
直角三角形和勾股定理,难度较小,熟练掌握三角函数的意义是解题的关键.
6.在同一平面直角坐标系中,直线 与 相交于点 ,则关于x,y的方程组 的解为()
A. B. C. D.
【答案】C
【解析】
【分析】先把点P代入直线 求出n,再根据二元一次方程组与一次函数的关系求解即可;
设这个反比例函数的表达式为y= ,
∵A(−2,1)在这个反比例函数的图象上,
∴k=-2×1=-2,
∴这个反比例函数的表达式为y= ,
故答案为:y= .
【点睛】本题考查反比例函数图象上点的坐标特征、关于x轴、y轴对称的点的坐标特征,解答本题的关键是明确题意,求出m的值.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陕西省2013年中考数学试题
第Ⅰ卷(选择题 共30分)
A 卷
一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.下列四个数中最小的数是( ) A.-2B.0C.3
1-
D.5 2.如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是( )
3.如图,AB ∥CD ,∠CED=90°,∠AEC=35°,则∠D 的大小为( ) A.65° B.55° C.45° D.35°
4.不等式组⎪⎩
⎪⎨⎧--3210
2
1
πφx x 的解集为( ) A. x >
2
1
B. x <-1
C. -<x <21
D. x >-21
5.我省某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105.
则这七天空气质量指数的平均数是( ) A.71.8 B.77 C.82 D.95.7 6.如果一个正比例函数的图象经过不同..象限的两点A (2,m )、B (n ,3),那么一定有( ) A. m >0,n >0 B. m >0,n <0 C. m <0,n >0 D. m <0,n <0
7.如图,在四边形ABCD 中,AB=AD ,CD=CB.若连接AC 、BD 相交于点O ,则图中全等三角形共有( )
A.1对
B.2对
C.3对
D.4对
8.
x 与y 的对应值,可得P 的值为( )
A.1
B.-1
C.3
D.
-3
9.如图,在矩形ABCD 中,
AD=2AB ,点M 、N 分别在边AD 、
BC 上, 连接BM 、DN.若四边形MBND 是菱形,则
MD
AM
等于( ) E
D
B C
A (第2题图) (第3题图)
A B C D O D
B
C
A
N
M
D
B
C
A
A.
83 B.32 C.53 D.5
4 10.已知两点A (-5,1y )、B (3,2y )均在抛物线()02
≠++=a c bx ax
y 上,点C
(0x ,0y )是该抛物线的顶点,若1y >2y ≥0y ,则0x 的取值范围是( ) A. 0x >-5 B. 0x >-1 C.-5<0x <-1 D.-2<0x <3 B 卷
第Ⅱ卷(非选择题 共90分)
二、填空题(共6小题,每小题3分,共18分) 11.计算:()
()0
3
132
-+
-= .
12.一元二次方程032=-x x 的根是 .
13.请从经以下两个小题中任选一个....
作答,若多选,则按所选的第一题计分. A.在平面直角坐标系中,线段AB 的两个端点的坐标分别为A (-2,1)、B (1,3,)将线段AB 经过平移后得到线段A ′B ′.若点A 的对应点为A ′(3,2),则点B 的对应点B ′的坐标是 .
B.比较8cos31
.(填“>”、“=”若“<”)
14.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,且BD 平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD 的面积为 .(结果保留根号) 15.如果一个正比例函数的图象与反比例函数x
y 6
=
的图象交于A (1x ,1y )、B (2x ,2y )
两点,那么(2x -1x )(2y -1y )的值为 .
16.如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB=30°,点E 、F 分别是AC 、BC
的中点,直线EF 与⊙O 交于G 、H 两点.若⊙O 的半径为7,则GE+FH 的最大值为 .
三、解答题(共9小题,计72分.解答应写出过程) 17.(本题满分5分)
(第7题图) (第9题图)
O
D B C
A C (第14题图) (第16题图)
解分式方程:
12
422=-+-x x
x .
18.(本题满分6分)
如图,∠AOB=90°,OA=OB ,直线L 经过点O ,分别过A 、B 两点作AC ⊥L 交L 于点C ,BD ⊥L 交L 于点D. 求证:AC=OD
19.(本题满分7分) 我省教育厅下发了《在全省中小学幼儿园广泛深入开展节约教育的通知》通知中要求各学校全面持续开展“光盘行动”.
某市教育局督导检查组为了调查学生对“节约教育”内容的了解程度(程度分为:“A —了解很多”,B —“了解较多”,“C —了解较少”,“D —不了解”),对本市一所中学的学生进行了抽样调查.我们将这次调查的结果绘制了以下两幅统计图. 根据以上信息,解答下列问题:
(1) 本次抽样调查了多少名学生? (2) 补全两幅统计图;
(3) 若该中学共有1800名学生,请你估计这所中学的所有学生中,对“节约教育”内容
“了解较多”的有多少名?
l O D B C A
(第18题图)
45%
30%
D B C
A 了解程度
D
B
C
A
(第19题图)
被调查学生对“节约教育”内容了解程度的统计图
20.(本题满分8分)
一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D 的高度.如图,当李明走到点A 处时,张龙测得李明直立向高AM 与其影子长AE 正好相等;接着李明沿AC 方向继续向前走,走到点B 处时,李明直立时身高BN 的影子恰好是线段AB ,并测得AB=1.25m.已知李明直立时的身高为1.75m ,求路灯的高度CD 的长.(精确到0.1m )
21.(本题满分8分) “五一节”期间,申老师一家自架游去了离家170千米的某地.下面是他们离家的距离y (千米)与汽车行驶时间x (小时)之间的函数图象. (1) 求他们出发半小时时,离家多少千米? (2) 求出AB 段图象的函数表达式;
(3) 他们出发2小时时,离目的地还有多少千米?
E
A
x/小时
2.51.5O
(第20题图)
22.(本题满分8分)
甲、乙两人用手指玩游戏,规则如下:ⅰ)每次游戏时,两人同时随机地各伸出一根手指:ⅱ)两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时.
(1)求甲伸出小拇指取胜的概率; (2)求乙取胜的概率.
23.(本题满分8分)
如图,直线L 与⊙O 相切于点D.过圆心O 作EF ∥L 交⊙O 于E 、F 两点,点A 是⊙O 上一点,连接AE 、AF.并分别延长交直线L 于 B 、C 两点. (1) 求证:∠ABC+∠ACB=90°;
(2) 当⊙O 的半径R=5,BD=12时,求tan ∠ABC 的值.
24.(本题满分10分)
在平面直角坐标系中,一个二次函数的图象经过A (1,0)、B (3,0)两点. (1) 写出这个二次函数图象的对称轴;
(2) 设这个二次函数图象的顶点为D ,与y 轴交于点C ,它的对称轴与x 轴交于点E ,连
接AC 、DE
和DB.当⊿AOC 与⊿DEB 相似时,求这个函数的表达式.
(第21题图) l D
(第23题图)
25.(本题满分12分)
问题探究
(1)请在图①中作出两条直线,使它们将圆面四等分;
(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M),使它们将正方形ABCD的面积四等分,并说明理由.
问题解决
(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点.如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?若存在,求出BQ的长;若不存在,说明理由.
(第24题图)
D
B
D
B
(第25题图)
①
②③
参考答案
1.A;
2.D;
3.B;
4.A;
5.C;
6.D;
7.C;
8.A;
9.C;10.B
11.-7;12.0,3;13.A:(6,4)B:>;14.123;15.24;16.10.5;。