12864+ds1302+ds18b20数字时钟_温度_日期同步显示

合集下载

ds1302的12864液晶按键可调显示实时时钟程序(word文档良心出品)

ds1302的12864液晶按键可调显示实时时钟程序(word文档良心出品)

一.绪言1.在信息显示技术中,人们发现了信息数字化的重要作用和意义。

数字化的信息更加准确,同一性,更易传输和识别。

很多信息可以直接由数字表示,从而数字化信息显示又成为信息显示的又一个重要内容。

又从数字化显示发展到字符显示,它把人类特有的语言文字用于显示,这种显示与数字显示合在一起用途更广用量更大。

在这同时,人们还希望用图形和图像进行显示,且显示的内容为五彩缤纷,并且可以实时活动和具有三维立体效果。

这些在二十世纪尾声时都已经陆续实现。

LCD的计算机器,半导体发光数码管显示(LED)的汽车计价器,商场的大屏幕广告。

这零零总总的各类显示正为你做着各种各样的服务,相信在不久的将来显示技术的发展将会为人类做出更大的贡献。

Ds1302时钟芯片现在流行的串行时钟电路很多,如DS1302、 DS1307、PCF8485等。

这些电路的接口简单、价格低廉、使用方便,被广泛地采用。

本文介绍的实时时钟电路DS1302是DALLAS公司的一种具有涓细电流充电能力的电路,主要特点是采用串行数据传输,可为掉电保护电源提供可编程的充电功能,并且可以关闭充电功能。

采用普通32.768kHz晶振。

(一)设计任务本课题采用ds1302的时钟芯片为主要的的设计来源,采用显示是1cd1602的图形点阵液晶显示。

,(二)提出方案及方案论证在设计中,我主要是考虑ds1302的时间显示问题,因为网上也有ds1302的读写和显示程序,但是至于怎样才能显示详细信息,我提出了两个方案,一个是LCD1602来显示,一个是LCD12864,其中1602是个字符型的点阵,而1CD12864是个图形的点阵,相比之下12864能够更好显示数据,而CPU都采用89C52的单片机(三)原理说明:原理其实很简单,LCD12864的各种指令先进行宏定义和ds1302的读写指令也进行宏定义,从ds1302的读出数据显示在lcd上(二)程序流程图(三)C51程序设计,重要的代码要有注释。

玩转DS1302和DS18B20

玩转DS1302和DS18B20

玩转DS1302和DS18B20对于市面上的大多数51单片机开发板来说。

ds1302和ds18b20应该是比较常见的两种外围芯片。

ds130 2是具有SPI总线接口的时钟芯片。

ds18b20则是具有单总线接口的数字温度传感器。

下面让我们分别来认识并学会应用这两种芯片。

首先依旧是看DS1302的datasheet中的相关介绍。

上面是它的一些基本的应用介绍。

下面是它的引脚的描述。

下面是DS1302的时钟寄存器。

我们要读取的时间数据就是从下面这些数据寄存器中读取出来的。

当我们要想调整时间时,可以把时间数据写入到相应的寄存器中就可以了。

这是DS1302内部的31个RAM寄存器。

在某些应用场合我们可以应用到。

如我们想要做一个带定时功能的闹钟。

则可以把闹钟的时间写入到31个RAM寄存器中的任意几个。

当单片机掉电时,只要我们的DS 1302的备用电池还能工作,那么保存在其中的闹钟数据就不会丢失~~由于对于这些器件的操作基本上按照数据手册上面提供的时序图和相关命令字来进行操作就可以了。

因此在我们应用这些器件的时候一定要对照着手册上面的要求来进行操作。

如果觉得还不够放心的话。

可以到网上下载一些参考程序。

对着手册看别人的程序,看别人的思路是怎么样的。

DS1302和单片机的连接很简单。

只需一根复位线,一根时钟线,一根数据线即可。

同时它本身还需要接一个32.768KHz的晶振来提供时钟源。

对于晶振的两端可以分别接一个6PF左右的电容以提高晶振的精确度。

同时可以在第8脚接上一个3.6V的可充电的电池。

当系统正常工作时可以对电池进行涓流充电。

当系统掉电时,DS1302由这个电池提供的能量继续工作。

下面让我们来驱动它。

sbit io_DS1302_RST = P2^0 ;sbit io_DS1302_IO = P2^1 ;sbit io_DS1302_SCLK = P2^2 ;//-------------------------------------常数宏---------------------------------//#define DS1302_SECOND_WRITE 0x80 //写时钟芯片的寄存器位置#define DS1302_MINUTE_WRITE 0x82#define DS1302_HOUR_WRITE 0x84#define DS1302_WEEK_WRITE 0x8A#define DS1302_DAY_WRITE 0x86#define DS1302_MONTH_WRITE 0x88#define DS1302_YEAR_WRITE 0x8C#define DS1302_SECOND_READ 0x81 //读时钟芯片的寄存器位置#define DS1302_MINUTE_READ 0x83#define DS1302_HOUR_READ 0x85#define DS1302_WEEK_READ 0x8B#define DS1302_DAY_READ 0x87#define DS1302_MONTH_READ 0x89#define DS1302_YEAR_READ 0x8D//-----------------------------------操作宏----------------------------------//#define DS1302_SCLK_HIGH io_DS1302_SCLK = 1 ;#define DS1302_SCLK_LOW io_DS1302_SCLK = 0 ;#define DS1302_IO_HIGH io_DS1302_IO = 1 ;#define DS1302_IO_LOW io_DS1302_IO = 0 ;#define DS1302_IO_READ io_DS1302_IO#define DS1302_RST_HIGH io_DS1302_RST = 1 ;#define DS1302_RST_LOW io_DS1302_RST = 0 ;/******************************************************* 保存时间数据的结构体*******************************************************/struct{uint8 Second ;uint8 Minute ;uint8 Hour ;uint8 Day ;uint8 Week ;uint8 Month ;uint8 Year ;}CurrentTime ;/************************************************************** **************** * Function: static void v_DS1302Write_f( uint8 Content ) * * Description:向DS1302写一个字节的内容* * Parameter:uint8 Content : 要写的字节** **************************************************************** ***************/static void v_DS1302Write_f( uint8 Content ){uint8 i ;for( i = 8 ; i > 0 ; i-- ){if( Content & 0x01 ){DS1302_IO_HIGH}else{DS1302_IO_LOW}Content >>= 1 ;DS1302_SCLK_HIGHDS1302_SCLK_LOW}}/************************************************************** **************** * Function: static uint8 v_DS1302Read_f( void ) * * Description: 从DS1302当前设定的地址读取一个字节的内容* * Parameter: ** Return: 返回读出来的值(uint8) **************************************************************** ***************/ static uint8 v_DS1302Read_f( void ){uint8 i, ReadValue ;DS1302_IO_HIGHfor( i = 8 ; i > 0 ; i-- ){ReadValue >>= 1 ;if( DS1302_IO_READ ){ReadValue |= 0x80 ;}else{ReadValue &= 0x7f ;}DS1302_SCLK_HIGHDS1302_SCLK_LOW}return ReadValue ;}/************************************************************** ***************** Function: void v_DS1302WriteByte_f( uint8 Address, uint8 Content ) ** Description: 从DS1302指定的地址写入一个字节的内容** Parameter: Address: 要写入数据的地址** Content: 写入数据的具体值** Return: * ******************************************************************* ***********/void v_DS1302WriteByte_f( uint8 Address, uint8 Content ){DS1302_RST_LOWDS1302_SCLK_LOWDS1302_RST_HIGHv_DS1302Write_f( Address ) ;v_DS1302Write_f( Content ) ;DS1302_RST_LOWDS1302_SCLK_HIGH}/************************************************************** ***************** Function: uint8 v_DS1302ReadByte_f( uint8 Address ) ** Description:从DS1302指定的地址读出一个字节的内容** Parameter:Address: 要读出数据的地址** ** Return: 指定地址读出的值(uint8) **************************************************************** ***************/uint8 v_DS1302ReadByte_f( uint8 Address ){uint8 ReadValue ;DS1302_RST_LOWDS1302_SCLK_LOWDS1302_RST_HIGHv_DS1302Write_f( Address ) ;ReadValue = v_DS1302Read_f() ;DS1302_RST_LOWDS1302_SCLK_HIGHreturn ReadValue ;}/************************************************************** ***************** Function: void v_ClockInit_f( void ) ** Description:初始化写入DS1302时钟寄存器的值(主程序中只需调用一次即可) * * Parameter:** ** Return: **************************************************************** ***************/void v_ClockInit_f( void ){if( v_DS1302ReadByte_f( 0xc1) != 0xf0 ){v_DS1302WriteByte_f( 0x8e, 0x00 ) ; //允许写操作v_DS1302WriteByte_f( DS1302_YEAR_WRITE, 0x08 ) ; //年v_DS1302WriteByte_f( DS1302_WEEK_WRITE, 0x04 ) ; //星期v_DS1302WriteByte_f( DS1302_MONTH_WRITE, 0x12 ) ; //月v_DS1302WriteByte_f( DS1302_DAY_WRITE, 0x11 ) ; //日v_DS1302WriteByte_f( DS1302_HOUR_WRITE, 0x13 ) ; //小时v_DS1302WriteByte_f( DS1302_MINUTE_WRITE, 0x06 ) ; //分钟v_DS1302WriteByte_f( DS1302_SECOND_WRITE, 0x40 ) ; //秒v_DS1302WriteByte_f( 0x90, 0xa5 ) ; //充电v_DS1302WriteByte_f( 0xc0, 0xf0 ) ; //判断是否初始化一次标识写入v_DS1302WriteByte_f( 0x8e, 0x80 ) ; //禁止写操作}}/************************************************************** ***************** Function: void v_ClockUpdata_f( void ) ** Description:读取时间数据,并保存在结构体CurrentTime中** Parameter:** ** Return:**************************************************************** ***************/void v_ClockUpdata_f( void ){CurrentTime.Second =v_DS1302ReadByte_f( DS1302_SECOND_READ ) ;CurrentTime.Minute = v_DS1302ReadByte_f( DS1302_MINUTE_READ ) ;CurrentTime.Hour = v_DS1302ReadByte_f( DS1302_HOUR_READ ) ;CurrentTime.Day = v_DS1302ReadByte_f( DS1302_DAY_READ ) ;CurrentTime.Month = v_DS1302ReadByte_f( DS1302_MONTH_READ ) ;CurrentTime.Week = v_DS1302ReadByte_f( DS1302_WEEK_READ ) ;CurrentTime.Year = v_DS1302ReadByte_f( DS1302_YEAR_READ ) ;}有了上面的这些函数我们就可以对DS1302进行操作了。

12864串行显示DS18B20测得的温度

12864串行显示DS18B20测得的温度
{
uchar start_data,Hdata,Ldata;
if(start==0)
start_data=0xf8; //写指令
else
start_data=0xfa; //写数据
Hdata=onedata&0xf0; //取高四位
{
uchar i=0;
uchar dat = 0;
for (i=8;i>0;i--)
{
DS1820_DQ = 0; //将总线拉低,要在1us之后释放总线
dat>>=1; //让从总线上读到的位数据,依次从高位移动到低位。
DS1820_DQ = 1; //释放总线,此后DS18B20会控制总线,把数据传输到总线上
temp1=DS1820_ReadByte(); //读取温度值低位
temp2=DS1820_ReadByte(); //读取温度值高位
DS1820_Reset(); //DS1302 复位,表示读取结束
tt=((temp2<<8)|temp1)*6.25; //得到真实十进制温度值 //0.0625=xx, 0.625=xx.x, 6.25=xx.xx
delay(10); //延时是必须的
}
void initinal() //LCD字库初始化程序
{
write(0,0x30); //8 位介面,基本指令集
write(0,0x0c); //显示打开,光标关,反白关
write(0,0x01); //清屏,将DDRAM的地址计数器归零
Ldata=(onedata<<4)&0xf0; //取低四位

基于DS18B20的数字温度计及DS1302时钟显示的设计

基于DS18B20的数字温度计及DS1302时钟显示的设计

东北林业大学综合电子课程设计总结报告设计项目:基于DS18B20的数字温度计的设计项目完成人:贺超、马永飞指导教师:刘嘉新副教授学院:信息与计算机工程学院专业:电子信息工程2008级1、2班2011年 7月12 日综合电子课程设计任务书基于DS18B20的数字温度计的设计摘要随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的数字温度计,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。

国内外温度控制系统发展迅速,并在智能化、自适应、参数自整定等方面取得成果。

目前社会上温度控制大多采用智能调节器,国产调节器分辨率和精度较低,温度控制效果不是很理想,但价格便宜,国外调节器分辨率和精度较高,价格较贵。

本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用。

该设计控制器使用单片机A T89C51,测温传感器使用DS18B20,键盘采用独立按键(功能自定义),显示器采用HD7279芯片驱动4位LED显示。

数码管以串口传送数据,实现温度显示,能准确达到以上要求。

关键词:单片机,数字控制,温度计,DS18B20,A T89C51目录摘要1 绪论 (1)1.1 课题研究的背景和意义 (1)1.2 本设计的主要技术指标及要求 (1)2 系统方案选择 (2)2.1 系统方案实现 (2)2.2 器件选型 (2)2.2.1单片机芯片的选择 (2)2.2.2温度传感器的选择 (3)2.2.3时钟芯片的选择 (3)3系统主要芯片简介 (5)3.1 AT89C51单片机芯片介绍 (5)3.2 DS18B20芯片的介绍 (5)3.3 HD7279芯片介绍 (7)3.3.1特点 (8)3.4 DS1302时钟芯片简介 (9)4系统的硬件设计及测试 (12)4.1系统的电路原理图 (12)4.2 AT89C51单片机最小系统 (13)4.3 HD7279驱动芯片应用电路 (13)4.4 开发板焊接及其测试 (14)5 系统软件设计及调试 (15)5.1 主程序流程图 (15)5.2 设定DS18B20暂存器设定值 (16)5.3 读转换后的温度 (16)5.4 读出的温度进行数据转换 (17)5.5 调试 (17)5.5.1硬件调试 (18)5.5.2软件调试 (18)6 系统联调及操作说明 (19)6.1系统联调 (19)6.2 操作说明 (19)7 总结 (20)参考文献附录1绪论1.1课题研究的背景和意义随着现代信息技术的飞速发展和传统工业改造的逐步实现,能够独立工作的温度检测和显示系统应用于诸多领域。

基于12864的万年历加温度显示设计

基于12864的万年历加温度显示设计

基于12864的万年历加温度显示设计摘要本设计将制作一种基于单片机控制的带实时温度显示、具有定时功能的电子万年历。

传统的电子日历大都体积大,功耗大,显示不准确等特点。

为了缩小体积,减小功耗,使其变得小巧灵敏,本设计加入了时钟芯片DS1302,可对时间进行准确记时,同时可设置定时时间,实现定时功能。

另外本设计具有显示实时温度的功能。

传统的温度传感器系统大都采用放大、调理、A/D转换,转换后的数字信号送入计算机处理,处理电路复杂、可靠性相对较差,占用计算机的资源比较多。

本设计将采用DS18B20一线制数字温度传感器,可将温度信号直接转换成数字信号送给微处理器,电路简单,成本低,实现了时间温度同时显示的效果。

最后,温度和时间都将通过12864液晶显示器进行显示。

测试表明系统达到了设计要求的各项功能,各部分工作正常。

关键词时钟/温度检测/单片机/温度MICROCONTROLLER-BASHED CALENDER AND TEMPERATURE DISPLAY DESIGNABSTRACTThis design creates an electronic calendar with real-time temperature display and timing function based on single chip control. Most of traditional calendars are characterized by large size, high power consumption and inaccurate display. In order to reduce volume and power consumption and make calendars become small and exquisite, the design adds a clock chip DS1302, which can accurately record the time and set a regular time to achieve timing function. In addition, this design displays real-time temperature function. Traditional temperature sensor system is mostly amplified, recuperated and A / D converted. The converted digital signal is input the computer to be processed, but the processing circuit is complicated with relatively poor reliability and occupies more resources of the computer. This design uses the DS18B20 first-line system digital temperature sensor to directly convert the temperature signal into digital signal and send it the microprocessor, whose circuit is simple and low cost, achieving the displayed effect of time and temperature simultaneously. Finally, the temperature and time will be displayed through the 12864 liquid crystal display. The test indicates that the system has reached various functions of the design requirements and each part operates smoothly.KEY WORDS clock, temperature detection, SCM, temperature目录中文摘要 (I)英文摘要.................................................................................................... I I 1概论. (1)1.1万年历发展背景 (1)1.2电子万年历的特点 (1)1.3国内外现状、发展 (1)2系统基本方案选择和论证 (2)2.1单片机芯片的选择方案和论证 (2)2.2显示模块的选择方案和论证 (3)2.3时钟芯片的选择方案和论证 (4)2.4温度传感器的选择方案和论证 (4)2.5电路设计最终方案确定 (5)3系统硬件电路设计 (6)3.1系统功能模块划分 (6)3.2各单元模块功能分析及模块电路设计 (6)3.2.1时钟模块 (6)3.2.2 温度模块 (7)3.2.3显示模块 (10)3.2.5 独立键盘模块 (18)3.2.6蜂鸣器模块 (19)3.2.7单片机模块 (20)3.3电路原理图的绘制和电路的焊接 (23)3.3.1原理图绘制软件PROTEL (23)3.3.2 PCB制作 (23)3.3.3 元器件的焊接 (24)4 系统软件设计 (26)4.1 万年历软件系统的流程图 (26)4.2温度信息的采集 (27)4.3时钟的读取 (30)4.3.1 DS1302控制字节的说明 (30)4.3.2 DS1302时间日期寄存器及相应位定义 (31)4.3.3 DS1302数据的输入和输出 (31)4.3.4 DS1302读写部分(程序)部分 (32)4.4温度的显示控制 (32)4.5键盘模块 (34)4.6蜂鸣器模块 (34)5设计总结 (35)致谢 (36)参考文献 (37)附录 (38)1 概论1.1 万年历发展背景随着电子技术的发展,人类不断研究,不断创新纪录。

51单片机 12864 st7920液晶 DS1302 DS18B20 万年历 显示出了温度值 温度符号时间

51单片机 12864 st7920液晶 DS1302 DS18B20 万年历 显示出了温度值 温度符号时间
/******************************************************************************
st7920显示驱动、ds1302驱动、ds18b20驱动 显示时间,温度
******************************************************************************/
sbit a3 = ACC ^ 3;
sbit a4 = ACC ^ 4;
sbit a5 = ACC ^ 5;
sbit a6 = ACC ^ 6;
sbit a7 = ACC ^ 7;
bit flag, Bell_Swh,Hourb,Minb,Kgb;//闹钟调时闪烁标志位
0x3C,0x0F,0x00,0x64,0x01,0xFF,0xF0,0x00,0x00,0x40,0x00,0x00,0x00,0x00,0x00,0x00,
0x3F,0x1F,0x00,0x60,0x0F,0xFF,0xFC,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x7E,0x01,0x81,0xF8,0x00,0x0F,0x01,0xE0,0x00,0x00,0x00,0x00,0x01,0xE6,0x00,
0x00,0x0E,0x03,0x43,0xEF,0xFC,0x0F,0x80,0xC0,0x00,0x00,0x00,0x00,0x03,0x7F,0x00,
bit sec=0,min=0,hour=0,year=0,mon=0,day=0,weekk=0; //闪烁标志位
unsigned char id;

DS1302 12864lcd单片机智能闹钟日期温度程序

DS1302 12864lcd单片机智能闹钟日期温度程序

/****************************************************************************/ //头文件#include <AT89X52.h>#include <string.h>/*****************************************************************************/ //灯与蜂鸣器定义sbit led_b = P2^7;sbit led_r = P1^4;sbit led_g1 = P1^3;sbit led_g2 = P1^2;sbit led_g3 = P1^0;sbit led_g4 = P1^1;sbit beep = P3^1;/*****************************************************************************/ //温度传感器定义sbit DQ = P3 ^ 0;//ds18B20/*****************************************************************************/ //键盘引脚定义sbit KEY_1 = P2^3; //左上sbit KEY_2 = P2^4; //左下sbit KEY_3 = P2^6; //右上sbit KEY_4 = P2^5; //右下sbit KEY_I = P3^2; //常0/****************************************************************************/ //引脚定义sbit SID = P2^1; //数据sbit SCLK = P2^2; //时钟/*****************************************************************************/ //定义DS1302时钟接口sbit clock_clk = P3 ^ 5;//ds1302_clk(时钟线)sbit clock_dat = P3 ^ 4;//ds1302_dat(数据线)sbit clock_Rst = P3 ^ 3;//ds1302_Rst(复位线)/*****************************************************************************/ //定义累加器A中的各位sbit a0 = ACC ^ 0;sbit a1 = ACC ^ 1;sbit a2 = ACC ^ 2;sbit a3 = ACC ^ 3;sbit a4 = ACC ^ 4;sbit a5 = ACC ^ 5;sbit a6 = ACC ^ 6;sbit a7 = ACC ^ 7;/****************************************************************************/ //定义全局变量unsigned char yy,mo,dd,xq,hh,mm,ss;//定义时间映射全局变量(专用寄存器)bit w = 0; //调时标志位static unsigned char menu = 0;//定义静态小时更新用数据变量static unsigned char keys = 0;//定义静态小时更新用数据变量static unsigned char timecount = 0;//定义静态软件计数器变量/****************************************************************************/ void DelayM(unsigned int a){//延时函数1MS/次unsigned char i;while( --a != 0){for(i = 0; i < 125; i++); //一个; 表示空语句,CPU空转。

DS1302可调时钟+DS18B20温度数码管切换显示

DS1302可调时钟+DS18B20温度数码管切换显示

DS1302可调时钟+DS18B20温度数码管切换显示(2013-01-04 15:30:28)转载▼标签:校园#include#include#define uchar unsigned char#define uint unsigned int#define Write_Protect 0x8e //写保护#define OutPut P2 //显示输出sbit DQ=P1^7; //ds18b20单总线定义为P1.7sbit Beep=P3^2; //蜂鸣器输出端定义为P3.2sbit RST=P1^2; //复位端口定义在P1.2引脚sbit IO=P1^1; //数据输出端定义在P1.1引脚sbit SCLK=P1^0; //时钟输出端口定义在P1.0引脚sbit key=P1^3; //时间调节控制键sbit key1=P1^5; //每按一次位加一sbit key2=P1^4; //每按一次位减一sbit key3=P1^6; //显示切换uchar data disdata[5];uint tvalue;//温度值uchar tflag;//温度正负标志uchar code Wei[]={0x80,0x40,0x20,0x10,0x08,0x04,0x02,0x01}; //位选数据uchar code Duan[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; //0--9共阴代码code uchar Waddr[]={0x80,0x82,0x84,0x86,0x88,0x8c,0x8a};code uchar Raddr[]={0x81,0x83,0x85,0x87,0x89,0x8d,0x8b};uchar timeset[]={0x01,0x02,0x03,0x04,0x05,0x00,0x01};uchar time_buf[7];uchar time_disp[7];uchar dispdat[8];uchar Btdis=0,k=0,z;bit btx,btx1,btx2,btx3,bt1,bt2,bt3;bit Btread;void ex_model(); //显示模式切换void delaynms(uchar n){uchar i,j;for(i=n;i>0;i--)for(j=125;j>0;j--);}void Ds1302_Write_Byte(unsigned char addr, unsigned char d){unsigned char i;RST=1;//写入目标地址:addraddr = addr & 0xFE; //最低位置零for (i = 0; i < 8; i++){if (addr & 0x01){IO=1;}else{IO=0;}SCLK=1;SCLK=0;addr = addr >> 1; }//写入数据:dfor (i = 0; i < 8; i++){if (d & 0x01){IO=1;}else{IO=0;}SCLK=1;SCLK=0;d = d >> 1;}RST=0; //停止DS1302总线}uchar Ds1302_Read_Byte(unsigned char addr){unsigned char i;unsigned char temp;RST=1;//写入目标地址:addraddr = addr | 0x01; //最低位置高for (i = 0; i < 8; i ++){if (addr & 0x01)IO=1;}else{IO=0;}SCLK=1;SCLK=0;addr = addr >> 1;}//输出数据:tempfor (i = 0; i < 8; i++){temp = temp >> 1;if (IO){temp |= 0x80;}else{temp &= 0x7F;SCLK=1;SCLK=0;}RST=0; //停止DS1302总线return temp;}void Write1302(uchar dat){uchar i;SCLK=0;for(i=0;i<8;i++){IO=dat&0x01;SCLK=1;SCLK=0;dat=dat>>1;}}uchar Readset1302(uchar Cmd){uchar dat;SCLK=0;RST=1;Write1302(Cmd);SCLK=1;RST=0;return dat;}void Ds1302_Write_Time(void){unsigned char i,tmp;uchar flag;flag=Readset1302(0x81);if(flag&0x80) //判断时钟芯片是否停止,为1时时钟停止{//掉电保存for(i=0;i<7;i++) //BCD 处理{tmp=timeset[i]/10;//timeset[]={0x01,0x02,0x03,0x04,0x05,0x06,0x01}time_buf[i]=timeset[i]; //time_buf[7]time_buf[i]=time_buf[i]+tmp*16;}Ds1302_Write_Byte(0x8e,0x00); //关闭写保护Ds1302_Write_Byte(Waddr[6],time_buf[6]); //周Ds1302_Write_Byte(Waddr[5],time_buf[0]); //年Ds1302_Write_Byte(Waddr[4],time_buf[1]); //月Ds1302_Write_Byte(Waddr[3],time_buf[2]); //日Ds1302_Write_Byte(Waddr[2],time_buf[3]); //时Ds1302_Write_Byte(Waddr[1],time_buf[4]); //分Ds1302_Write_Byte(Waddr[0],time_buf[5]); //秒Ds1302_Write_Byte(0x8e,0x80); //打开写保护}}void Ds1302_Read_Time(void){unsigned char i,tmp;// Ds1302_Write_Byte(0x8e,0x00); //关闭写保护time_buf[0]=Ds1302_Read_Byte(Raddr[5]); //年time_buf[1]=Ds1302_Read_Byte(Raddr[4]); //月time_buf[2]=Ds1302_Read_Byte(Raddr[3]); //日time_buf[3]=Ds1302_Read_Byte(Raddr[2]); //时time_buf[4]=Ds1302_Read_Byte(Raddr[1]); //分time_buf[5]=(Ds1302_Read_Byte(Raddr[0]))&0x7F; //秒time_buf[6]=Ds1302_Read_Byte(Raddr[6]); //周// Ds1302_Write_Byte(0x8e,0x80); //打开写保护for(i=0;i<8;i++) //BCD 处理{tmp=time_buf[i]/16;//time_buf[]={年,月,日,时,分,秒,周}time_buf[i]=time_buf[i];time_disp[i]=time_buf[i]+tmp*10;}}void Ds1302_Init(void){RST=0;//RST脚置低SCLK=0;//SCK脚置低Ds1302_Write_Byte(0x80,0x00);}void display(){uchar i;if(Btdis==0){if(bt2==0){dispdat[0]=Duan[time_disp[3]/10]; //时dispdat[1]=Duan[time_disp[3]];}else{dispdat[0]=0xff;dispdat[1]=0xff;}dispdat[2]=0xbf; //"-"if(bt3==0){dispdat[3]=Duan[time_disp[4]/10]; //分dispdat[4]=Duan[time_disp[4]];}else{dispdat[3]=0xff;dispdat[4]=0xff;}dispdat[5]=0xbf;dispdat[6]=Duan[time_disp[5]/10]; //秒dispdat[7]=Duan[time_disp[5]];}if(Btdis==1){if(bt1==0){dispdat[0]=Duan[time_disp[0]/10]; //年dispdat[1]=Duan[time_disp[0]];}else{dispdat[0]=0xff;dispdat[1]=0xff;}dispdat[2]=0xbf; //"-"if(bt2==0){dispdat[3]=Duan[time_disp[1]/10]; //月dispdat[4]=Duan[time_disp[1]];}else{dispdat[3]=0xff;dispdat[4]=0xff;}dispdat[5]=0xbf;if(bt3==0){dispdat[6]=Duan[time_disp[2]/10]; //日dispdat[7]=Duan[time_disp[2]];}else{dispdat[6]=0xff;dispdat[7]=0xff;}}if(Btdis==2){dispdat[0]=0xff;if(bt1==0){dispdat[1]=Duan[time_disp[6]]; //周}else{dispdat[1]=0xff;}dispdat[2]=0xbf; //"-" dispdat[3]=0xbf;dispdat[4]=0xbf;dispdat[5]=0xbf;dispdat[6]=Duan[time_disp[5]/10];dispdat[7]=Duan[time_disp[5]];}if(Btdis==3){ds1820disp();}for(i=0;i<8;i++){P0=dispdat[i];OutPut=Wei[i]; //Wei[]={0x80,0x40,0x20,0x10,0x08,0x04,0x02,0x01}delaynms(1);P0=0xff;}}void baoshi(){ uchar i;if(((time_disp[4])==59)&&((time_disp[5])>=55)&&((time_disp[5])<=60))//分和秒的报时条件{for(i=0;i<8;i++) //小灯轮流点亮,蜂鸣器发出滴答声{P3=Duan[i];delaynms(300);}}elseP3=0xdb;}void keyscan(){display();if(!key){if(btx==0){if(!key){btx=1;k++;}while(k==1){Btdis=1;display();if(!key){if(btx==0){if(!key){btx=1;k++;}}}else{btx=0;}if(!key1){if(btx1==0){if(!key1){btx1=1;if(time_disp[0]<99){time_disp[0]++;}else{time_disp[0]=0;}}}}else{btx1=0;}if(!key2){if(btx2==0){if(!key2){btx2=1;if(time_disp[0]>0){time_disp[0]--;}else{time_disp[0]=99;}}}}else{btx2=0;}}while(k==2){Btdis=1;display();if(!key){if(btx==0){if(!key){btx=1;k++;}}}else{btx=0;}if(!key1){if(btx1==0){if(!key1){btx1=1;if(time_disp[1]<12){time_disp[1]++;if(time_disp[1]==2){if(time_disp[0]%4==0){if(time_disp[2]>29){time_disp[2]=29;}}else if(time_disp[2]>28){time_disp[2]=28;}}}else{time_disp[1]=1;}}}}else{btx1=0;}if(!key2){if(btx2==0){if(!key2){btx2=1;if(time_disp[1]>1){time_disp[1]--;if(time_disp[1]==2){if(time_disp[0]%4==0){if(time_disp[2]>29){time_disp[2]=29;}}else if(time_disp[2]>28){time_disp[2]=28;}}}else{time_disp[1]=12;}}}}else{btx2=0;}}while(k==3){Btdis=1;display();if(!key){if(btx==0){if(!key){btx=1;k++;}}}else{btx=0;}if(!key1){if(btx1==0){if(!key1){btx1=1;if(time_disp[1]==2){if(time_disp[0]%4==0){if(time_disp[2]<29){time_disp[2]++;}else{time_disp[2]=1;}}else if(time_disp[2]<28){time_disp[2]++;}else{time_disp[2]=1;}}else if(time_disp[1]<8){if(time_disp[1]%2==0) //小于8月的月份除以2的余数为0则为小月{if(time_disp[2]<30){time_disp[2]++;}else{time_disp[2]=1;}}else if(time_disp[1]%2==1) //小于8月的月份除以2的余数为1则为大月{if(time_disp[2]<31){time_disp[2]++;}else{time_disp[2]=1;}}}else if(time_disp[1]>7){if(time_disp[1]%2==0){if(time_disp[2]<31){time_disp[2]++;}else{time_disp[2]=1;}}else if(time_disp[1]%2==1){if(time_disp[2]<30){time_disp[2]++;}else{time_disp[2]=1;}}}}}}else{btx1=0;}if(!key2){if(btx2==0){if(!key2){btx2=1;if(time_disp[1]==2){if(time_disp[0]%4==0){if(time_disp[2]>1){time_disp[2]--;}{time_disp[2]=29;}}else if(time_disp[2]>1){time_disp[2]--;}else{time_disp[2]=28;}}else if(time_disp[1]<8){if(time_disp[1]%2==0){if(time_disp[2]>1){time_disp[2]--;}{time_disp[2]=30;}}else if(time_disp[1]%2==1){if(time_disp[2]>1){time_disp[2]--;}else{time_disp[2]=31;}}}else if(time_disp[1]>7){if(time_disp[1]%2==0){if(time_disp[2]>1)time_disp[2]--;}else{time_disp[2]=31;}}else if(time_disp[1]%2==1){if(time_disp[2]>1){time_disp[2]--;}else{time_disp[2]=30;}}}}}else{btx2=0;}}while(k==4){Btdis=2;display();if(!key){if(btx==0){if(!key){btx=1;k++;}}}{btx=0;}if(!key1){if(btx1==0){if(!key1){btx1=1;if(time_disp[6]<7){time_disp[6]++;}else{time_disp[6]=1;}}}else{btx1=0;}if(!key2){if(btx2==0){if(!key2){btx2=1;if(time_disp[6]>1){time_disp[6]--;}else{time_disp[6]=7;}}}}else{btx2=0;}}while(k==5){Btdis=0;display();if(!key){if(btx==0){if(!key){btx=1;k++;}}}{btx=0;}if(!key1){if(btx1==0){if(!key1){btx1=1;if(time_disp[3]<23){time_disp[3]++;}else{time_disp[3]=0;}}}else{btx1=0;}if(!key2){if(btx2==0){if(!key2){btx2=1;if(time_disp[3]>0){time_disp[3]--;}else{time_disp[3]=23;}}}}else{btx2=0;}}while(k==6){Btdis=0;display();if(!key){if(btx==0){if(!key){btx=1;k++;}}}{btx=0;}if(!key1){if(btx1==0){if(!key1){btx1=1;if(time_disp[4]<59){time_disp[4]++;}else{time_disp[4]=0;}}}else{btx1=0;}if(!key2){if(btx2==0){if(!key2){btx2=1;if(time_disp[4]>0){time_disp[4]--;}else{time_disp[4]=59;}}}}else{btx2=0;}}while(k==7){uchar tmp;uchar i;for(i=0;i<7;i++){timeset[i]=time_disp[i];}//将调整后的时候写入DS1302for(i=0;i<7;i++) //BCD 处理{tmp=timeset[i]/10;//timeset[]={0x01,0x02,0x03,0x04,0x05,0x06,0x01}time_buf[i]=timeset[i]; //time_buf[7]time_buf[i]=time_buf[i]+tmp*16;}Ds1302_Write_Byte(0x8e,0x00); //关闭写保护Ds1302_Write_Byte(Waddr[6],time_buf[6]); //周Ds1302_Write_Byte(Waddr[5],time_buf[0]); //年Ds1302_Write_Byte(Waddr[4],time_buf[1]); //月Ds1302_Write_Byte(Waddr[3],time_buf[2]); //日Ds1302_Write_Byte(Waddr[2],time_buf[3]); //时Ds1302_Write_Byte(Waddr[1],time_buf[4]); //分Ds1302_Write_Byte(Waddr[0],time_buf[5]); //秒Ds1302_Write_Byte(0x8e,0x80); //打开写保护k=0;}}else{btx=0;}if(!key3){if(btx3==0){if(!key3){btx3=1;if(Btdis<3){Btdis++;}else{Btdis=0;}}}}else{btx3=0;}}void ex_model(){if(((time_disp[5])>=0)&&((time_disp[5])<=8)) //前八秒显示温度Btdis=3;if(((time_disp[5])>=9)&&((time_disp[5])<=12)) //显示周Btdis=2;if(((time_disp[5])>=13)&&((time_disp[5])<=18)) //显示年Btdis=1;if(((time_disp[5])>=19)&&((time_disp[5])<=59)) //显示当前时间Btdis=0;}void tiaoshidisplay(){if(z==15){z=0;switch(k){case 1:bt1=~bt1;P3=~P3;break; //年case 2:bt2=~bt2;bt1=0;P3=~P3;break; //月case 3:bt3=~bt3;bt2=0;P3=~P3;break; //日case 4:bt1=~bt1;bt3=0;P3=~P3;break; //周case 5:bt2=~bt2;bt1=0;P3=~P3;break; //时case 6:bt3=~bt3;bt2=0;P3=~P3;break; //分default:bt3=0;break;}}}void delay_18B20(unsigned int i)//延时1微秒{while(i--);}void ds1820rst(){ unsigned char x=0;DQ = 1; //DQ复位delay_18B20(4); //延时DQ = 0; //DQ拉低delay_18B20(100); //精确延时大于480usDQ = 1; //拉高delay_18B20(40);}uchar ds1820rd(){ unsigned char i=0;unsigned char dat = 0;for (i=8;i>0;i--){ DQ = 0; //给脉冲信号dat>>=1;DQ = 1; //给脉冲信号if(DQ)dat|=0x80;delay_18B20(10);}return(dat);}void ds1820wr(uchar wdata){unsigned char i=0;for (i=8; i>0; i--) { DQ = 0;DQ = wdata&0x01;delay_18B20(10);DQ = 1;wdata>>=1;}}read_temp(){uchar a,b;ds1820rst();ds1820wr(0xcc);/ds1820wr(0x44);/ds1820rst();ds1820wr(0xcc);/ds1820wr(0xbe);/a=ds1820rd();。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业(论文)说明书题目:系别:专业:指导老师:学生姓名:学号:理论研究工程设计工程技术研究软件开发2014年7 月18日一毕业设计(论文)内容与要求一、主要研究内容1、8051单片机硬件结构。

2、C语言程序设计基础内容。

3、单片机C语言程序设计的方法。

4、DS18B20温度传感器的使用方法。

5、DS1302时钟芯片的用法。

6、12864LCD液晶屏的编程使用方法。

二、要求1、能够以指针的形式在LCD12864上显示当前时间的小时和分钟和秒。

2、能够以数字加汉字的形式在LCD12864上显示当前时间的小时和分钟和秒。

3、能够以数字加汉字的形式在LCD12864上显示当前年月日。

4、能够以数字加汉字的形式在LCD12864上显示当前星期。

5、时间采用时钟芯片DS1302控制。

6、温度采用DS18B20温度传感器检测当前温度。

7、所有功能在LCD12864当中同步显示。

8、采用AT89S52或者STC89C52RC单片机控制。

三、引言随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。

本设计是数据采集及处理,显示系统与单片机有效结合,本设计是通过在“单片机原理及应用”课堂上学习的知识的综合应用,以及查阅资料,培养一种自学的能力。

并且引导一种创新的思维,把学到的知识应用到日常生活当中。

在设计的过程中,不断的学习,思考和同学间的相互讨论,运用科学的分析问题的方法解决遇到的困难,掌握单片机系统一般的开发流程,学会对常见问题的处理方法,积累设计系统的经验,充分发挥教学与实践的结合。

全能提高个人系统开发的综合能力,开拓了思维,为今后能在相应工作岗位上的工作打下了坚实的基础。

四、方案设计及方案论证1.时钟温度的总体设计思路按照系统的设计功能要求,本时钟温度系统的设计必须采用单片机软件系统实现,用单片机的自动控制能力配合ds1302和ds18b20来控制时钟和温度的调整显示。

获得时钟温度数据信息,单片机对其进行一系列的处理,最后通过液晶显示出来。

、时钟温度系统方案论证22222.12.1时钟系统方案选择2.12.1:方案1111通过单片机内部的定时器/计数器,用软件实现,直接用单片机的定时器编程以实现时钟;:方案2222用专门的时钟芯片(DS1302)实现时钟的记时,再把时间数据送入单片机,由单片机控制显示。

虽然用软件实现时钟硬件线路简单,但是程序运行的每一步都需要时间,多一步或少一步程序都会影响记时的准确度,对定时器定时也不是十分准确,时钟精度很低,对于我们实现所需要的功能造成软件编程非常复杂。

用专用时钟芯片硬件成本相对较高,但它的精度很高,软件编程很简单。

综上所述,选择方案2。

单片机的选择2.22.22.22.2对于单片机的选择,如果用8031系列,由于它没有内部RAM,系统又需要大量内存存储数据,因而不可用;51系列单片机的ROM为4K,对于我们设计的系统可能有点小;52系列单片机与51系列的结构一样,而ROM扩大为8K,对我们设计系统提供充足的空间进行功能的扩展。

再有51系列单片机与52系列的单片机价格差不多。

因此,我们选择52系列的单片机。

显示系统的方案比较2.32.32.32.3方案1:用数码管或点阵LED显示。

方案2:用液晶1602显示。

方案3:用液晶12864显示。

时钟和温度的显示可以用数码管或LED,而且价格便宜。

但是数码管的只能显示简单的设计的系统,与我们设计要求也不相符。

有很多东西需要显示,还是用显示功能更好的液晶显示器比较好,它能显示更多的数据,用1602液晶显示数据有限,1602不能够显示指针时钟,只能够显示一些基本的西文字符,显示数据的可读性不好,用可以显示汉字的12864液晶显示器还可以增加显示信息的可读性,用12864的绘图功能即可绘制出指针时钟的框架,至于指针的转动则才用12864加ds1302同步控制,让人看起来会很方便。

虽然它们在价格上差距很大,但是1602不能够实现我们的要求,12864.是我们唯一的选择。

温度系统方案选择2.42.42.42.4方案1:用热敏电阻等测温元件测出电压,再转换成对应的温度。

需要比较多的外部元件(A/D转换)支持,且硬件电路复杂,制作成本相对较高。

方案2:用DS18B20直接测温。

DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。

经比较,我们选择方案2。

温度实现只能通过外部的温度传感器来实现。

经上网查阅及市场考察,DS18b20体积小,只有3只脚,电路接法简单。

内部含有寄存器为我们设计实现上下限报警功能提供保障。

精度为0.5°C,也符合我们设计的要求。

DS18B20也是我们通常使用的型号,因此温度传感器用DS18B20。

五、时钟温度系统总体设计初步确定设计系统由单片机主控模块、时钟模块ds102、测温模块ds18b20、显示模块12864、共5个模块组成,电路系统框图。

如下图所示六、硬件设计部分1、单片机最小系统电路设计1.1单片机芯片选择单片机采用52系列单片机。

由ATMEL公司生产的AT89S52是一种低功耗、高性能CMOS8位微控制器,具有8K在系统可编程Flash存储器。

使用Atmel公司高密度非易失性存储器技术制造,与工业80C51产品指令和引脚完全兼容。

在单芯片上,拥有灵巧的8位CPU和在线系统可编程Flash,使得AT89S52为众多嵌入式控制应用系统提供高灵活、有效的解决方案。

AT89S52具有以下标准功能:8k字节Flash,256字节RAM,32位I/O口线,看门狗定时器,2个数据指针,三个16位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。

空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。

掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。

而且,它还具有一个看门狗(WDT)定时/计数器,如果程序没有正常工作,就会强制整个系统复位,还可以在程序陷入死循环的时候,让单片机复位而不用整个系统断电,从而保护你的硬件电路。

AT89S52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,2个16位可编程定时计数器,2个全双工串行通信口,片上Flash允许程序存储器在系统可编程,亦适于常规编程器。

其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写图1.1_1图1.1_2的Flash存储器可有效地降低开发成本.其芯片外观及引脚图如1.1__2:1.2单片机管脚说明VCC:供电电压。

GND:接地。

P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门流。

当P1口的管脚第一次写1时,被定义为高阻输入。

P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。

在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。

P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。

在FLASH编程和校验时,P1口作为第八位地址接收。

P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。

并因此作为输入时,P2口的管脚被外部拉低,将输出电流。

这是由于内部上拉的缘故。

P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。

在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。

P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。

当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。

作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

P3口也可作为AT89S52的一些特殊功能口,如下表所示:管脚备选功能(串行输入口)P3.0RXD(串行输出口)P3.1TXD(外部中断0)P3.2/INT0(外部中断1)P3.3/INT1(记时器0外部输入)P3.4T0(记时器1外部输入)P3.5T1(外部数据存储器写选通)P3.6/WR(外部数据存储器读选通)P3.7/RDP3口同时为闪烁编程和编程校验接收一些控制信号。

RST:复位输入。

当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。

在FLASH编程期间,此引脚用于输入编程脉冲。

在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。

因此它可用作对外部输出的脉冲或用于定时目的。

然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。

如想禁止ALE的输出可在SFR8EH地址上置0。

此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。

另外,该引脚被略微拉高。

如果微处理器在外部执行状态ALE禁止,置位无效。

/PSEN:外部程序存储器的选通信号。

在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。

但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

/EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。

注意加密方式1时,/EA 将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。

在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。

XTAL2:来自反向振荡器的输出。

1.3单片机最小系统单片机最小系统主要由复位电路,晶振电路,电源等几部分组成。

1)复位电路复位电路有两种方式:上电复位和按钮复位,我们主要用按钮复位方式。

如下图所示:2)晶振电路晶振电路原理图如3-2:3-2晶振模块原理图选取原则:电容选取22pF,晶振为12MHz。

3)电源AT89S52单片机的供电电源是5V的直流电。

4)EA非/Vpp脚我们没有用外部扩展ROM,因此EA非/Vpp为高电平,即接+5V电源。

相关文档
最新文档