2016-17上海市中考数学黄金冲刺模拟试题(附答案)
2017上海市中考数学冲刺卷3

2017上海市中考数学冲刺卷3(完卷时间 100分钟 满分 150分)一、选择题(共6小题,每小题4分,共24分) 1.下列运算中,正确的是( )A .532a a a =⋅;B .532)(a a =; C .326a a a=÷; D .426a a a =-.2. 如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是( ) (A )x >-1,x >2 (B )x >-1,x <2 (C )x <-1,x <2 (D )x <-1,x >23. 下列说法:①“掷一枚质地均匀的硬币一定是正面朝上”;①“从一副普通扑克牌中任意抽取一张,点数一定是6”.( )(A) ①①都正确. (B)只有①正确.(C)只有①正确. (D)①①都正确.如果向量x b a ρρρ,,满足4. )32(21)(31b a a x ρρρρ-=+,那么x ρ用b a ρρ、表示正确的是( ).(A )b a ρρ2-; (B )b a ρρ-25;(C )b a ρρ32-; (D )b a ρρ-21.5.已知下列图案,其中为轴对称图形的是( )(A ) (B ) (C ) (D )6. 如图,①O 的直径AB 的长为10,弦AC 长为6,①AC'B 的平分线交①O 于D ,则CD 长为( ) (A) 7 (B) 72 (C) 82 (D) 9二、填空题(共12小题,每小题4分,共48分). 7.计算: 22(3)a -=_________.8.函数32y x =-的定义域是 .ABC第16题图D45° 30°9.如果()kf x x=,()12f =-,那么k = . 10.抛物线22y x =-向左平移2个单位,向上平移1个单位后的抛物线的解析式是 . 11.如图,把一块直角..三角板放在直尺的一边上,如果①2=65°,那么①1= o. 12.某校八年级(2)班四名女生的体重(单位:kg)分别是:35,36,38,40.这组数据的中位数是_________.13.如图,直线y 1=kx +b 过点A (0,2),且与直线y 2=mx 交于点P (1,m ),则不等式组mx >kx+b >mx -2的解集是______________.14.正十边形的中心角等于 度. 第13题图 15.甲、乙两支排球队的人数相等,且平均身高都是1.86米,方差分别为20.35S 甲=,20.27S 乙=,则身高较整齐的球队是 队.16.如图,用线段AB 表示的高楼与地面垂直,在高楼前D 点测得楼顶A 的仰角为30︒,向高楼前进60米到C 点,又测得楼顶A 的仰角为45︒,且D 、C 、B 三点在同一 直线上,则该高楼的高度为 米(结果保留根号).17.已知:在①ABC 中,DE // BC ,点D 、E 分别在边AB 、AC 上,且AD = 2BD ,如果AB a =u u u r r ,AC b =u u u r r,那么DE u u u r = .(用向量a r 、b r 的式子表示) 18.如图,直线33y x b =-+与y 轴交于点A ,与双曲线ky x=在第一象限交于 B 、C 两点,且AB ·AC =4,则k =_________.第18题三、解答题(第19~22题每小题10分,第23~24题每小题12分,第25题14分,满分78分) 19.(本题满分10分)先化简,再求值:53(2)224x x x x ---÷++,其中23x =-.第11题2120.(本题满分10分) 解不等式组:2(1)34,4312.34x x x x +<+⎧⎪-⎨-≤⎪⎩ 并把解集在数轴上表示出来.21.(本题满分10分) 如图,①O 是①ABC 的外接圆,圆心O 在这个三角形的高AD 上,AB =10,BC =12.求①O 的半径.22.(本题满分10分,每小题5分)如图,已知B 是线段AE 上一点,ABCD 和BEFG 都是正方形,联结AG 、CE .(1) 求证:AG =CE ; (2) 设CE 与GF 的交点为P ,求证:AG PE CG PG =.0 -1 1ABCDO 第21题图ABCDEFG P23.(本题满分12分,每小题6分)如图,在梯形ABCD 中,AD //BC , E 、F 分别是AB 、DC 边的中点,AB =4,①B = 60.(1)求点E 到BC 边的距离;(2)点P 为线段EF 上的一个动点,过P 作PM ①BC ,垂足为M ,过点M作MN//AB 交线段AD 于点N ,联结PN .探究:当点P 在线段EF 上运动时,①PMN 的面积是否发生变化?若不变,请求出①PMN 的面积;若变化,请说明理由.24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)已知:如图六,抛物线的顶点为点D ,与y 轴相交于点A ,直线y =ax +3与y 轴也交于点A ,矩形ABCO 的顶点B 在此抛物线上,矩形面积为12. (1)求该抛物线的对称轴;(2)①P 是经过A 、B 两点的一个动圆,当①P 与y 轴相交,且在y 轴 上两交点的距离为4时,求圆心P 的坐标;(3)若线段DO 与AB 交于点E ,以点 D 、A 、E 为顶点的三角形是否有 可能与以点D 、O 、A 为顶点的三角形相似,如果有可能,请求出点D 坐 标及抛物线解析式;如果不可能,请说明理由.A DN PEFM BCBCOy AxD25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)在等腰梯形ABCD 中,AD //BC ,AD =3,AB =CD =4,BC =5,①B 的平分线交DC 于点E ,交AD 的延长线于点F 。
2016年中考数学模拟试题(二)及答案(沪教版使用地区专用)

2016年中考数学模拟试题(二)(沪教版使用地区专用)时间120分钟满分150分2015.8.30一、选择题(本大题共6题,每题4分,满分24分)1.如果点G是△ABC的重心,联结AG并延长,交对边BC于点D,那么AG:AD是() A. 2:3 B. 1:2 C. 1:3 D. 3:42.已知点D、E分别在△ABC的边AB、AC上,下列给出的条件中,不能判定DE∥BC的是() A. BD:AB=CE:AC B. DE:BC=AB:AD C. AB:AC=AD:AE D. AD:DB=AE:EC3.下列有关向量的等式中,不一定成立的是()A.=﹣ B. ||=|| C.+= D. |+|=||+||4.在直角△ABC中,∠C=90°,∠A、∠B与∠C的对边分别是a、b和c,那么下列关系中,正确的是()A. cosA= B. tanA= C. sinA= D. cosA=5.在下列y关于x的函数中,一定是二次函数的是()A. y=x2 B. y= C. y=kx2 D. y=k2x6.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A. 4.5米 B. 6米 C. 7.2米 D. 8米二、填空题(本大题共12题,每题4分,满分48分)7.已知=,则的值是.8.点P是线段AB的黄金分割点(AP>BP),则= .9.如图,在平行四边形ABCD中,点E在BC边上,且CE:BC=2:3,AC与DE相交于点F,若S△AFD =9,则S△EFC= .10.如果α是锐角,且tanα=cot20°,那么α= 度.11.计算:2sin60°+tan45°= .12.如果一段斜坡的坡角是30°,那么这段斜坡的坡度是.(请写成1:m的形式)13.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是.14.将抛物线y=﹣(x﹣3)2+5向下平移6个单位,所得到的抛物线的顶点坐标为.15.已知抛物线经过A(0,﹣3)、B(2,﹣3)、C(4,5),判断点D(﹣2,5)是否在该抛物线上.你的结论是:(填“是”或“否”).16.如图,正方形DEFG内接于Rt△ABC,∠C=90°,AE=4,BF=9,则tanA= .16题图 17题图18题图17.如图,梯形ABCD中,AD∥BC,AB=DC,点P是AD边上一点,联结PB、PC,且AB2=AP•PD,则图中有对相似三角形.18.如图,在Rt△ABC中,∠C=90°,点D在边AB上,线段DC绕点D逆时针旋转,端点C 恰巧落在边AC上的点E处.如果=m,=n.那么m与n满足的关系式是:m= (用含n的代数式表示m).三、解答题(本大题共7题,满分78分)19(10分).解方程:﹣=2.20(10分).已知二次函数y=﹣2x2+bx+c的图象经过点A (0,4)和B(1,﹣2).(1)求此函数的解析式;并运用配方法,将此抛物线解析式化为y=a(x+m)2+k的形式;(2)写出该抛物线顶点C的坐标,并求出△CAO的面积.21(10分).如图,已知点E在平行四边形ABCD的边AD上,AE=3ED,延长CE到点F,使得EF=CE,设=,=,试用、分别表示向量和.22(10分).如图7,某人在C处看到远处有一凉亭B,在凉亭B正东方向有一棵大树A,这时此人在C处测得B在北偏西45°方向上,测得A在北偏东35°方向上.又测得A、C之间的距离为100米,求A、B之间的距离.(精确到1米).(参考数据:sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)23(12分).如图,已知等腰梯形ABCD中,AD∥BC,AD=1,BC=3,AB=CD=2,点E在BC边上,AE与BD交于点F,∠BAE=∠DBC.(1)求证:△ABE∽△BCD;(2)求tan∠DBC的值;(3)求线段BF的长.24(12分).如图,在平面直角坐标系内,已知直线y=x+4与x轴、y轴分别相交于点A和点C,抛物线y=x2+kx+k﹣1图象过点A和点C,抛物线与x轴的另一交点是B,(1)求出此抛物线的解析式、对称轴以及B点坐标;(2)若在y轴负半轴上存在点D,能使得以A、C、D为顶点的三角形与△ABC相似,请求出点D的坐标.25(14分).如图,已知在等腰Rt△ABC中,∠C=90°,斜边AB=2,若将△ABC翻折,折痕EF分别交边AC、边BC于点E和点F(点E不与A点重合,点F不与B点重合),且点C落在AB边上,记作点D.过点D作DK⊥AB,交射线AC于点K,设AD=x,y=cot∠CFE,(1)求证:△DEK∽△DFB;(2)求y关于x的函数解析式并写出定义域;(3)联结CD,当=时,求x的值.参考答案一、选择题1.A.2.故选B.3.故选D.4.故选:C.5.故选:A.6.故选:B.二、填空题7..8..9. 4 .10.70 度.11.+1 .12.1:.(请写成1:m的形式)13.m>1 .14.(3,﹣1).15.是(填“是”或“否”).16..17. 3 对相似三角形.18. m= 2n+1 (用含n的代数式表示m).三、解答题19.解:去分母得:2﹣3x+x+2=2x2﹣8,整理得:x2+x﹣6=0,即(x﹣2)(x+3)=0,解得:x=2或x=﹣3,经检验x=2是增根,分式方程的解为x=﹣3.20.解:(1)将A(0,4)和B(1,﹣2)代入y=﹣2x2+bx+c,得,解得,所以此函数的解析式为y=﹣2x2﹣4x+4;y=﹣2x2﹣4x+4=﹣2(x2+2x+1)+2+4=﹣2(x+1)2+6;(2)∵y=﹣2(x+1)2+6,∴C(﹣1,6),∴△CAO的面积=×4×1=2.21.解:∵四边形ABCD是平行四边形,∴==,==,∵AE=3ED,∴==,==,∴=﹣=﹣;∵EF=CE,∴==﹣,∴=+=+﹣=+.22.解:过点C⊥AB于点D,在Rt△ACD中,∵∠ACD=35°,AC=100m,∴AD=100•sin∠ACD=100×0.574=57.4(m),CD=100•cos∠ACD=100×0.819=81.9(m),在Rt△BCD中,∵∠BCD=45°,∴BD=CD=81.9m,则AB=AD+BD=57.4+81.9≈139(m).答:A、B之间的距离约为139米.23.(1)证明:∵四边形ABCD为等腰梯形,∴∠ABE=∠C,且∠BAE=∠DBC,∴△ABE∽△BCD;(2)解:过D作DG⊥BC于点G,∵AD=1,BC=3,∴CG=(BC﹣AD)=1,BG=2,又∵在Rt△DGC中,CD=2,CG=1,∴DG=,在Rt△BDG中,tan∠DBC==;(3)解:由(2)在Rt△BGD中,由勾股定理可求得BD=,由(1)△ABE∽△BCD可得=,即==,解得BE=,又∵AD∥BC,∴=,且DF=BD﹣BF,∴=,解得BF=.24.解:(1)由x=0得y=0+4=4,则点C的坐标为(0,4);由y=0得x+4=0,解得x=﹣4,则点A的坐标为(﹣4,0);把点C(0,4)代入y=x2+kx+k﹣1,得k﹣1=4,解得:k=5,∴此抛物线的解析式为y=x2+5x+4,∴此抛物线的对称轴为x=﹣=﹣.令y=0得x2+5x+4=0,解得:x1=﹣1,x2=﹣4,∴点B的坐标为(﹣1,0).(2)∵A(﹣4,0),C(0,4),∴OA=OC=4,∴∠OCA=∠OAC.∵∠AOC=90°,OB=1,OC=OA=4,∴AC==4,AB=OA﹣OB=4﹣1=3.∵点D在y轴负半轴上,∴∠ADC<∠AOC,即∠ADC<90°.又∵∠ABC>∠BOC,即∠ABC>90°,∴∠ABC>∠ADC.∴由条件“以A、C、D为顶点的三角形与△ABC相似”可得△CAD∽△ABC,∴=,即=,解得:CD=,∴OD=CD﹣CO=﹣4=,∴点D的坐标为(0,﹣).25.(1)证明:如图1,由折叠可得:∠EDF=∠C=90°,∠DFE=∠CFE.∵△ABC是等腰直角三角形,∠C=90°,∴∠A=∠B=45°.∵DK⊥AB,∴∠ADK=∠BDK=90°,∴∠AKD=45°,∠EDF=∠KDB=90°,∴∠EKD=∠FBD,∠EDK=∠FDB,∴△DEK∽△DFB;(2)解:∵∠A=∠AKD=45°,∴DK=DA=x.∵AB=2,∴DB=2﹣x.∵△DFB∽△DEK,∴=,∴y=cot∠CFE=cot∠DFE===.当点F在点B处时,DB=BC=AB•sinA=2×=,AD=AB﹣AD=2﹣;当点E在点A处时,AD=AC=AB•cosA=2×=;∴该函数的解析式为y=,定义域为2﹣<x<;(3)取线段EF的中点O,连接OC、OD,∵∠ECF=∠EDF=90°,∴OC=OD=EF.设EF与CD交点为H,根据轴对称的性质可得EF⊥CD,且CH=DH=CD.∵=,∴tan∠HOC==,∴∠HOC=60°①若点K在线段AC上,如图2,∵CO=EF=OF,∴∠OCF=∠OFC=∠HOC=30°,∴y=cot30°=,∴=,解得:x=﹣1;②若点K在线段AC的延长线上,如图3,∵OC=OF,∠FOC=60°,∴△OFC是等边三角形,∴∠OFC=60°,∴y=cot60°=,∴=,解得:x=3﹣;综上所述:x的值为﹣1或3﹣.。
2016---2017年新九年级中考数学模拟考试题含参考答案与试题解析

2016---2017年新九年级中考数学模拟考试题含参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.﹣2016的绝对值是()A.﹣2016 B.2016 C.﹣D.【考点】绝对值.【分析】直接利用绝对值的性质求出答案.【解答】解:﹣2016的绝对值是:2016.故选:B.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.如图所示的几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形主视图.3.下列图案中,不是中心对称图形的是()A.B. C.D.【考点】中心对称图形.【分析】结合中心对称图形的概念进行求解即可.【解答】解:A、是中心对称图形,本选项错误;B、是中心对称图形,本选项错误;C、是中心对称图形,本选项错误;D、不是中心对称图形,本选项正确.故选D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.我区5月份连续五天的日最高气温(单位:℃)分别为:33,30,30,32,35.则这组数据的中位数和平均数分别是()A.32,32 B.32,33 C.30,31 D.30,32【考点】中位数;算术平均数.【分析】先把这组数据从小到大排列,找出最中间的数,即可得出这组数据的中位数,再根据平均数的计算公式进行计算即可.【解答】解:把这组数据从小到大排列为30,30,32,33,35,最中间的数是32,则中位数是32;平均数是:(33+30+30+32+35)÷5=32,故选:A.【点评】此题考查了中位数和平均数,掌握中位数的定义和平均数的计算公式是本题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.某科研小组,为了考查某水库野生鱼的数量,从中捕捞100条,作上标记后,放回水库,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该水库中有野生鱼()A.8000条B.4000条C.2000条D.1000条【考点】用样本估计总体.【分析】捕捞300条鱼,发现其中15条有标记,即在样本中,有标记的占到,而在总体中,有标记的共有100条,即可得出答案.【解答】解:根据题意,估计该水库中有野生鱼100÷=2000(条),故选:C.【点评】此题考查了用样本估计总体,掌握用样本估计总体的计算公式是解题的关键,本题体现了统计思想.6.下列多边形中,内角和是外角和的两倍的是()A.四边形B.五边形C.六边形D.八边形【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°以及多边形的外角和等于360°列方程求出边数,从而得解.【解答】解:设多边形边数为n,由题意得,(n﹣2)•180°=2×360°,解得n=6,所以,这个多边形是六边形.故选C.【点评】本题考查了多边形内角与外角,熟记公式并列方程求出多边形的边数是解题的关键.7.下列计算正确的是()A.a2•a3=a6B.(﹣m2)3=﹣m6C.b6÷b3=b2D.3a+3b=6ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、同底数幂的乘法底数不变值数相加,故A错误;B、幂的乘方底数不变指数相乘,故B正确;C、同底数幂的除法底数不变指数相减,故C错误;D、不是同类相不能合并,故D错误;故选:B.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.8.不等式组的解集是()A.x>﹣2 B.x<5 C.x<2 D.﹣2<x<5【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出选项.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<5,∴不等式组的解集为﹣2<x<5,故选D.【点评】本题考查了解一元一次不等式的应用,能灵活运用不等式的性质进行变形是解此题的关键.9.直线y=﹣x+2沿y轴向上平移2个单位后与x轴的交点坐标是()A.(4,0) B.(0,4) C.(2,0) D.(0,2)【考点】一次函数图象与几何变换.【分析】利用一次函数平移规律,上加下减进而得出答案.【解答】解:直线y=﹣x+2沿y轴向上平移2个单位,则平移后直线解析式为:y=﹣x+4,直线与x轴的交点坐标为:0=﹣x+4,解得:x=4.故选A【点评】此题主要考查了一次函数平移变换,正确记忆一次函数平移规律是解题关键.10.如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC于M点,PN∥BC交CD于N点,连接MN,在运动过程中,则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PE•BF;⑤线段MN的最小值为.其中正确的结论有()A.2个B.3个C.4个D.5个【考点】四边形综合题.【分析】由正方形的性质及条件可判断出①△ABE≌△BCF,即可判断出②AE=BF,∠BAE=∠CBF,再根据∠BAE+∠BEA=90°,可得∠CBF+∠BEA=90°,可得出∠APB=90°,即可判断③,由△BPE∽△BCF,利用相似三角形的性质,结合CF=BE可判断④;然后根据点P在运动中保持∠APB=90°,可得点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,最后在Rt△BCG中,根据勾股定理,求出CG的长度,再求出PG的长度,即可求出线段CP的最小值,可判断⑤.【解答】解:如图,∵动点F,E的速度相同,∴DF=CE,又∵CD=BC,∴CF=BE,在△ABE和△BCF中,∴△ABE≌△BCF(SAS),故①正确;∴∠BAE=∠CBF,AE=BF,故②正确;∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠APB=90°,故③正确;在△BPE和△BCF中,∵∠BPE=∠BCF,∠PBE=∠CBF,∴△BPE∽△BCF,∴=,∴CF•BE=PE•BF,∵CF=BE,∴CF2=PE•BF,故④正确;∵点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,在Rt△BCG中,CG===,∵PG=AB=,∴CP=CG﹣PG=﹣=,即线段CP的最小值为,故⑤正确;综上可知正确的有5个,故选D.【点评】本题为四边形的综合应用,涉及全等三角形、相似三角形的判定和性质、勾股定理、正方形的性质等知识点.在判定三角形全等时,关键是选择恰当的判定条件,证明△ABE≌△BCF是解题的关键.本题考查知识点较多,综合性较强,难度较大.二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题卡的相应位置)11.写出一个第二象限内的点的坐标:(﹣1 , 1 ).【考点】点的坐标.【专题】开放型.【分析】根据第二象限的点的横坐标是负数,纵坐标是正数解答.【解答】解:(﹣1,1)为第二象限的点的坐标.故答案为:﹣1,1(答案不唯一).【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.想了解某电视台对正在播出的某电视节目收视率的情况,适合采用的调查方式是抽样调查.(填“全面调查”或“抽样调查”)【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:想了解某电视台对正在播出的某电视节目收视率的情况,适合采用的调查方式是抽样调查,故答案为:抽样调查.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.13.计算: = x .【考点】分式的加减法.【专题】计算题.【分析】进行同分母分式加减运算,最后要注意将结果化为最简分式.【解答】解: ===x.故答案为x.【点评】本题考查了分式的加减运算,题目比较容易.14.分解因式:3a2﹣6a+3= 3(a﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案.【解答】解:原式=3(a2﹣2a+1)=3(a﹣1)2.故答案为:3(a﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.15.已知圆锥的侧面积为15π,底面半径为3,则圆锥的高为 4 .【考点】圆锥的计算.【专题】计算题.【分析】设圆锥的母线长为l,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•3•l=15π,然后求出l后利用勾股定理计算圆锥的高.【解答】解:设圆锥的母线长为l,根据题意得•2π•3•l=15π,解得l=5,所以圆锥的高==4.故答案为4.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边做等腰直角△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=(k<0)上运动,则k的值是﹣2 .【考点】反比例函数图象上点的坐标特征;等腰直角三角形.【分析】连结OC,作CD⊥x轴于D,AE⊥x轴于E,设A点坐标为(a,),利用反比例函数的性质得到点A与点B关于原点对称,则OA=OB,再根据等腰直角三角形的性质得OC=OA,OC⊥OA,然后利用等角的余角相等可得到∠DCO=∠AOE,则根据“AAS”可判断△COD≌△OAE,所以OD=AE=,CD=OE=a,于是C 点坐标为(,a),最后根据反比例函数图象上点的坐标特征确定C点所在的函数图象解析式.【解答】解:连结OC,作CD⊥x轴于D,AE⊥x轴于E,如图,设A点坐标为(a,),∵A点、B点是正比例函数图象与双曲线y=的交点,∴点A与点B关于原点对称,∴OA=OB∵△ABC为等腰直角三角形,∴OC=OA,OC⊥OA,∴∠DOC+∠AOE=90°,∵∠DOC+∠DCO=90°,∴∠DCO=∠AOE,在△COD和△OAE中,∵,∴△COD≌△OAE(AAS),∴OD=AE=,CD=OE=a,∴C点坐标为(,﹣a),∵﹣a•=﹣2,∴点C在反比例函数y=﹣图象上.故答案为﹣2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(本大题共9小题,共86分.请在答题卡的相应位置作答)17.计算:×(﹣2)2﹣2tan45°+(﹣2016)0.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用算术平方根定义,乘方的意义,特殊角的三角函数值,以及零指数幂法则计算即可得到结果.【解答】解:原式=2×4﹣2×1+1=8﹣2+1=7.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简下列的代数式,再求值:[(2x+y)2+y(x﹣y)]÷x,其中x=1,y=1.【考点】整式的混合运算—化简求值.【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:[(2x+y)2+y(x﹣y)]÷x=(4x2+4xy+y2+xy﹣y2)÷x=(4x2+5xy)÷x=4x2÷x+5xy÷x=4x+5y,当x=1,y=1时,原式=4×1+5×1=9.【点评】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.19.解分式方程: =.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边同时乘以x(2x﹣1),得2(2x﹣1)=3x,解得:x=2,检验:当x=2时,x(2x﹣1)≠0,则原分式方程的解为x=2.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.如图,AB⊥BD于点B,ED⊥BD于点D,AE交BD于点C,且BC=DC.求证:AB=ED.【考点】全等三角形的判定与性质;垂线.【专题】证明题.【分析】首先根据垂直可得∠ABC=∠D=90°,再有条件∠ACB=∠DCE,CB=CD,可以用ASA证明△ABC≌△EDC,再根据全等三角形对应边相等得到结论AB=DE.【解答】证明:∵AB⊥BD,ED⊥BD,∴∠ABC=∠D=90°,在△ABC和△EDC中,∴△ABC≌△EDC(ASA)∴AB=DE.【点评】此题主要考查了全等三角形的判定与性质,解决此题的关键是找出能使△ABC≌△EDC的条件.21.2016年为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如图的调查问卷(单选).在随机调查了某市全部10000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m= 20 ;(2)该市支持选项C的司机大约有多少人?(3)若要从该市支持选项C的司机中随机选择200名,给他们签订“永不酒驾”的保证书,则支持该选项的司机小李被选中的概率是多少?【考点】概率公式;扇形统计图;条形统计图.【分析】(1)根据条形图B的人数,和扇形图B所占的百分比求出总人数,然后减去其他4组的人数,求出C的人数,用A的人数除以总人数可得m的值.(2)全市所以司机的人数×支持选项C的人数的百分比可求出结果.(3)根据(2)算出的支持C的人数,以及随机选择200名,给他们发放“请勿酒驾”的提醒标志,则可算出支持该选项的司机小李被选中的概率是多少【解答】解:(1)∵69÷23%﹣60﹣69﹣36﹣45=90(人).∴C选项的频数为90,补全图形如下:.∵m%=60÷(69÷23%)=20%.故答案为:20;(2)支持选项C的人数大约为:90÷300=30%,10000×30%=3000(人).答:该市支持选项C的司机大约有3000人.(3)∵该市支持选项C的司机总人数=10000×30%=3000人,∴小李被选中的概率是,答:支持该选项的司机小李被选中的概率是.【点评】本题考查认知条形统计图和扇形统计图的能力,条形统计图告诉每组里面的具体数据,扇形统计图告诉部分占整体的百分比以及概率等概念从而可求出解.22.如图,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE ∥BD,交BC于点F,交AE于点E.(1)求证:△BEF∽△DBC.;(2)若⊙O的半径为3,∠C=32°,求BE的长.(精确到0.01)【考点】相似三角形的判定与性质;切线的性质.【分析】(1)连接OB,由切线的性质得出OB⊥AE,故可得出∠OBE=∠EBF+∠CBO=90°.再由圆周角定理得出∠CBD=∠CBO+∠OBD=90°,故∠EBF=∠OBD.根据等腰三角形的性质可知∠OBD=∠CDB,故∠EBF=∠CDB,进而可得出结论;(2)由(1)可知△BEF∽△DBC,所以∠OBE=90°,∠E=∠C.在Rt△BOE中,利用锐角三角函数的定义即可得出结论.【解答】(1)证明:连接OB.∵过点B的切线AE与CD的延长线交于点A,∴∠OBE=∠EBF+∠CBO=90°.∵CD为⊙O的直径∴∠CBD=∠CBO+∠OBD=90°,∴∠EBF=∠OBD.∵OB、OD是⊙O的半径,∴OB=OD,∴∠OBD=∠CDB,∴∠EBF=∠CDB.∵OE∥BD,∴∠EFB=∠CBD∴△BEF∽△DBC.(2)解:∵由(1)可知△BEF∽△DBC∴∠OBE=90°,∴∠E=∠C.∵∠C=32°,∴∠E=∠C=32°.∵⊙O的半径为3,∴OB=3.在Rt△BOE中,∠OBE=90°,∠E=32°,OB=3,∴tanE=,即tan32°=,∴BE=≈4.80.【点评】本题考查的是相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键.23. 2016年春季,建阳区某服装商店分两次从批发市场购进同一款服装,数量之比是2:3,且第一、二次进货价分别为每件50元、40元,总共付了4400元的货款.(1)求第一、二次购进服装的数量分别是多少件?(2)由于该款服装刚推出时,很受欢迎,按每件70元销售了x件;后来,由于该服装滞销,为了及时处理库存,缓解资金压力,其剩余部分的按每件30元全部售完.当x的值至少为多少时,该服装商店才不会亏本.【考点】一元一次不等式的应用;二元一次方程组的应用.【专题】应用题;一元一次不等式(组)及应用.【分析】(1)设第一、二次购进服装的数量分别为a件与b件,根据题意列出方程组,求出方程组的解得到a与b的值,即可得到结果;(2)根据题意列出不等式,求出不等式的解集即可得到结果.【解答】解:(1)设第一、二次购进服装的数量分别是a件和b件,根据题意得:,解得:,答:第一、二次购进服装的数量分别是40件和60件;(2)根据题意得:70x+30(40+60﹣x)﹣4400≥0,解得:x≥35;答:当x的值至少为35时,商店才不会亏本.【点评】此题考查了一元一次方程的应用,以及一元一次不等式的应用,弄清题意是解本题的关键.24.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E 关于直线PC 的对称点,是否存在点P ,使点E′落在y 轴上?若存在,请直接写出相应的点P 的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】代数几何综合题;压轴题.【分析】(1)利用待定系数法求出抛物线的解析式;(2)用含m 的代数式分别表示出PE 、EF ,然后列方程求解;(3)解题关键是识别出当四边形PECE′是菱形,然后根据PE=CE 的条件,列出方程求解;当四边形PECE′是菱形不存在时,P 点y 轴上,即可得到点P 坐标.【解答】方法一:解:(1)将点A 、B 坐标代入抛物线解析式,得:,解得,∴抛物线的解析式为:y=﹣x 2+4x+5.(2)∵点P 的横坐标为m ,∴P (m ,﹣m 2+4m+5),E (m ,﹣ m+3),F (m ,0).∴PE=|y P ﹣y E |=|(﹣m 2+4m+5)﹣(﹣m+3)|=|﹣m 2+m+2|, EF=|y E ﹣y F |=|(﹣m+3)﹣0|=|﹣m+3|.由题意,PE=5EF ,即:|﹣m 2+m+2|=5|﹣m+3|=|m+15| ①若﹣m 2+m+2=m+15,整理得:2m 2﹣17m+26=0, 解得:m=2或m=;②若﹣m 2+m+2=﹣(m+15),整理得:m 2﹣m ﹣17=0, 解得:m=或m=. 由题意,m 的取值范围为:﹣1<m <5,故m=、m=这两个解均舍去. ∴m=2或m=.(3)假设存在.作出示意图如下:∵点E 、E′关于直线PC 对称,∴∠1=∠2,CE=CE′,PE=PE′.∵PE 平行于y 轴,∴∠1=∠3,∴∠2=∠3,∴PE=CE ,∴PE=CE=PE′=CE′,即四边形PECE′是菱形.当四边形PECE′是菱形存在时,由直线CD 解析式y=﹣x+3,可得OD=4,OC=3,由勾股定理得CD=5.过点E 作EM ∥x 轴,交y 轴于点M ,易得△CEM ∽△CDO ,∴,即,解得CE=|m|,∴PE=CE=|m|,又由(2)可知:PE=|﹣m 2+m+2| ∴|﹣m 2+m+2|=|m|. ①若﹣m 2+m+2=m ,整理得:2m 2﹣7m ﹣4=0,解得m=4或m=﹣; ②若﹣m 2+m+2=﹣m ,整理得:m 2﹣6m ﹣2=0,解得m 1=3+,m 2=3﹣. 由题意,m 的取值范围为:﹣1<m <5,故m=3+这个解舍去.当四边形PECE′是菱形这一条件不存在时,此时P点横坐标为0,E,C,E'三点重合与y轴上,也符合题意,∴P(0,5)综上所述,存在满足条件的点P,可求得点P坐标为(0,5),(﹣,),(4,5),(3﹣,2﹣3)方法二:(1)略.(2)略.(3)若E(不与C重合时)关于直线PC的对称点E′在y轴上,则直线CD与直线CE′关于PC轴对称.∴点D关于直线PC的对称点D′也在y轴上,∴DD′⊥CP,∵y=﹣x+3,∴D(4,0),CD=5,∵OC=3,∴OD′=8或OD′=2,①当OD′=8时,D′(0,8),设P(t,﹣t2+4t+5),D(4,0),C(0,3),∵PC⊥DD′,∴KPC ×KDD′=﹣1,∴,∴2t2﹣7t﹣4=0,∴t1=4,t2=﹣,②当OD′=2时,D′(0,﹣2),设P(t,﹣t2+4t+5),∵PC⊥DD′,∴KPC ×KDD′=﹣1,∴=﹣1,∴t1=3+,t2=3﹣,∵点P是x轴上方的抛物线上一动点,∴﹣1<t<5,∴点P的坐标为(﹣,),(4,5),(3﹣,2﹣3).若点E与C重合时,P(0,5)也符合题意.综上所述,存在满足条件的点P,可求得点P坐标为(0,5),(﹣,),(4,5),(3﹣,2﹣3)【点评】本题是二次函数压轴题,综合考查了二次函数与一次函数的图象与性质、点的坐标、待定系数法、菱形、相似三角形等多个知识点,重点考查了分类讨论思想与方程思想的灵活运用.需要注意的是,为了避免漏解,表示线段长度的代数式均含有绝对值,解方程时需要分类讨论、分别计算.25.如图,在四边形ABCD中,∠D=∠BCD=90°,∠B=60°,AB=6,AD=9,点E是CD上的一个动点(E不与D重合),过点E作EF∥AC,交AD于点F(当E运动到C时,EF与AC重合),把△DEF沿着EF对折,点D的对应点是点G.设DE=x,△GEF与四边形ABCD重叠部分的面积为y.(1)求CD的长及∠1的度数;(2)若点G恰好在BC上,求此时x的值;(3)求y与x之间的函数关系式,并求x为何值时,y的值最大?最大值是多少?【考点】四边形综合题.【分析】(1)如图1,作辅助线AH⊥BC,AH的长就是CD的长,根据直角三角形中的特殊三角函数值可以求AH的长,即CD=AH=3,在直角△ACD中,求∠CAD=30°,由平行线的同位角相等可以得∠1=∠CAD=30°;(2)如图2,由对折得:Rt△FGE≌Rt△FDE,则GE=DE=x,∠FEG=∠FED=60°,从而求得直角△GEC中,EC=x,根据DE+EC=CD 列式可求得x的值;(3)分两种情形:第一种情形:当时,如图3,△GEF完全在四边形内部分,重叠部分面积就是△GEF的面积;第二种情形:当<x≤时,如图4,重叠部分是△GEF的面积﹣△MNG的面积,所以要根据特殊的三角函数值求MG、NG的长,代入面积公式即可.再根据两种情形的最大值作对比得出结果.【解答】解:(1)如图1,过点A作AH⊥BC于点H,∵在Rt△AHB中,AB=6,∠B=60°,∴AH=AB•sinB=6×=,∵∠D=∠BCD=90°,∴四边形AHCD为矩形,∴CD=AH=,∵,∴∠CAD=30°,∵EF∥AC,∴∠1=∠CAD=30°;(2)若点G恰好在BC上,如图2,由对折的对称性可知Rt△FGE≌Rt△FDE,∴GE=DE=x,∠FEG=∠FED=60°,∴∠GEC=60°,∵△CEG是直角三角形,∴∠EGC=30°,∴在Rt△CEG中,EC=EG=x,由DE+EC=CD 得,∴x=;(3)分两种情形:第一种情形:当时,如图3,在Rt △DEF 中,tan ∠1=tan30°=, ∴DF=x ÷=x , ∴y=S △EGF =S △EDF ===, ∵>0,对称轴为y 轴, ∴当,y 随x 的增大而增大, ∴当x=时,y 最大值=×=; 第二种情形:当<x ≤时,如图4,设FG ,EG 分别交BC 于点M 、N ,(法一)∵DE=x ,∴EC=,NE=2, ∴NG=GE ﹣NE==, 又∵∠MNG=∠ENC=30°,∠G=90°, ∴MG=NG •tan30°=, ∴= ∴y=S △EGF ﹣S △MNG == ∵,对称轴为直线, ∴当<x ≤时,y 有最大值,且y 随x 的增大而增大, ∴当时,=, 综合两种情形:由于<;∴当时,y 的值最大,y 的最大值为.【点评】本题是四边形的综合题,考查了折叠的性质、二次函数的最值、特殊的三角函数值及直角三角形中30°角的性质,对于求重叠部分的面积,要先把特殊位置对应的x的值求出来,再分情况进行讨论,本题难度适中.。
2017上海市中考数学冲刺模拟试卷

2017中考数学学科模拟冲刺试卷(满分150分考试时间100分钟)注意事项:1.本试卷含三个大题,共25题;2.答题时,请各位同学务必按答题要求在答题纸规定的位置上作答,在草稿纸及本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共有6题,每题有且只有一个正确答案,选对得4分,否则一律得零分)1、下列说话正确的是( )A 、23是分数B 、b a +与b a 2121+是同类项C 、722是有理数 D 、x 2是分式 2.下列计算正确的是( )A 、223)13(3m m m m -=-÷B 、ab ab c b a 2)6()12(232=÷C 、54202-⋅+=--x x x xD 、()2326xy x y -= 3. 程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .3(100)1003x x +-= B . 3(100)1003x x --= C . 10031003x x -+= D . 10031003x x --= 4、下列说话正确的是( )A 、有人把石头孵成了小鸡是确定事件;B 、过一点一定可以作已知线段的平分线;C 、如果方程0242=+-x mx 有两个实数根,则m 的取值范围是2≤m ;D 、某市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,近4万名考生是总体。
5、如图,将△ABC 沿BC 方向平移得到△DCE ,连接AD .下列条件中,能够判定四边形ACED 为菱形的是( )A .AB =BC B .AC =BCC .∠ABC =60°D .∠ACB =60°6、如图,在平面直角坐标系中,⊙P 与x 轴相切,与y 轴相较于A (0,2),B (0,8).则圆心P 的坐标是( )A .(5,3)B .(5,4)C .(3,5)D .(4,5)二、填空题(本大题满分48分,共有12题)7、能够说明“2x x =不成立...”的x 的值是 (写出一个即可). 8、若x +y =10,xy =1 ,则x 3y +xy 3= .9、 一个矩形的面积为a a 22+,若一边长为a ,则另一边长为___________。
2016-2017上海市中考数学模拟预测试题(附答案)

2016-2017上海市中考数学模拟预测试题(附答案)上海市中考数学模拟预测试题注意事项:1.本试卷共25题,含三个大题,满分150分。
考生必须在答题纸规定的位置上作答,草稿纸、本试卷上的答题无效。
2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤。
3.考试中禁止使用计算器。
一、选择题(本大题共6题,每题4分,满分24分)1.下列计算中,正确的是(A)a3+a3=a6 (B)a3×a2=a6(C)(-a3)2=a9 (D)(-a2)3=-a62.下列说法不一定成立的是(B)若a+c>b+c,则a>b3.抛物线y=x2-8x-1的对称轴为(A)直线x=44.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为(D)1/65.如图,正六边形ABCDEF内接于圆O,半径为4,那么这个正六边形的边心距OM和弧BC的长分别为(B)2√3、4π/36.下列判断错误的是(A)对角线互相垂直且相等的平行四边形是正方形二、填空题(本大题共12题,每题4分,满分48分)7.购买单价为a元的笔记本3本和单价为b元的铅笔5支应付款3a+5b元。
8.分解因式:x2-2x-8=(x-4)(x+2)。
9.方程x+2=x的解为x=无解。
10.函数y=2x/(x-3)的定义域为x≠3.11.如果关于x的一元二次方程x2-2x+k=0有两个不相等的实数根,那么k的取值范围是k<1.12.如果一个正比例函数过点(2,-4),则其解析式为y=kx,其中k=-2.13.根据表格可知,“足球社团”成员的年龄中位数为11岁。
14.如图所示,在已知的三角形ABC中,按照以下步骤进行作图:①以B、C为圆心,以大于BC的长度为半径作弧,两弧相交于M、N两点;②作直线MN交AB于点D,连接CD。
若CD=AC,∠A=50°,则∠XXX的度数为80°。
上海初三初中数学中考模拟带答案解析

上海初三初中数学中考模拟班级:___________ 姓名:___________ 分数:___________一、选择题1.如果把的三边长度都扩大2倍,那么锐角的四个三角比的值()A.都扩大到原来的2倍;B.都缩小到原来的;C.都没有变化;D.都不能确定;2.将抛物线向左平移2个单位,所得抛物线的表达式为()A.;B.;C.;D.;3.一个小球被抛出后,如果距离地面的高度(米)和运行时间(秒)的函数解析式为,那么小球到达最高点时距离地面的高度是()A.1米;B.3米;C.5米;D.6米;4.如图,已知∥∥,,,那么的长等于()A.2;B.4;C.;D.;5.已知在△中,,,那么边的长等于()A.;B.;C.;D.;6.如图,已知在梯形中,∥,,如果对角线与相交于点,△、△、△、△的面积分别记作、、、,那么下列结论中,不正确的是()A.;B.;C.;D.;二、填空题1.已知,那么;2.计算:;3.已知线段,,那么线段、的比例中项等于4.二次函数的图像与轴的交点坐标为;5.在中,,如果,,那么;6.如图,已知分别是△的边和上的点,,,要使∥,那么应等于;7.如果抛物线不经过第一象限,那么的取值范围是;8.已知点是面积为的△的重心,那么△的面积等于;9.如图,当小杰沿着坡度的坡面由到直行走了26米时,小杰实际上升的高度米(结论可保留根号)10.已知二次函数的图像经过点,对称轴为直线,由此可知这个二次函数的图像一定经过除点外的另一点,这点的坐标是;11.已知不等臂跷跷板长为3米,当的一端点碰到地面时(如图1),与地面的夹角为30°;当的另一端点碰到地面时(如图2),与地面的夹角的正弦值为,那么跷跷板的支撑点到地面的距离米12.把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这个顶点不变),我们把这样的三角形运动称为三角形的T-变换,这个顶点称为T-变换中心,旋转角称为T-变换角,三角形与原三角形的对应边之比称为T-变换比;已知△在直角坐标平面内,点,,,将△进行T-变换,T-变换中心为点,T-变换角为60°,T-变换比为,那么经过T-变换后点所对应的点的坐标为;13.用含30°、45°、60°这三个特殊角的四个三角比及其组合可以表示某些实数,如:可表示为;仿照上述材料,完成下列问题:(1)用含30°、45°、60°这三个特殊角的三角比或其组合表示,即填空:…;(2)用含30°、45°、60°这三个特殊角的三角比,结合加、减、乘、除四种运算,设计一个等式,要求:等式中须含有这三个特殊角的三角比,上述四种运算都至少出现一次,且这个等式的结果等于1,即填空:三、解答题1.已知在直角坐标平面内,抛物线经过轴上两点,点的坐标为,与轴相交于点;(1)求抛物线的表达式;(2)求△的面积;2.如图,已知在△中,是边上的中线,设,;(1)求(用向量的式子表示)(2)如果点在中线上,求作在方向上的分向量;(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分向量)3.如图,某幢大楼的外墙边上竖直安装着一根旗杆,小明在离旗杆下方大楼底部点24米的点处放置一台测角仪,测角仪的高度为1.5米,并在点处测得旗杆下端的仰角为40°,上端的仰角为45°,求旗杆的长度;(结果精确到0.1米,参考数据:,,)4.已知如图,是△的边上一点,∥,交边于点,延长至点,使,联结,交边于点,联结(1)求证:;(2)如果,求证:5.已知在平面直角坐标系中,二次函数的图像经过点和点;(1)求这个二次函数的解析式;(2)将这个二次函数的图像向上平移,交轴于点,其纵坐标为,请用的代数式表示平移后函数图象顶点的坐标;(3)在第(2)小题的条件下,如果点的坐标为,平分,求的值;6.已知在矩形中,是边上的一动点,联结、,过点作射线交线段的延长线于点,交边于点,且使得,如果,,,;(1)求关于的函数解析式,并写出它的定义域;(2)当时,求的正切值;(3)如果△是以为底角的等腰三角形,求的长;上海初三初中数学中考模拟答案及解析一、选择题1.如果把的三边长度都扩大2倍,那么锐角的四个三角比的值()A.都扩大到原来的2倍;B.都缩小到原来的;C.都没有变化;D.都不能确定;【答案】C【解析】根据锐角的三角比的定义可知,锐角的大小确定后,锐角的四个三角比的值与边长无关,固定不变,故选:C.【考点】锐角的三角比.2.将抛物线向左平移2个单位,所得抛物线的表达式为()A.;B.;C.;D.;【答案】A【解析】根据抛物线的平移规律,“左加右减”可知:将抛物线向左平移2个单位,所得抛物线的表达式为,故选:A.【考点】抛物线的平移规律.3.一个小球被抛出后,如果距离地面的高度(米)和运行时间(秒)的函数解析式为,那么小球到达最高点时距离地面的高度是()A.1米;B.3米;C.5米;D.6米;【答案】D【解析】因为,所以小球到达最高点时距离地面的高度是6米,故选:D.【考点】二次函数的应用.4.如图,已知∥∥,,,那么的长等于()A.2;B.4;C.;D.;【答案】C【解析】因为∥∥,所以,所以,因为,所以CE=,故选:C.【考点】平行线分线段成比例定理.5.已知在△中,,,那么边的长等于()A.;B.;C.;D.;【答案】B【解析】过点A作AD BC 于点D,因为,所以BD=,在中,cosB= ,所以BC=2BD=2AbcosB=,故选:B.【考点】1.等腰三角形的性质;2.锐角三角比.6.如图,已知在梯形中,∥,,如果对角线与相交于点,△、△、△、△的面积分别记作、、、,那么下列结论中,不正确的是()A.;B.;C.;D.;【答案】B【解析】因为在梯形中,∥,所以△AOD∽△COB,所以,因为,所以,所以,故选:B.【考点】1.梯形的性质;2.相似三角形的判定与性质.二、填空题1.已知,那么;【答案】【解析】设x=3k,则y=4k,所以.【考点】比例的性质.2.计算:;【答案】【解析】.【考点】向量的计算.3.已知线段,,那么线段、的比例中项等于【答案】6【解析】设线段、的比例中项为c,则所以c=6.【考点】线段的比例中项.4.二次函数的图像与轴的交点坐标为;【答案】【解析】,令x=0,则y=3,所以二次函数的图像与轴的交点坐标为(0,3).【考点】抛物线与轴的交点坐标.5.在中,,如果,,那么;【答案】4【解析】因为在中,,所以,所以.【考点】解直角三角形.6.如图,已知分别是△的边和上的点,,,要使∥,那么应等于;【答案】【解析】根据题意可得,要使∥,则.【考点】平行线的判定.7.如果抛物线不经过第一象限,那么的取值范围是;【答案】【解析】因为抛物线的对称轴是y轴且不经过第一象限,所以抛物线开口向下,所以a+3<0,所以.【考点】抛物线的性质.8.已知点是面积为的△的重心,那么△的面积等于;【答案】9【解析】设AG交BC于点D,因为点是面积为的△的重心,所以BD=CD,AG=2GD,所以△的面积=的面积的,的面积=△的面积的=,所以△的面积=【考点】三角形重心的性质.9.如图,当小杰沿着坡度的坡面由到直行走了26米时,小杰实际上升的高度米(结论可保留根号)【答案】【解析】设AC=x,因为,所以BC=5x,AB==26,所以x=.【考点】1.坡度;2.勾股定理.10.已知二次函数的图像经过点,对称轴为直线,由此可知这个二次函数的图像一定经过除点外的另一点,这点的坐标是;【答案】【解析】因为二次函数的图像经过点,对称轴为直线,所以二次函数的图像一定经过点关于直线的对称点.【考点】抛物线的对称性.11.已知不等臂跷跷板长为3米,当的一端点碰到地面时(如图1),与地面的夹角为30°;当的另一端点碰到地面时(如图2),与地面的夹角的正弦值为,那么跷跷板的支撑点到地面的距离米【答案】【解析】设OH=x米,在Rt△AOH中,30°,所以OA=2x,在Rt△BOH中,sinB= ,所以OB=3x,所以AB=5x=3,所以x=.【考点】解直角三角形.12.把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这个顶点不变),我们把这样的三角形运动称为三角形的T-变换,这个顶点称为T-变换中心,旋转角称为T-变换角,三角形与原三角形的对应边之比称为T-变换比;已知△在直角坐标平面内,点,,,将△进行T-变换,T-变换中心为点,T-变换角为60°,T-变换比为,那么经过T-变换后点所对应的点的坐标为;【答案】【解析】因为点,,,所以△是直角三角形且∠CAB=30°,∠ACB=90°,AC=3,设经过T-变换后点所对应的点是点D,因为T-变换中心为点,T-变换角为60°,T-变换比为,所以∠DAC=60°,AD=2,因为OA=1,所以根据题意可得△OAD是直角三角形,且点D在x轴上,且OD=,所以点D的坐标是.【考点】1.图形的变换;2.勾股定理.13.用含30°、45°、60°这三个特殊角的四个三角比及其组合可以表示某些实数,如:可表示为;仿照上述材料,完成下列问题:(1)用含30°、45°、60°这三个特殊角的三角比或其组合表示,即填空:…;(2)用含30°、45°、60°这三个特殊角的三角比,结合加、减、乘、除四种运算,设计一个等式,要求:等式中须含有这三个特殊角的三角比,上述四种运算都至少出现一次,且这个等式的结果等于1,即填空:【答案】(1),,;(2);【解析】答案不唯一,根据30°、45°、60°这三个特殊角的三角比,进行加、减、乘、除四种运算组合即可.试题解析:(1)==;(2)1=.【考点】特殊角的三角比.三、解答题1.已知在直角坐标平面内,抛物线经过轴上两点,点的坐标为,与轴相交于点;(1)求抛物线的表达式;(2)求△的面积;【答案】(1);(2),,,;【解析】(1)把点的坐标为代入,求出b的值即可;(2)分别求出,,然后根据三角形的面积公式计算即可.试题解析:(1)把点的坐标为代入,得9+3b+6=0,解得b=-5,所以抛物线的表达式为;(2)令x=0,则y=6,所以,令y=0,则解得,因为点的坐标为,所以点A的坐标为(2,0),所以AB=1,所以.【考点】二次函数.2.如图,已知在△中,是边上的中线,设,;(1)求(用向量的式子表示)(2)如果点在中线上,求作在方向上的分向量;(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分向量)【答案】(1);(2)略;【解析】(1)根据AD是边BC上的中线可得BD=BC,可得,根据可求出;(2)利用平行四边形法则,即可求得在方向上的分向量.试题解析:(1)因为AD是边BC上的中线,所以BD=BC,所以,因为,所以;(2)如图,过点E作EM∥BC,EN∥AB,就是在方向上的分向量.【考点】向量.3.如图,某幢大楼的外墙边上竖直安装着一根旗杆,小明在离旗杆下方大楼底部点24米的点处放置一台测角仪,测角仪的高度为1.5米,并在点处测得旗杆下端的仰角为40°,上端的仰角为45°,求旗杆的长度;(结果精确到0.1米,参考数据:,,)【答案】3.8【解析】过点B作BF⊥DE于点F,则BF=AE=24,,在△BCF中利用,求出CF的长度,在△BDF 中,DF=BF=24,然后可求CD的长.试题解析:如图:过点B作BF⊥DE于点F,则BF=AE=24,,在△BCF中,因为,所以CF=0.84×24≈20.16(m),在△BDF中,因为∠DBF=45°,所以DF=BF=24,所以CD="DF-CF=" =24-20.16=3.84≈3.8(m).【考点】解直角三角形的实际应用.4.已知如图,是△的边上一点,∥,交边于点,延长至点,使,联结,交边于点,联结(1)求证:;(2)如果,求证:【答案】见解析【解析】(1)根据∥,可得△ADE∽△ABC, △EFG∽△CBG,从而又因为,所以;(2)连结CF,根据条件可证明△CFG∽△BFC,所以然后证明△EFG∽△ECF,得即可.试题解析:(1)∵DE∥BC,∴△ADE∽△ABC,△EFG∽△CBG,∴又∵DE=EF,∴,∴;(2)∵CF2=FG•FB,∴,又∵∠CFG=∠CFB,∴△CFG∽△BFC,∴∠FCE=∠CBF,又∵DF∥BC,∴∠EFG=∠CBF,∴∠FCE=∠EFG,又∵∠FEG=∠CEF,∴△EFG∽△ECF,∴,∴,即CG•CE=BC•DE.【考点】1. 平行线分线段成比例定理;2.相似三角形的判定与性质.5.已知在平面直角坐标系中,二次函数的图像经过点和点;(1)求这个二次函数的解析式;(2)将这个二次函数的图像向上平移,交轴于点,其纵坐标为,请用的代数式表示平移后函数图象顶点的坐标;(3)在第(2)小题的条件下,如果点的坐标为,平分,求的值;【答案】(1);(2);(3);【解析】(1)把点和点,代入然后解方程中即可函数解析式;(2)将函数解析式化为顶点式,可得顶点坐标,根据图象的平移规律,可得M点的坐标;(3)根据角平分线的性质,可得全等三角形,根据全等三角形的性质,可得方程组,根据解方程组,可得答案.试题解析:(1)由二次函数y=ax2+bx的图象经过点(1,-3)和点(-1,5),得,解得,所以二次函数的解析式y=x2-4x;(2)因为,所以函数顶点M坐标(2,-4),这个二次函数的图象向上平移,交y轴于点C,其纵坐标为m,顶点M坐标向上平移m,即M(2,m-4);(3)由待定系数法,得CP的解析式为,如图:作MG⊥PC于G,设G(a,a+m),由角平分线上的点到角两边的距离相等,DM=MG.在Rt△DCM和Rt△GCM中,所以Rt△DCM≌Rt△GCM(HL)所以CG=DC=4,MG=DM=2,,化简,得8m=36,解得.【考点】1.待定系数法求函数解析式;2.抛物线的平移规律;3.全等三角形的判定与性质;4.角平分线的性质.6.已知在矩形中,是边上的一动点,联结、,过点作射线交线段的延长线于点,交边于点,且使得,如果,,,;(1)求关于的函数解析式,并写出它的定义域;(2)当时,求的正切值;(3)如果△是以为底角的等腰三角形,求的长;【答案】(1)();(2);(3);【解析】(1)根据条件证明△ABM∽△ABP,根据对应边成比例得,代入数值即可;(2)过点M作MF⊥BP,利用△BPM的面积可求出MF的长,利用勾股定理可得PF,BF的长,从而可求的正切值;(3)分∠EBC=∠ECB 或∠EBC=∠E两种情况讨论.试题解析:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠APB=∠PBC, ∵∠ABM=∠PBC,∴∠ABM=∠ABP且∠A=∠A, ∴△ABM∽△ABP,∴,代入数值可得所以,()(2)过点M作MF⊥BP,∵AP=4,∴MP=3,AM=1,∵AB=2,AP=4,∴BP=,BM=,∴,∴∵PM2=MF2+PF2∴,∴BF= ,∴tan∠EBP=;(3)∵△BCE为等腰三角形∴∠EBC=∠ECB 或∠EBC=∠E当∠EBC=∠ECB ∴∠ABM=∠DCP 且∠A=∠D,AB=CD∴△ABM≌△PDC∴AM="PD" =x-y,∵AD=AP+PD∴x+ x-y =5,∴ x2+4x-5=0,解得,∵∴都不合题意;当∠EBC=∠E,∴BC=CE=5,∵AD∥BC,∴∠EMP=∠EBC=∠E,∴MP=EP=y,∴PC=5-y,PD=5-x,在RT△PCD 中根据勾股定理得:(5-y)2=4+(5-x)2,∴(不合题意),∴AP=【考点】1.矩形的性质; 2. 相似三角形的判定与性质;3.等腰三角形的判定;4.全等三角形的判定与性质;5.勾股定理.。
2017年中考数学模拟试卷 (含答案解析) (14)

2017年黄浦区九年级学业考试模拟考数 学 试 卷 2017年4月(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.单项式324z xy 的次数是( ▲ )(A )3;(B )4;(C )5;(D )6.2.下列方程中无实数解的是( ▲ )(A )02=+x ; (B )02=-x ; (C )02=x ; (D )02=x. 3.下列各组数据中,平均数和中位数相等的是( ▲ )(A )1,2,3,4,5; (B )1,3,4,5,6;(C )1,2,4,5,6; (D )1,2,3,5,6.4.二次函数()322---=x y 图像的顶点坐标是( ▲ )(A )(2,3);(B )(2,﹣3);(C )(﹣2,3);(D )(﹣2,﹣3).5.以一个面积为1的三角形的三条中位线为三边的三角形的面积为( ▲ )(A )4;(B )2;(C )41; (D )21. 6.已知点A (4,0),B (0,3),如果⊙A 的半径为1,⊙B 的半径为6,则⊙A 与⊙B 的位置关系是( ▲ )(A )内切; (B )相交; (C )外切; (D )外离.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:()=32x▲ .8.因式分解:=-224y x ▲ . 9.不等式组⎩⎨⎧≥+<-01202x x 的解集是 ▲ .10.方程222=-x 的解是 ▲ .11.若关于x 的方程0322=+-k x x 有两个相等的实数根,则k 的值为 ▲ .12.某个工人要完成3000个零件的加工,如果该工人每小时能加工x 个零件,那么完成这批零件的加工需要的时间是 ▲ 小时.13.已知二次函数的图像经过点(1,3)和(3,3),则此函数图像的对称轴与x 轴的交点坐标是 ▲ . 14.从1到10这10个正整数中任取一个,该正整数恰好是3的倍数的概率是 ▲ . 15.正八边形的每个内角的度数是 ▲ .16.在平面直角坐标系中,点A (2,0),B (0,-3),若OC OB OA =+,则点C 的坐标为 ▲ . 17.如图,梯形ABCD 中,AD ∥BC ,∠A =90°,它恰好能按图示方式被分割成四个全等的直角梯形,则AB ∶BC = ▲ .18.如图,矩形ABCD ,将它分别沿AE 和AF 折叠,恰好使点B 、D 落到对角线AC 上点M 、N 处,已知MN =2,NC =1,则矩形ABCD 的面积是 ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:()()12017122212sin30--+-+--︒.20.(本题满分10分)解方程:21416222+=---+x x x x .21.(本题满分10分)如图,在△ABC 中,∠ACB =90°,∠A =15°,D 是边AB 的中点,DE ⊥AB 交AC 于点E . (1)求∠CDE 的度数; (2)求CE ∶EA .22.(本题满分10分)小明家买了一台充电式自动扫地机,每次完成充电后,在使用时扫地机会自动根据设定扫地时间,来确DNMCBAEFEDCBADCBA定扫地的速度(以使每次扫地结束时尽量把所储存的电量用完),下图是“设定扫地时间”与“扫地速度”之间的函数图像(线段AB ),其中设定扫地时间为x 分钟,扫地速度为y 平方分米/分钟. (1)求y 关于x 的函数解析式;(2)现在小明需要扫地机完成180平方米的扫地任务,他应该设定的扫地时间为多少分钟?23.(本题满分12分)如图,菱形ABCD ,以A 为圆心,AC 长为半径的圆分别交边BC 、DC 、AB 、AD 于点E 、F 、G 、H. (1)求证:CE =CF ; (2)当E 为弧中点时,求证:BE 2=CE •CB .24.(本题满分12分)如图,点A 在函数()40y x x =>图像上,过点A 作x 轴和y 轴的平行线分别交函数xy 1=图像于点B 、FED CBAHGOxy 100 20500100B AC ,直线BC 与坐标轴的交点为D 、E .(1)当点C 的横坐标为1时,求点B 的坐标; (2)试问:当点A 在函数()40y x x=>图像上运动时,△ABC 的面积是否发生变化?若不变,请求出△ABC 的面积;若变化,请说明理由;(3)试说明:当点A 在函数()40y x x=>图像上运动时,线段BD 与CE 的长始终相等.25.(本题满分14分)已知:Rt △ABC 斜边AB 上点D 、E ,满足∠DCE =45°.(1)如图1,当AC =1,BC =3,且点D 与A 重合时,求线段B E 的长;EB C AD xy O(2)如图2,当△ABC 是等腰直角三角形时,求证:AD 2+BE 2=DE 2;(3)如图3,当AC =3,BC =4时,设AD =x ,BE =y ,求y 关于x 的函数关系式,并写出定义域.(图1) (图2)(图3)黄浦区2017年九年级学业考试模拟考评分标准参考一、选择题(本大题6小题,每小题4分,满分24分)1.D ;2.D ;3.A ;4.B ;5.C ;6.A . 二、填空题:(本大题共12题,每题4分,满分48分)7.6x ; 8.()()y x y x 22-+; 9.122x -≤<; 10.6±; 11.89; 12.x 3000; 13.(2,0); 14.103;15.135; 16.(2,﹣3); 17.3∶1; 18.649+. 三、解答题:(本大题共7题,满分78分) 19. 解:原式= ()()112221-++-+ —————————————————(8分)=3—————————————————————————————(2分)C B ADE A D E C B (D ) E CB A20.解:()21622-=-+x x ———————————————————————(3分)01032=-+x x ————————————————————————(2分)21=x ,52-=x ————————————————————————(2分)经检验,21=x 是增根,——————————————————————(1分)所以,原方程的根为5-=x .———————————————————(2分)21. 解:(1)在Rt △ABC 中,D 是斜边AB 的中点,∴DC =DA ,———————————————————————————(2分) ∴∠DCA =∠DAC =15°, —————————————————————(1分) ∴∠BDC =30°. ————————————————————————(1分)又DE ⊥AB ,即∠BDE =90°.∴∠CDE =60°. ————————————————————————(1分) (2)过点C 作DE 的垂线,垂足为F (如图). ———————————(1分) 设AD =2a ,则CD =AD =2a ,—————————————————————(1分) 在△CDF 中,∠CFD =90°,∠CDF =60°.∴CF =a 3.———————————————————————————(1分) 又DE ⊥AB ,∴CF ∥AB ,———————————————————————————(1分) ∴CE ∶EA =CF ∶AD =3∶2. ———————————————————(1分)22. 解:(1)设b kx y +=————————————————————————(1分)由题意得:⎩⎨⎧+=+=b k bk 10010020500,———————————————————(2分)解得:⎩⎨⎧=-=6005b k ,————————————————————————(1分)所以,解析式为6005+-=x y .(20100x ≤≤)——————————(1分)(2)设设定扫地时间为x 分钟. ———————————————————(1分)180平方米=18000平方分米. ————————————————————(1分) 由题意得:()180006005=+-x x ,————————————————(1分) 解得:602,1=x ,符合题意. ———————————————————(1分)E DCBAF答:设定扫地时间为60分钟. —————————————————————(1分) 23. 证:(1)联结AE 、AF . ————————————————————————(1分)由菱形ABCD ,得∠ACE =∠ACF . ——————————————————(1分) 又∵点E 、C 、F 均在圆A 上,∴AE =AC =AF ,——————————————————————————(1分) ∴∠AFC =∠ACF =∠ACE =∠AEC . —————————————————(1分) ∴△ACE ≌△ACF ,————————————————————————(1分)∴CE =CF . ———————————————————————————(1分) (2)∵E 是弧CG 中点,∴∠CAE =∠GAE ,令∠CAE =α.——————————————————(1分) 又菱形ABCD ,得BA =BC ,所以∠BCA =∠BAC =2α,—————————————————————(1分) 则∠AEC =2α=∠BAE +∠B .∴∠B =∠BAE ,——————————————————————————(1分) 所以BE =AE =AC .在△CAB 与△CEA 中,∠AEC =∠BCA =∠CAB ,∴△CAB ∽△CEA ,————————————————————————(1分) ∴CB CE CA CBCACA CE ∙=⇒=2,—————————————————(1分) 即CB CE BE ∙=2.———————————————————————(1分) 24. 解:(1)由点C 的横坐标为1,且AC 平行于y 轴,所以点A 的横坐标也为1,且位于函数xy 4=图像上,则()4,1A .—————(2分) 又AB 平行于x 轴,所以点B 的纵坐标为4,且位于函数x y 1=图像上,则⎪⎭⎫⎝⎛4,41B .————(2分) (2)令⎪⎭⎫ ⎝⎛a a A 4,,由题意可得:⎪⎭⎫ ⎝⎛a a B 4,41,⎪⎭⎫⎝⎛a a C 1,. ———————(1分) 于是△ABC 的面积为:8934321144121=⨯⨯=-⨯-a a a a a a , ————(2分) 所以△ABC 的面积不变,为89.———————————————————(1分) (3)分别延长AB 、AC 交坐标轴于点F 、G . —————————————(1分)则⎪⎭⎫⎝⎛a F 4,0,()0,a G . ∵DF ∥AC ,——————————————————————————(1分)∴314141=-==aa aBA FB BC DB ,即BC DB 31=.———————————(1分)同理CB CE 31=,所以BD =CE . ——————————————————————————(1分) 25. 解:(1)过点E 作EH ⊥BC 于H . ———————————————————(1分) ∵∠ACB =90°,∠ACE =45°,∴∠BCE =45°. 又AC =1,BC =3,∴33tan =B .—————————————————————————(1分) 在△CEH 中,∠CHE =90°,∠HCE =45°,令CH =EH =x , 则在△BEH 中,BH =x BEH3tan =,BE =2x . 于是23333-=⇒+=x x x ,—————————————————(1分) ∴BE =33-.—————————————————————————(1分) (2)∵△ABC 为等腰直角三角形,∴CA =CB .将△BCE 绕点C 旋转90°到△ACF 处,联结DF .(如图)——————(1分)则∠DCF =∠DCA +∠ACF =∠DCA +∠BCE =90°-45°=45°=∠DCE . ——(1分) 又CE =CF ,CD =CD .∴△DCE ≌△CDF ,———————————————————————(1分) ∴DE =DF .于是在△ADF 中,∠DAF =∠DAC +∠CAF=45°+45°=90°. ————————————(1分) ∴222AF DA DF+=,即222BE DA DE +=.—————————————————————(1分)CF(3)将△ACD 绕点C 旋转90°到△QCP 处,点Q 恰好在边BC 上,联结PE ,并延长PQ 交边AB 于点T .(如图)同(2),易证△ECD ≌△ECP ,得DE =EP . 又∠B +∠BQT =∠B +∠PQC =∠B +∠A =90°,∴∠BTQ =90°.又BQ =BC -CQ =BC -AC =1. ————————————————————(1分) 在△ABC 中,∠ACB =90°,AC =3,BC =4,则AB =5,3sin 5B =,4cos 5B =. 于是在△BTQ 中,得53=TQ ,54=TB .——————————————(1分) 所以在△PET 中,∠PTE =90°,PE =DE =y x --5,TE =45y -,PT =53+x , 有222TE PT PE +=,即()22254535⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=--y x y x ,————(1分)解得:28601505217x y x x -⎛⎫=≤≤ ⎪-⎝⎭ ———————————————(2分)CBADETQ P。
初中数学上海市中考模拟数学考试题考试卷及答案Word版.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:下列实数中,是有理数的为………………………………………………………………()A、;B、;C、π;D、0.试题2:当a>0时,下列关于幂的运算正确的是………………………………………………()A、a0=1;B、a-1=-a;C、(-a)2=-a2;D、.试题3:下列y关于x的函数中,是正比例函数的为…………………………………………()A、y=x2;B、y=;C、y=;D、y=.试题4:如果一个正多边形的中心角为72°,那么这个正多边形的边数是……………………()A、4;B、5;C、6;D、7.试题5:下列各统计量中,表示一组数据波动程度的量是……………………………………()A、平均数;B、众数;C、方差;D、频率.如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是………………………………………………()A、AD=BD;B、OD=CD;C、∠CAD=∠CBD;D、∠OCA=∠OCB.试题7:计算:_______.试题8:方程的解是_______________.试题9:如果分式有意义,那么x的取值范围是____________.试题10:如果关于x 的一元二次方程x2+4x-m=0没有实数根,那么m的取值范围是________.试题11:同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32.如果某一温度的摄氏度数是25℃,那么它的华氏度数是________℉.试题12:如果将抛物线y=x2+2x-1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是_______________.试题13:某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是__________.已知某校学生“科技创新社团”成员的年龄与人数情况如下表所示:11 12 13 14 15年龄(岁)人数 5 5 16 15 12那么“科技创新社团”成员年龄的中位数是_______岁.试题15:如图,已知在△ABC中,D、E分别是边AB、边AC的中点,,,那么向量用向量、表示为______________.试题16:已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________度.试题17:在矩形ABCD中,AB=5,BC=12,点A在⊙B上.如果⊙D与⊙B相交,且点B在⊙D内,那么⊙D的半径长可以等于___________.(只需写出一个符合要求的数)试题18:已知在△ABC中,AB=AC=8,∠BAC=30°.将△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处.延长线段AD,交原△ABC的边BC的延长线于点E,那么线段DE的长等于___________.21·世纪*教育网试题19:(本题满分10分)先化简,再求值:,其中.试题20:解不等式组:,并把解集在数轴上表示出来.试题21:已知:如图,在平面直角坐标系xOy 中,正比例函数y=x的图像经过点A,点A的纵坐标为4,反比例函数y=的图像也经过点A,第一象限内的点B在这个反比例函数的图像上,过点B作BC∥x轴,交y轴于点C,且AC=AB.求:(1)这个反比例函数的解析式; (2)直线AB的表达式.试题22:如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼.已知点A到MN的距离为15米,BA的延长线与MN相交于点D,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音的影响.www-2-1-cnjy-com(1)过点A作MN的垂线,垂足为点H.如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排的居民楼,那么此时汽车与点H 的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板.当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米) (参考数据:≈1.7)2-1-c-n-j-y试题23:已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,联结DE.(1)求证:DE⊥BE; (2)如果OE⊥CD,求证:BD·CE=CD·DE .试题24:已知在平面直角坐标系xOy中(如图),抛物线y=ax2-4与x轴的负半轴相交于点A,与y轴相交于点B,AB=2.点P在抛物线上,线段AP与y轴的正半轴交于点C ,线段BP与x轴相交于点D.设点P的横坐标为m.21教育网(1)求这条抛物线的解析式;(2)用含m的代数式表示线段CO的长;(3)当tan∠ODC=时,求∠PAD的正弦值.试题25:已知:如图,AB是半圆O的直径,弦CD∥AB,动点P、Q分别在线段OC、CD上,且DQ=OP,AP的延长线与射线OQ相交于点E、与弦CD相交于点F(点F与点C、D不重合),AB=20,cos∠AOC=.设OP=x,△CPF的面积为y.(1)求证:AP=OQ;(2)求y 关于x的函数关系式,并写出它的定义域;(3)当△OPE 是直角三角形时,求线段OP的长.试题1答案:D试题2答案:A试题3答案:C试题4答案: B试题5答案: C试题6答案: B试题7答案: 4试题8答案:试题9答案:试题10答案:试题11答案:试题12答案:试题13答案:试题14答案:试题15答案:试题16答案:试题17答案:试题18答案:试题19答案:试题20答案:试题21答案:试题22答案:试题23答案:试题24答案:试题25答案:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市中考数学黄金冲刺模拟试题
(满分150分,100分钟完成)
考生注意:
1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.
2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.
一、选择题:(本大题共6题,每题4分,满分24分)
[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂]
1.下列各数中,与2
12
1
28-相等的是
(A )2
12
(B )2
1
6 (C )
2
14 (D )3
2.如果b a >,那么下列不等式中一定成立的是 (A )2
2b a > (B )b a ->-11 (C ) b
a ->+11 (D )11->+
b a
3.已知在函数b kx y +=,其中常数0>k 、0<b ,那么这个函数的图像不经过的象限是
(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限
4.某小区开展“节约用水,从我做起”活动,下表是从该小区抽取的10个家庭与上月比较的一个月的节水情况统计:
那么这10个家庭的节水量(3
m )的平均数和中位数分别是
(A )0.42和0.4 (B )0.4和0.4 (C )0.42和0.45 (D )0.4和0.45 5.如图,已知点D 、E 分别在△ABC 边AB 、AC 上,DE //BC ,
AD BD 2=,那么EBC DEB S S ∆∆: 等于
(A )2:1 (B )3:1 (C )4:1 (D )3:2 6.在四边形ABCD 中,AD //BC ,∠B =∠C ,要使四边形ABCD 为矩形, 还需添加一个条件,这个条件可以是
(A )AB =CD (B )AC =BD (C )∠A =∠D (D )∠A =∠B 二、填空题:(本大题共12题,每题4分,满分48分)
[在答题纸相应题号后的空格内直接填写答案]
节水量(3m ) 0.2 0.3 0.4 0.5 0.6 家庭数(个)
1
2
2
4
1
第5题图
A D C
B
E
7.计算:=--3)2( ▲ .
8.如果分式2
4
2+-x x 的值为零,那么x 的值为 ▲ .
9.方程11-=+x x 的根是 ▲ . 10.函数x y 23-=的定义域是 ▲ .
11.如果关于x 的一元二次方程0162=-+-m x x 有两个不相等的实数根,那么m 的取值范围是
▲ .
12.如果一个二次函数图像的对称轴在y 轴的右侧,且在对称轴右侧y 随x 的增大而减小,那么这
个二次函数的解析式可以是 ▲ (只要写出一个符合条件的解析式).
13.甲乙两位运动员在一次射击训练中各打五发,成绩的平均环数相同,甲的方差为1. 6;乙的成
绩(环)为:7,8,10,6,9,那么这两位运动员中 ▲ 的成绩较稳定.
14.某班进行一次班级活动,要在2名男同学和3名女同学中,随机选出2名学生担任主持人,那
么选出的2名学生恰好是1男1女的概率是 ▲ .
15. 在Rt △ABC 中,∠C =90°,∠A 、∠B 的平分线相交于点E ,那么∠AEB 的度数是 ▲ . 16.如图,在□ABCD 中,AC 与BD 相交于点O ,点E 、F 分别是OA 、
OD 的中点,如果b BO a AB ==,,那么=EF ▲ .
17. 已知⊙1O 、⊙2O 的半径分别为3、2,且⊙1O 上的点都在⊙2O 的外部,那么圆心距d 的取值范
围是 ▲ .
18.如图,在△ABC 中,AB =AC =4,4
1
cos =
C ,B
D 是中线,将△CBD 沿直线BD 翻折后,点C 落在点
E ,那么AE 的长为 ▲ .
三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上] 19.(本题满分10分)
先化简,再求值:2
2222b a b ab a -+-÷)1
1(a
b -,其中15+=a ,15-=b . (第18题图)
A
B
C
D
(第16题图)
A B
C
D
E O
F
20.(本题满分10分)
已知双曲线x
k
y =经过点A (4,+a a )和点B (12,2-a a ),求k 和a 的值.
21.(本题满分10分,每小题满分5分)
已知:如图,在梯形ABCD 中,AD //BC ,CA ⊥AB ,5
5
cos =∠ABC ,BC =5,AD =2. 求:(1)AC 的长; (2)∠ADB 的正切值.
22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)
某区园林部门计划在一块绿地内种植甲、乙两种树木共6600棵,其中甲种树木数量比乙种树木数量的2倍少600棵.
(1)问:甲、乙两种树木各有几棵?
(2)如果园林部门安排26人同时种植这两种树木,每人每天能种植甲种树木60棵或乙种树木40棵,应分别安排多少人种植甲种树木和乙种树木,才能确保同时完成各自的任务?
23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)
已知:如图,四边形ABCD 是菱形,点E 在边CD 上,点F 在BC 的延长线上,CF =DE ,AE 的延长线与DF 相交于点G . (1)求证:∠CDF =∠DAE ;
(2)如果DE =CE ,求证:AE =3EG .
24.(本题满分12分,第(1)小题满分4分,第(2)小题满分8分)
A
C
B
D
(第21题图)
(第23题图)
E
D
C
G F
A B
如图,在平面直角坐标系xOy 中,抛物线12-+=bx ax y 经过点A (2,–1),它的对称轴与x 轴相交于点B .
(1)求点B 的坐标;
(2)如果直线1+=x y 与此抛物线的对称 轴交于点C 、与抛物线在对称轴右侧交于点D , 且∠BDC =∠ACB .求此抛物线的表达式.
25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分) 已知:⊙O 的半径为5,点C 在直径AB 上,过点C 作⊙O 的弦DE ⊥AB ,过点D 作直线 EB 的垂线DF ,垂足为点F ,设AC =x ,EF =y . (1)如图,当AC =1时,求线段EB 的长;
(2)当点F 在线段EB 上时,求y 与x 之间的函数解析式,并写出定义域; (3)如果EF =3BF ,求线段AC 的长.
第25(1)题图
A
B
E
D
F
C
O
(第24题图)
A C
B O y
D
x E
参考答案。