圆概率反比例函数相似二次函数试卷
中考数学备考专题复习 反比例函数(含解析)(2021年整理)

2017年中考数学备考专题复习反比例函数(含解析)2017年中考数学备考专题复习反比例函数(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年中考数学备考专题复习反比例函数(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年中考数学备考专题复习反比例函数(含解析)的全部内容。
1反比例函数一、单选题(共12题;共24分)1、(2016•龙东)已知反比例函数y= ,当1<x<3时,y的最小整数值是( )A、3B、4C、5D、62、如果等腰三角形的底边长为x,底边上的高为y,则它的面积为定植S时,则x与y的函数关系式为()A、y=B、y=C、y=D、y=3、(2016•大庆)已知A(x1, y1)、B(x2, y2)、C(x3,y3)是反比例函数y= 上的三点,若x1<x2<x3 , y2<y1<y3,则下列关系式不正确的是()A、x1•x2<0B、x1•x3<0C、x2•x3<0D、x1+x2<04、将一次函数y=x图象向下平移b个单位,与双曲线y=交于点A,与x轴交于点B,则OA2—OB2=( )A、—2B、2C 、—D 、5、如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A、y=B、y=C、y=D、y=6、如图,△AOB为等边三角形,点A在第四象限,点B的坐标为(4,0),过点C(4,0)作直线l交AO于D,交AB于E,且点E在某反比例函数y=(k≠0)图象上,当△ADE和△DCO的面积相等时,k2的值为()A 、—B 、—C、—3D、—67、教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A、7:20B、7:30C、7:45D、7:508、(2015•玉林)如图,反比例函数y=的图象经过二次函数y=ax2+bx 图象的顶点(﹣,m)(m>0),则有()A、a=b+2kB、a=b﹣2kC、k<b<0D、a<k<09、如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y= (x>0)的图象上,C1O13与此图象交于点P,则点P的纵坐标是( )A 、B 、C 、D 、10、(2016•济宁)如图,O为坐标原点,四边形OACB是菱形,OB 在x轴的正半轴上,sin∠AOB= ,反比例函数y= 在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A、60B、80C、30D、4011、(2016•湖北)一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为( )A 、B 、C 、D 、412、(2016•天津)若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y= 的图象上,则y1, y2 , y3的大小关系是()A、y1<y3<y2B、y1<y2<y3C、y3<y2<y1D、y2<y1<y3二、填空题(共5题;共6分)13、如果函数y=x2m-1为反比例函数,则m的值是________。
2021河南中考数学试卷评析(附5年)

2021河南中考数学试卷评析(附5年)2021年河南省中考数学试卷,基本延续了去年的题型结构,内容覆盖面广,大部分题目偏基础,但是稳中有新、目标明确,从知识技能、数学思考到问题解决、情感态度对学生进行了全面考查。
今年中考数学试卷整体结构与往年基本一致,但也有一些变化向我们指引了中考的新方向.一、从分值上看,填选的分值保持不变,解答题方面16题分值从8分改为10分,21题由10分改为9分,23题由11分改为10分;略微调整了基础题与难题之间的分数比例,践行国家提倡的双减行动.从这个方向看,河南中考相对于前几年,有意识的在下调难度.二、从题型来看,15题没有延续去年最值问题的考查,回归了折叠问题,不过也有创新点,出现了2次折叠,但分析角度并没有太大变化;16题由化简求值改为分别进行数的计算与式的计算;22题去年的新函数问题今年没有再延续,但探究函数本身相关性质仍是主要考查点;同时23题由经典的类比探究改为探究尺规作图的原理及应用.从这些变化的角度来说,题型的变化更灵活,更重视数学基础,数学思维的考查,而弱化了题目的综合度.这个方向是要引导学生更重视课本,扎实基础.培养基本能力和核心素养,而不是死搬硬套知识套路,更有利于学生的成长.三、从题目背景来看,很多题目都融合现实背景.例如第2题体现了河南人民互相帮扶的可贵品质;第8题的北斗,天问,高铁,九章唤醒孩子们的民族自豪感;13题和17题体现了数据统计对于现实生活的指导;19题、20题、21题从古代人民的智慧结晶到现代的经济生活,情景紧密联系实际,让学生从生活中抽象出数学问题.这些变化彰显了数学的应用价值和育人价值.四、整体来看,从去年的中考改革以来,河南中考更重视了题目的推陈出新,更突出对于知识应用性的考查,凸显了数学运算,数学推理,数学建模等核心素养的考查.对于善于探索,追根溯源的学生是个好消息,而对于死记硬背,生搬套路的学生则会痛苦一些,这有利于改变现有的一些教育现况,从中高考开始改革才能真正带来学校的变革。
2023届宁夏银川市唐徕回民中学数学九年级第一学期期末联考模拟试题含解析

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)1.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( )A .k<4B .k≤4C .k<4且k≠3D .k≤4且k≠3 2.一条排水管的截面如图所示,已知排水管的半径5OB =,水面宽8AB =,则截面圆心O 到水面的距离OC 是( )A .2B .3C .23D .2.53.若我们把十位上的数字比个位和百位上数字都小的三位数,称为“V ”或,如756,326,那么从2,3,4这三个数字组成的无重复数字的三位数中任意抽取一个数,则该数是“V ”数的槪率为( )A .16B .15C .13D .194.平移抛物线y =﹣(x ﹣1)(x +3),下列哪种平移方法不能使平移后的抛物线经过原点( ) A .向左平移1个单位B .向上平移3个单位C .向右平移3个单位D .向下平移3个单位5.如图,已知正方形ABCD ,将对角线BD 绕着点B 逆时针旋转,使点D 落在CB 的延长线上的D ′点处,那么sin ∠AD ′B 的值是( )A .33B .22C 2D .126.若方程x 2+3x +c =0有实数根,则c 的取值范围是( )A .c ≤94B .c ≤49C .c ≥49D .c ≥947.如图,一农户要建一个矩形花圃,花圃的一边利用长为12 m 的住房墙,另外三边用25 m 长的篱笆围成,为方便进出,在垂直于住房墙的一边留一个1 m 宽的门,花圃面积为80 m 2,设与墙垂直的一边长为x m ,则可以列出关于x 的方程是( )A .x(26-2x)=80B .x(24-2x)=80C .(x -1)(26-2x)=80D .x(25-2x)=808.若2|3|0a b -+-=,则a b 的值为( )A .9B .3C .3D .239.如图,在⊙O ,点A 、B 、C 在⊙O 上,若∠OAB =54°,则∠C ( )A .54°B .27°C .36°D .46°10.边长相等的正方形与正六边形按如图方式拼接在一起,则ABC ∠的度数为( )A .10︒B .15︒C .20︒D .3011.下列物体的光线所形成的投影是平行投影的是( )A .台灯B .手电筒C .太阳D .路灯 12.若双曲线1k y x-=经过第二、四象限,则直线21y x k =+-经过的象限是( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限 二、填空题(每题4分,共24分)13.在函数12y x =+中,自变量x 的取值范围是______. 14.对于实数a 和b ,定义一种新的运算“*”,22b ab a b a*b a 2ab 1a b ⎧-<=⎨-+-≥⎩,,,计算()()2x 1*x 1++=______________________.若()()2x 1*x 1m ++=恰有三个不相等的实数根123x x x ,,,记123k x x x =++,则k 的取值范围是 _______________________.15.如图,在△ABC 中,D 、E 分别是边AB 、AC 上的两点,且DE //BC ,BD =AE ,若AB =12cm ,AC =24cm ,则AE =_____.16.如图,在ABC ∆中,AB AC =,点D 、E 分别在边BC 、AB 上,且ADE B ∠=∠,如果:2:5DE AD =,3BD =,那么AC =________.17.如图,在△ABC 中,点D 、E 分别在△ABC 的两边AB 、AC 上,且DE ∥BC ,如果5AE =,3EC =,4DE =,那么线段BC 的长是______.18.如图,OABC 是平行四边形,对角线OB 在y 轴正半轴上,位于第一象限的点A 和第二象限内的点C 分别在双曲线1k y x =和2k y x=的一支上,分别过点A 、C 作x 轴的垂线,垂足分别为M 和N ,则有以下的结论: ①阴影部分的面积为()121k k 2+; ②若B 点坐标为(0,6),A 点坐标为(2,2),则28k =;③当∠AOC =90︒时,12=k k ;④若OABC 是菱形,则两双曲线既关于x 轴对称,也关于y 轴对称.其中正确的结论是 ____________(填写正确结论的序号).三、解答题(共78分)19.(8分)如图,半圆O 的直径2AB =,将半圆O 绕点B 顺时针旋转45︒得到半圆O ',半圆O '与AB 交于点P .(1)求AP 的长;(2)求图中阴影部分的面积.(结果保留π)20.(8分)某商场秋季计划购进一批进价为每件40元的T 恤进行销售.(1)根据销售经验,应季销售时,若每件T 恤的售价为60元,可售出400件;若每件T 恤的售价每提高1元,销售量相应减少10件.①假设每件T 恤的售价提高x 元,那么销售每件T 恤所获得的利润是____________元,销售量是_____________________件(用含x 的代数式表示);②设应季销售利润为y 元,请写y 与x 的函数关系式;并求出应季销售利润为8000元时每件T 恤的售价.(2)根据销售经验,过季处理时,若每件T 恤的售价定为30元亏本销售,可售出50件;若每件T 恤的售价每降低1元,销售量相应增加5条,①若剩余100件T 恤需要处理,经过降价处理后还是无法销售的只能积压在仓库,损失本金;若使亏损金额最小,每件T 恤的售价应是多少元?②若过季需要处理的T 恤共m 件,且100≤m ≤300,过季亏损金额最小是__________________________元(用含m 的代数式表示).(注:抛物线2(0)y ax bx c a =++≠顶点是24(,)24b ac b a a --) 21.(8分) (1)问题提出:苏科版《数学》九年级(上册)习题2.1有这样一道练习题:如图①,BD 、CE 是△ABC 的高,M 是BC 的中点,点B 、C 、D 、E 是否在以点M 为圆心的同一个圆上?为什么?在解决此题时,若想要说明“点B 、C 、D 、E 在以点M 为圆心的同一个圆上”,在连接MD 、ME 的基础上,只需证明 .(2)初步思考:如图②,BD 、CE 是锐角△ABC 的高,连接DE .求证:∠ADE =∠ABC ,小敏在解答此题时,利用了“圆的内接四边形的对角互补”进行证明.(请你根据小敏的思路完成证明过程.)(3)推广运用:如图③,BD 、CE 、AF 是锐角△ABC 的高,三条高的交点G 叫做△ABC 的垂心,连接DE 、EF 、FD ,求证:点G 是△DEF 的内心.22.(10分)如图:△ABC 与△DEF 中,边BC ,EF 在同一条直线上,AB ∥DE ,AC ∥DF ,且BF =CE ,求证:AC =DF .23.(10分)如图,分别以△ABC 的边AC 和BC 为腰向外作等腰直角△DAC 和等腰直角△EBC ,连接DE .(1)求证:△DAC ∽△EBC ;(2)求△ABC 与△DEC 的面积比.24.(10分)某商场经销种高档水果 ,原价每千克50元,连续两次降价后每千克32元,若每次下降的百分率相同求每次下降的百分率25.(12分)如图,已知反比例函数1k y x=和一次函数21y ax =+的图象相交于第一象限内的点A ,且点A 的横坐标为1.过点A 作AB ⊥x 轴于点B ,△AOB 的面积为1.(1)求反比例函数和一次函数的解析式.(2)若一次函数21y ax =+的图象与x 轴相交于点C ,求∠ACO 的度数.(3)结合图象直接写出:当1y >2y >0时,x 的取值范围.26.如图,在正方形ABCD 中,M 、N 分别是射线CB 和射线DC 上的动点,且始终∠MAN =45°.(1)如图1,当点M 、N 分别在线段BC 、DC 上时,请直接写出线段BM 、MN 、DN 之间的数量关系;(2)如图2,当点M 、N 分别在CB 、DC 的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;(3)如图3,当点M 、N 分别在CB 、DC 的延长线上时,若CN =CD =6,设BD 与AM 的延长线交于点P ,交AN 于Q ,直接写出AQ 、AP 的长.参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:若此函数与x 轴有交点,则2(3)21=0k x x -++,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x 轴交点的特点.2、B【解析】根据垂径定理求出BC ,根据勾股定理求出OC 即可.【详解】解:OC AB ⊥,OC 过圆心O 点, 118422BC AC AB ∴===⨯=,在Rt OCB ∆中,由勾股定理得:3OC ==,故选:B .【点睛】本题考查了勾股定理和垂径定理的应用;由垂径定理求出BC 是解决问题的关键.3、C【分析】首先将所有由2,3,4这三个数字组成的无重复数字列举出来,然后利用概率公式求解即可.【详解】解:由2,3,4这三个数字组成的无重复数字为234,243,324,342,432,423六个,而“V”数有2个,即324,423,故从2,3,4这三个数字组成的无重复数字的三位数中任意抽取一个数,则该数是“V”数的概率为2163=, 故选:C .【点睛】本题考查的是用列举法求概率的知识.注意概率=所求情况数与总情况数之比.4、B【分析】先将抛物线解析式转化为顶点式,然后根据顶点坐标的平移规律即可解答.【详解】解:y =﹣(x ﹣1)(x +3)=-(x+1)2+4A 、向左平移1个单位后的解析式为:y =-(x+2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意;B 、向上平移3个单位后的解析式为:y=-(x+1)2+7,当x=0时,y=3,即该抛物线不经过原点,故本选项符合题意;C 、向右平移3个单位后的解析式为:y=-(x-2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.;D 、向下平移3个单位后的解析式为:y=-(x+1)2+1,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.【点睛】本题考查了二次函数图像的平移,函数图像平移规律:上移加,下移减,左移加,右移减.5、A【分析】设AB a ,根据正方形的性质可得',90BD ABD =∠=︒,再根据旋转的性质可得'BD 的长,然后由勾股定理可得'AD 的长,从而根据正弦的定义即可得.【详解】设AB a由正方形的性质得',18090BD ABD ABC =∠=︒-∠=︒由旋转的性质得'BD BD ==在'Rt ABD ∆中,'AD =则''sin 3AB AD B AD ∠=== 故选:A .【点睛】 本题考查了正方形的性质、旋转的性质、正弦的定义等知识点,根据旋转的性质得出'BD 的长是解题关键. 6、A【分析】由方程x 2+3x+c=0有实数解,根据根的判别式的意义得到△≥0,即32-4×1×c≥0,解不等式即可得到c 的取值范围.【详解】解:∵方程x 2+3x +c =0有实数根,∴△=b 2﹣4ac =32﹣4×1×c ≥0, 解得:c ≤94, 故选:A .【点睛】本题考查了根的判别式,需要熟记:当△=0时,方程有两个相等的实数根;当△>0时,方程有两个不相等的实数根;当△<0时,方程没有实数根.7、A【分析】设与墙垂直的一边长为xm ,则与墙平行的一边长为(26-2x )m ,根据题意可列出方程.【详解】解:设与墙垂直的一边长为xm ,则与墙平行的一边长为(26-2x )m ,根据题意得:x (26-2x )=1.故选A .【点睛】本题考核知识点:列一元二次方程解应用题.解题关键点:找出相等关系,列方程.8、B【分析】根据算术平方根、绝对值的非负性分别解得a b 、的值,再计算a b 即可.【详解】2|0a b -+-=2a b ∴=,23a b ∴=故选:B .【点睛】本题考查二次根式、绝对值的非负性、幂的运算等知识,是重要考点,难度较易,掌握相关知识是解题关键. 9、C【分析】先利用等腰三角形的性质和三角形内角和计算出∠AOB 的度数,然后利用圆周角解答即可.【详解】解:∵OA =OB ,∴∠OBA =∠OAB =54°,∴∠AOB =180°﹣54°﹣54°=72°,∴∠ACB =12∠AOB =36°. 故答案为C .【点睛】本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键.10、B【解析】利用多边形的内角和定理求出正方形与正六边形的内角和,进而求出每一个内角,根据等腰三角形性质,即可确定出所求角的度数.【详解】正方形的内角和为360°,每一个内角为90°;正六边形的内角和为720°,每一个内角为120°,则BAC ∠ =360°-120°-90°=150°,因为AB=AC,所以ABC ∠=ACB ∠=15°故选B【点睛】此题考查了多边形内角和外角,等腰三角形性质,熟练掌握多边形的内角和定理是解本题的关键.11、C【解析】太阳相对地球较远且大,其发出的光线可认为是平行光线.【详解】台灯、手电筒、路灯发出的光线是由点光源发出的光线,所形成的投影是中心投影;太阳相对地球较远且大,其发出的光线可认为是平行光线.故选C【点睛】本题主要考查了中心投影、平行投影的概念.12、C【分析】根据反比例函数的性质得出k ﹣1<0,再由一次函数的性质判断函数所经过的象限.【详解】∵双曲线y 1k x-=经过第二、四象限, ∴k ﹣1<0,则直线y =2x +k ﹣1一定经过一、三、四象限.故选:C .【点睛】本题考查了一次函数和反比例函数的性质,属于函数的基础知识,难度不大.二、填空题(每题4分,共24分)13、2x ≠-【分析】根据分式有意义,分母不等于0列式计算即可得解.【详解】由题意得,x +1≠0,解得x ≠−1.故答案为x ≠−1.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14、()()2020x x x x x ⎧--<⎪⎨≥⎪⎩ 71k 8-<<- 【分析】分当211x x +<+时,当2x 1x 1+≥+时两种情况,分别代入新定义的运算算式即可求解;设y=()()2x 1*x 1++,绘制其函数图象,根据图象确定m 的取值范围,再求k 的取值范围.【详解】当211x x +<+时,即x 0<时,()()()()()222x 1*x 1x 12x 1x 1x x ++=+-++=--当2x 1x 1+≥+时,即x 0≥时, ()()()()()22x 1*x 12x 122x 1x 112x ++=-++++-=()()()()2x x 02x 1*x 12x 0x x ⎧--<⎪∴++=⎨≥⎪⎩; 设y=()()2x 1*x 1++,则y=()()2x x 02x 0x x ⎧--<⎪⎨≥⎪⎩ 其函数图象如图所示,抛物线顶点1124⎛⎫- ⎪⎝⎭,,根据图象可得:当10m 4<<时,()()211x x m ++=恰有三个不相等的实数根, 其中设12x x ,,为2y x x =--与y m =的交点,3x 为2y x =与y m =的交点,12b x x 1a+=-=-, 1233x x x 1x ∴++=-+,10m 4<<时,310x 8<<, 71k 8∴-<<- 故答案为:()()2x x 0 2x 0x x ⎧--<⎪⎨≥⎪⎩;71k 8-<<- 【点睛】 本题主要考查新定义问题,解题关键是将方程的解的问题转化为函数的交点问题.15、1cm【分析】由题意直接根据平行线分线段成比例定理列出比例式,进行代入计算即可得到答案. 【详解】解:∵DE//BC ,∴AD AE AB AC =,即412122AE AE -=, 解得:AE =1.故答案为:1cm .【点睛】本题考查的是平行线分线段成比例定理,由题意灵活运用定理、找准对应关系是解题的关键.16、152【分析】根据ADE B ∠=∠,EAD DAB ∠=∠,得出AED ABD ∆∆∽,利用相似三角形的性质解答即可.【详解】∵ADE B ∠=∠,EAD DAB ∠=∠,∴AED ABD ∆∆∽, ∴DE BD AD AB =,即325AB =, ∴152AB =, ∵AB AC =, ∴152AC =, 故答案为152 【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.17、325; 【分析】根据DE ∥BC 可得ADE ABC ∆∆∽,再由相似三角形性质列比例式即可求解.【详解】解://DE BC ,ADE ABC ∴∆∆∽,AE DE AC BC∴=, 又∵5AE =,3EC =,4DE =,5453BC∴=+, 解得:325BC = 故答案为:325. 【点睛】本题主要考查了平行线分线段成比例定理的应用,找准对应线段是解题的关键.18、②④【分析】由题意作AE ⊥y 轴于点E ,CF ⊥y 轴于点F ,①由S △AOM =12|k 1|,S △CON =12|k 2|,得到S 阴影部分=S △AOM +S △CON =12(|k 1|+|k 2|)=12(k 1-k 2);②由平行四边形的性质求得点C 的坐标,根据反比例函数图象上点的坐标特征求得系数k 2的值.③当∠AOC=90°,得到四边形OABC 是矩形,由于不能确定OA 与OC 相等,则不能判断△AOM ≌△CNO ,所以不能判断AM=CN ,则不能确定|k 1|=|k 2|;④若OABC 是菱形,根据菱形的性质得OA=OC ,可判断Rt △AOM ≌Rt △CNO ,则AM=CN ,所以|k 1|=|k 2|,即k 1=-k 2,根据反比例函数的性质得两双曲线既关于x 轴对称,同时也关于y 轴对称.【详解】解:作AE ⊥y 轴于E ,CF ⊥y 轴于F ,如图:∵S △AOM =12|k 1|,S △CON =12|k 2|,得到S 阴影部分=S △AOM +S △CON =12(|k 1|+|k 2|); 而k1>0,k2<0, ∴S 阴影部分=12(k 1-k 2),故①错误; ②∵四边形OABC 是平行四边形,B 点坐标为(0,6),A 点坐标为(2,2),O 的坐标为(0,0).∴C (-2,4).又∵点C 位于y=2k x上, ∴k 2=xy=-2×4=-1.故②正确;当∠AOC=90°,∴四边形OABC 是矩形,∴不能确定OA 与OC 相等,而OM=ON ,∴不能判断△AOM ≌△CNO ,∴不能判断AM=CN ,∴不能确定|k 1|=|k 2|,故③错误;若OABC 是菱形,则OA=OC ,而OM=ON ,∴Rt △AOM ≌Rt △CNO ,∴AM=CN ,∴|k 1|=|k 2|,∴k 1=-k 2,∴两双曲线既关于x 轴对称,也关于y 轴对称,故④正确.故答案是:②④.【点睛】本题属于反比例函数的综合题,考查反比例函数的图象、反比例函数k 的几何意义、平行四边形的性质、矩形的性质和菱形的性质.注意准确作出辅助线是解此题的关键.三、解答题(共78分)19、(1)AP=22-;(2)142S π=+阴影. 【分析】(1)先根据题意判断出△O ′PB 是等腰直角三角形,由锐角三角函数的定义求出PB 的长,进而可得出AP 的长;(2)由题意根据O PB O A P S S S '∆''=+阴影扇形,直接进行分析计算即可.【详解】解:(1)连接O P ',45OBA '∠=︒,O P O B ''=,O PB ∴'∆是等腰直角三角形,2PB BO ∴=,22AP AB BP ∴=-=.(2)阴影部分的面积为21111114242O PB O A P S S S ππ'∆''=+=⨯⨯+⨯⨯=+阴影扇形. 【点睛】本题考查的是扇形面积的计算及图形旋转的性质,解答此题的关键是根据旋转的性质进行分析作答.20、(1)①20+x ,400-10x ;②y =﹣10x 2+200x +8000,60元或80元;(2)①20元,②()402000m -元.【分析】(1)①每件T 恤获得的利润=实际售价-进价,销售量=售价为60元时销售量-因价格上涨减少的销售量; ②根据:销售利润=单件利润×销售量可列函数解析式,并求y=8000时x 的值;(2)①根据:亏损金额=总成本-每件T恤的售价×销售量,列出函数关系式,配方后可得最值情况;②根据与(2)①相同的相等关系列函数关系式配方可得最小值.【详解】解:(1)①每件T恤所获利润20+x元,这种T恤销售量400-10x个;②设应季销售利润为y元,由题意得:y=(20+x)(400-10x)=﹣10x2+200x+8000把y=8000代入,得﹣10x2+200x+8000=8000,解得x1=0,x2=20,∴应季销售利润为8000元时,T恤的售价为60元或80元.(2)①设过季处理时亏损金额为y2元,单价降低z元.由题意得:y2=40×100-(30-z)(50+5z)=5(z-10)2+2000z=10时亏损金额最小为2000元,此时售价为20元②∵y2=40m-(30-z)(50+5z) =5(z-10)2+40m-2000,∴过季亏损金额最小40m-2000元.【点睛】本题主要考查二次函数的应用,解决本题的关键是在不同情形下理清数量关系、紧扣相等关系列出函数解析式,根据解析式结合自变量取值范围求函数最值是基本技能.21、(1)ME=MD=MB=MC;(2)证明见解析;(3)证明见解析.【分析】(1)要证四个点在同一圆上,即证明四个点到定点距离相等.(2)由“直角三角形斜边上的中线等于斜边的一半”,即能证ME=MD=MB=MC,得到四边形BCDE为圆内接四边形,故有对角互补.(3)根据内心定义,需证明DG、EG、FG分别平分∠EDF、∠DEF、∠DFE.由点B、C、D、E四点共圆,可得同弧所对的圆周角∠CBD=∠CED.又因为∠BEG=∠BFG=90°,根据(2)易证点B、F、G、E也四点共圆,有同弧所对的圆周角∠FBG=∠FEG,等量代换有∠CED=∠FEG,同理可证其余两个内角的平分线.【详解】解:(1)根据圆的定义可知,当点B、C、D、E到点M距离相等时,即他们在圆M上故答案为:ME=MD=MB=MC(2)证明:连接MD、ME∵BD、CE是△ABC的高∴BD⊥AC,CE⊥AB∴∠BDC=∠CEB=90°∵M为BC的中点∴ME=MD=12BC=MB=MC∴点B、C、D、E在以点M为圆心的同一个圆上∴∠ABC+CDE=180°∵∠ADE+∠CDE=180°∴∠ADE=∠ABC(3)证明:取BG中点N,连接EN、FN∵CE、AF是△ABC的高∴∠BEG=∠BFG=90°∴EN=FN=12BG=BN=NG∴点B、F、G、E在以点N为圆心的同一个圆上∴∠FBG=∠FEG∵由(2)证得点B、C、D、E在同一个圆上∴∠FBG=∠CED∴∠FEG=∠CED同理可证:∠EFG=∠AFD,∠EDG=∠FDG∴点G是△DEF的内心【点睛】本题考查了直角三角形斜边中线定理、中点的性质、三角形内心的判定、圆周角定理、角平分线的定义,综合性较强,解决本题的关键是熟练掌握三角形斜边中线定理、圆周角定理,能够根据题意熟练掌握各个角之间的内在联系.22、见解析.【分析】先根据BF =CE ,得出BC =EF ,再利用平行线的性质可得出两组对应角相等,再加上BC =EF ,利用ASA 即可证明△ABC ≌△DEF ,则结论可证.【详解】证明:∵AB ∥DE ,∴∠B =∠E ,∵AC ∥DF∴∠ACB =∠EFD ,∵BF =CE∴BC =EF ,且∠B =∠E ,∠ACB =∠EFD ,∴△ABC ≌△DEF (ASA )∴AC =DF【点睛】本题主要考查全等三角形的判定及性质,掌握全等三角形的判定方法是解题的关键.23、(1)见解析;(2)12【分析】(1)利用等腰直角三角形的性质证明△DAC ∽△EBC ;(2)依据△DAC ∽△EBC 所得条件,证明△ABC 与△DEC 相似,通过面积比等于相似比的平方得到结果.【详解】(1)证明:∵△EBC 是等腰直角三角形∴BC =BE ,∠EBC =90°∴∠BEC =∠BCE =45°.同理∠DAC =90°,∠ADC =∠ACD =45°∴∠EBC =∠DAC =90°,∠BCE =∠ACD =45°.∴△DAC ∽△EBC .(2)解:∵在Rt △ACD 中, AC 2+AD 2=CD 2,∴2AC 2=CD 2∴AC CD ∵△DAC ∽△EBC ∴AC BC =DC EC, ∴EC BC =DC AC , ∵∠BCE =∠ACD∴∠BCE-∠ACE=∠ACD-∠ACE,即∠BCA=∠ECD,∵在△DEC和△ABC中,ECBC=DCAC,∠BCA=∠ECD,∴△DEC∽△ABC,∴S△ABC:S△DEC=2DCAC⎛⎫⎪⎝⎭=12.【点睛】本题考查了相似三角形的判定和性质,以及相似三角形的面积比等于相似比的平方,解题的关键在于利用(1)中的相似推导出第二对相似三角形.24、每次下降的百分率为20%【分析】设每次下降的百分率为a,然后根据题意列出一元二次方程,解方程即可.【详解】解:设每次下降的百分率为a,根据题意得:50(1-a)2=32解得:a=1.8(舍去)或a=0.2=20%,答:每次下降的百分率为20%,【点睛】本题主要考查一元二次方程的应用,读懂题意,列出方程是解题的关键.25、(1)y1=2x;y2=x+1;(2)∠ACO=45°;(3)0<x<1.【解析】(1)根据△AOB的面积可求AB,得A点坐标.从而易求两个函数的解析式;(2)求出C点坐标,在△ABC中运用三角函数可求∠ACO的度数;(3)观察第一象限内的图形,反比例函数的图象在一次函数的图象的上面部分对应的x的值即为取值范围.【详解】(1)∵△AOB的面积为1,并且点A在第一象限,∴k=2,∴y1=2x;∵点A的横坐标为1,∴A(1,2).把A(1,2)代入y2=ax+1得,a=1. ∴y2=x+1.(2)令y2=0,0=x+1,∴x=−1,∴C(−1,0).∴OC=1,BC=OB+OC=2.∴AB=CB,∴∠ACO=45°. (3)由图象可知,在第一象限,当y 1>y 2>0时,0<x<1.在第三象限,当y 1>y 2>0时,−1<x<0(舍去).【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于结合函数图象进行解答.26、(1)BM+DN =MN ;(2)(1)中的结论不成立,DN ﹣BM =MN .理由见解析;(3)AP =AM+PM =310. 【分析】(1)在MB 的延长线上,截取BE=DN ,连接AE ,则可证明△ABE ≌△ADN ,得到AE=AN ,进一步证明△AEM ≌△ANM ,得出ME=MN ,得出BM+DN=MN ;(2)在DC 上截取DF=BM ,连接AF ,可先证明△ABM ≌△ADF ,得出AM=AF ,进一步证明△MAN ≌△FAN ,可得到MN=NF ,从而可得到DN-BM=MN ;(3)由已知得出DN=12,由勾股定理得出AN =22+AD DN =22612+=65 ,由平行线得出△ABQ ∽△NDQ ,得出BQ DQ =AQ NQ =AB DN =612=12,∴AQ AN =13,求出AQ=25 ;由(2)得出DN-BM=MN .设BM=x ,则MN=12-x ,CM=6+x ,在Rt △CMN 中,由勾股定理得出方程,解方程得出BM=2,由勾股定理得出AM =22AB BM +=,由平行线得出△PBM ∽△PDA ,得出PM PA =BM DA =13,,求出PM= PM =12AM =10, 得出AP =AM+PM =310.【详解】(1)BM+DN =MN ,理由如下:如图1,在MB 的延长线上,截取BE =DN ,连接AE ,∵四边形ABCD 是正方形,∴AB =AD ,∠BAD =∠ABC =∠D =90°,∴∠ABE =90°=∠D ,在△ABE和△ADN中,AB ADABE D BE DN=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADN(SAS),∴AE=AN,∠EAB=∠NAD,∴∠EAN=∠BAD=90°,∵∠MAN=45°,∴∠EAM=45°=∠NAM,在△AEM和△ANM中,AE ANEAM NAI AI All=⎧⎪∠=∠⎨⎪=⎩,∴△AEM≌△ANM(SAS),∴ME=MN,又∵ME=BE+BM=BM+DN,∴BM+DN=MN;故答案为:BM+DN=MN;(2)(1)中的结论不成立,DN﹣BM=MN.理由如下:如图2,在DC上截取DF=BM,连接AF,则∠ABM=90°=∠D,在△ABM和△ADF中,AB ADABM D BM DF=⎧⎪∠=∠⎨⎪=⎩,∴△ABM≌△AD F(SAS),∴AM=AF,∠BAM=∠DAF,∴∠BAM+∠BAF=∠BAF+∠DAF=∠BAD=90°,即∠MAF=∠BA D=90°,∵∠MAN=45°,∴∠MAN=∠FAN=45°,在△MAN和△FAN中,AM AFMAN FAN AN AN=⎧⎪∠=∠⎨⎪=⎩,∴△MAN≌△FAN(SAS),∴MN=NF,∴MN=DN﹣DF=DN﹣BM,∴DN﹣BM=MN.(3)∵四边形ABCD是正方形,∴AB=BC=AD=CD=6,AD∥BC,AB∥CD,∠ABC=∠ADC=∠BCD=90°,∴∠ABM=∠MCN=90°,∵CN=CD=6,∴DN=12,∴AN=,∵AB∥CD,∴△ABQ∽△NDQ,∴BQDQ=AQNQ=ABDN=612=12,∴AQAN=13,∴AQ=12AN=;由(2)得:DN﹣BM=MN.设BM=x,则MN=12﹣x,CM=6+x,在Rt△CMN中,由勾股定理得:62+(6+x)2=(12﹣x)2,解得:x=2,∴BM=2,∴AM=,∵BC∥AD,∴△PBM∽△PDA,∴PMPA=BMDA=26=13,∴PM=12AM,∴AP=AM+PM=.【点睛】本题是四边形的综合题目,考查了正方形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定与性质等知识;本题综合性强,证明三角形全等和三角形相似是解题的关键.。
初三数学期末试卷

初三数学期末试卷考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.把一个小球以20米/秒的速度竖起向上弹出,它在空中的高度h (米)与时间t (秒),满足关系h =20t -5t ,当小球达到最高点时,小球的运动时间为( )A .1秒B .2秒C .4秒D .20秒 2.若点P 1(,),P (,)在反比例函数的图象上,且,则( ) A .B .C .D .3.已知点A(x 1,y 1),B(x 2,y 2)是反比例函数y=的图象上的两点,若x 1<0<x 2,则有( )A .y 1<y 2<0B .y 2<0<y 1C .y 1<0<y 2 D.y 2<y 1<04.一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间.用x 表示注水时间,用y 表示浮子的高度,则用来表示y 与x 之间关系的选项是A .B .C .D .5.如图,C 是以AB 为直径的半圆O 上一点,连结AC ,BC ,分别以AC ,BC 为边向外作正方形ACDE ,BCFG ,DE ,FG ,,的中点分别是M ,N ,P ,Q 。
若MP+NQ=14,AC+BC=18,则AB 的长是( )A. B. C.13 D.166.如图,已知△ABC,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A.∠ACP=∠BB.∠APC=∠ACBC.D.7.有5张大小、背面都相同的扑克牌,正面上的数字分别是4,5,6,7,8.若将这5张牌背面朝上洗匀后,从中任意抽取1张,那么这张牌正面上的数字为偶数的概率是()A. B. C. D.8.如图,⊙O内切于△ABC,切点为D,E,F.已知∠B=50°,∠C=60°,•连结OE,OF,DE,DF,那么∠EDF等于()A.40° B.55° C.65° D.70°9.计算:_ _▲___.10.(11·丹东)用科学记数法表示310000,结果正确的是()A.3.1×104 B.3.1×105 C.31×104 D.0. 31×106二、判断题11.如图,已知AB是⊙O的直径,弦CD⊥AB,垂足为E,∠AOC=60°,OC=2.(1) 求OE和CD的长;(2) 求图中阴影部分的面积.12.在直角三角形中,任意给出两条边的长可以求第三边的长13.如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,则DC的长等于________.14.计算:15.如图,经过原点的抛物线与轴的另一个交点为A。
天津市红桥区2019届中考数学复习《圆》专题综合训练题含答案

天津市红桥区普通中学2019届初三中考数学复习圆专题综合训练题1. 如果两个圆心角相等,那么( )A.这两个圆心角所对的弦相等 B.这两个圆心角所对的弧相等C.这两个圆心角所对的弦的弦心距相等 D.以上说法都不对2. 若ABCD为圆内接四边形,则下列哪个选项可能成立( )A.∠A∶∠B∶∠C∶∠D=1∶2∶3∶4B.∠A∶∠B∶∠C∶∠D=2∶1∶3∶4C.∠A∶∠B∶∠C∶∠D=3∶2∶1∶4D.∠A∶∠B∶∠C∶∠D=4∶3∶2∶13. 下列直线是圆的切线的是( )A.与圆有公共点的直线 B.到圆心的距离等于半径的直线C.垂直于圆的半径的直线 D.过圆的直径外端点的直线4.在半径为12的⊙O中,60°圆心角所对的弧长是( )A.6πB.4πC.2πD.π5. 圆的内接梯形一定是________梯形.6. 如图,已知直线EF经过⊙O上的点E,且OE=EF,若∠EOF=45°,则直线EF和⊙O的位置关系是________.7. 已知扇形的半径为3 cm,面积为3π cm2,则扇形的圆心角是________°,扇形的弧长是________cm.(结果保留π)8. 如图,∠BAC和∠BOC分别是⊙O中的弧BC所对的圆周角和圆心角,若∠BAC=60°,那么∠BOC=________.9. 如图,AB,AC为⊙O的两条弦,延长CA到D,使AD=AB,如果∠ADB=30°,那么∠BOC=________.10. 120°的圆心角所对的弧长是12π cm,则此弧所在的圆的半径是________.11.如图,在4×4的方格中(共有16个方格),每个小方格都是边长为1的正方形.O,A,B分别是小正方形的顶点,则扇形OAB的弧长等于________.(结果保留根号及π)12.如图,矩形ABCD中,AB=1,AD=2,以AD的长为半径的⊙A交BC边于点E,则图中阴影部分的面积为________.13.如图,若BC ︵的度数为100°,则∠BOC=________,∠A =________.14.如图,四边形ABCD 中,∠B 与∠1互补,AD 的延长线与DC 所夹的∠2=60°,则∠1=________,∠B =________.15. 如图,四边形ABCD 内接于⊙O,则∠A+∠C=________,∠B +∠ADC=________;若∠B=80°,则∠ADC =________,∠CDE =________;16. 如图,四边形ABCD 内接于⊙O,∠AOC =100°,则∠D=________,∠B =________;17. 四边形ABCD 内接于⊙O,∠A ∶∠C =1∶3,则∠A =________;18. 如图,梯形ABCD 内接于⊙O,AD ∥BC ,∠B =75°,则∠C=________.19.如图,AB 和DE 是⊙O 的直径,弦AC∥DE,若弦BE =3,求弦CE 的长.20.如图,在⊙O 中,C ,D 是直径AB 上两点,且AC =BD ,MC ⊥AB ,ND ⊥AB ,M ,N 在⊙O 上.(1)求证:AM ︵=BN ︵;(2)若C ,D 分别为OA ,OB 中点,则AM ︵=MN ︵=BN ︵成立吗?21. 如图,在Rt △ABC 和Rt △ABD 中,∠C =90°,∠D =90°,点O 是AB 的中点.求证:A ,B ,C ,D 四个点在以点O 为圆心的同一圆上.22. 圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽,已知纸帽的底面周长为58 cm ,高为20 cm ,要制作20顶这样的纸帽至少要用多少纸?(结果精确到0.1 cm 2)23. 已知扇形的圆心角为120°,面积为300π cm 2. (1)求扇形的弧长;(2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少?参考答案: 1—4 DBBB 5. 等腰 6. 相切7. 120 2π 8. 120° 9. 120° 10. 18 cm 11. .2π12. 2-12-14π13. 100° 50° 14. .120° 60°15. 180° 180° 100° 80° 16. 130° 50° 17. 45° 18. 75° 19. 320. (1)连接OM ,ON ,证明△MCO≌△NDO,得出∠MOA=∠NOB,得出AM ︵=BN ︵; (2)成立.21. 证明OA =OB =OC =OD 即可.22. 解:设纸帽的底面半径为r cm ,母线长为l cm ,则r =582π, l =(582π)2+202≈22.03, S 纸帽侧=πrl ≈12×58×22.03=638.87(cm),638.87×20=12777.4(cm 2),所以,至少需要12777.4 cm 2的纸. 23. 解:(1)如图所示:∵300π=120πR2360,∴R=30,∴弧长l =120×π×30180=20π(cm),(2)如图所示: ∵20π=2πr , ∴r =10,R =30,AD=900-100=202,∴S轴截面=12×BC×AD=12×2×10×202=2002(cm2),因此,扇形的弧长是20π cm,卷成圆锥的轴截面是200 2 cm2.2019-2020学年数学中考模拟试卷一、选择题1.下列图形既是轴对称图形,又是中心对称图形的是( )A.B.C. D.2.如图,抛物线2y ax bx c =++(a≠0)的对称轴为直线x =1,与x 轴的交点(1x ,0),(2x ,0),且﹣1<1x <0<2x ,有下列5个结论:①abc <0;②b >a+c ;③a+b >k (ka+b )(k 为常数,且k≠1);④2c <3b ;⑤若抛物线顶点坐标为(1,n ),则2b =4a (c ﹣n ),其中正确的结论有( )个.A .5B .4C .3D .23.我们将如图所示的两种排列形式的点的个数分别叫做“平行四边形数”和“正六边形数”.设第n 个“平行四边形数”和“正六边形数”分别为a 和b ,若a+b =103,则ab的值是( )A.619B.837C.1093D.12914.如图,菱形ABCD 的对角线AC 、BD 相交于点O .若周长为20,BD =8,则AC 的长是( )A.3B.4C.5D.65.分式方程的解是( )A.3B.-3C.D.96.若二次函数2(2)4y ax a x a =+++的图像与x 轴有两个交点12(,0),(,0)x x ,且121x x <<,则a 的取值范围是() A .2153a -<<- B .103a -<< C .203a <<D .1233a << 7.一组数据2,3,8,6,x 的唯一众数是x ,其中x 是不等式组26070x x ->⎧⎨-<⎩的解,则这组数据的中位数是( ) A .3 B .5C .6D .88.计算11x -- 1xx -的结果为( ) A .1B .2C .﹣1D .﹣29.一个直角三角形两边长分别为3和4,则它的面积为( )A .6B .12C .6或10D .6或210.对于函数y=-2(x-3)2,下列说法不正确的是( ) A.开口向下B.对称轴是3x =C.最大值为0D.与y 轴不相交11.如图,点A (0,2),在x 轴上取一点B ,连接AB ,以A 为圆心,任意长为半径画弧,分别交OA 、AB 于点M 、N ,再以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点D ,连接AD 并延长交x 轴于点P .若△OPA 与△OAB 相似,则点P 的坐标为( )A .(1,0)B .0)C .(230) D .(0)12.如图,将一副三角板叠放在一起,使顶点A 在另一直角三角形的斜边DE 上,斜边BC 与直角边EF 在一直线上,则图中∠EAC 的度数为( )A .60°B .75°C .65°D .55°二、填空题13.如图,△ABC 中,D 、E 、F 分别是各边的中点,随机地向△ABC 中内掷一粒米,则米粒落到阴影区域内的概率是_____.14.如图,某飞机于空中探测某座山的高度,在点A 处飞机的飞行高度是3700AF =米,从飞机上观测山顶目标C 的俯角是45,飞机继续以相同的高度飞行300米到B 地,此时观察目标C 的俯角是50,则这座山的高度CD 是________米(参考数据:sin500.77≈,cos500.64≈,tan50 1.20≈)15.关于x 的一元二次方程x 2+4x ﹣k=0有实数根,则k 的取值范围是__________.16.如图,直线a ,b 与直线c ,d 相交,已知∠1=∠2,∠3=110°,则∠4的度数为________.17.如图,已知正方形ABCD 的边长为1,连接AC ,BD ,CE 平分∠ACD 交BD 于点E ,则DE=_________.18.如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、正方形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于_____. 三、解答题19.解不等式组()3151924x x xx ⎧-≤+⎪⎨-<⎪⎩,并写出它的所有整数解. 20.阅读下列材料,解决问题:12345678987654321这个数有这样一个特点:各数位上的数字从左到右逐渐增大(由1到9,是连续的自然数),到数9时,达到顶峰,以后又逐渐减小(由9到1),它活像一只橄榄,我们不妨称它为橄榄数.记第一个橄榄数为a 1=1,第二个橄榄数为a 2=121,第三个橄榄数为a 3=12321……有趣的是橄榄数还是一个平方数,如1=12,121=112,12321=1112,1234321=11112……而且,橄榄数可以变形成如下对称式:1111⨯=2222121121⨯=++3333331232112321⨯=++++……根据以上材料,回答下列问题(1)11111112= ;将123454321变形为对称式:123454321= .(2)一个两位数(十位大于个位),交换其十位与个位上的数字,得到一个新的两位数,将原数和新数相加,就能得到橄榄数121,求这个两位数.(3)证明任意两个橄榄数a m ,a n 的各数位之和的差能被m ﹣n 整除(m =1,2…9,n =1,2…9,m >n ) 21.某公司用100万元研发一种市场急需电子产品,已于当年投入生产并销售,已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y (万件)与销售价格x (元/件)的关系如图所示,其中AB 为反比例函数图象的一部分,设公司销售这种电子产品的年利润为s (万元). (1)请求出y (万件)与x (元/件)的函数表达式;(2)求出第一年这种电子产品的年利润s (万元)与x (元/件)的函数表达式,并求出第一年年利润的最大值.22.如图,AB ⊥EF ,DC ⊥EF ,垂足分别为B 、C ,且AB =CD ,BE =CF .AF 、DE 相交于点O ,AF 、DC 相交于点N ,DE 、AB 相交于点M .(1)请直接写出图中所有的等腰三角形; (2)求证:△ABF ≌△DCE .23.如图,在菱形ABCD 中,对角线AC 、BD 交于点O ,过点A 作AE ⊥BC 于点E ,延长BC 至F ,使CF =BE ,连接DF .(1)求证:四边形AEFD是矩形;(2)若BF=8,DF=4,求CD的长.24.解方程:213xx x+=-.25.如图,在平行四边形ABCD中,点H为DC上一点,BD、AH交于点O,△ABO为等边三角形,点E在线段AO上,OD=OE,连接BE,点F为BE的中点,连接AF并延长交BC于点G,且∠GAD=60°.(1)若CH=2,AB=4,求BC的长;(2)求证:BD=AB+AE.【参考答案】***一、选择题二、填空题13.1 414.1900 15.k≥﹣4 16.110°17118.3 5三、解答题19.﹣2≤x<1,整数解有﹣2、﹣1、0.【解析】【分析】分别求出各不等式的解集,再求出其公共解集即可. 【详解】()3151924x x xx ①②⎧-≤+⎪⎨-<⎪⎩, 解不等式①,得x≥﹣2, 解不等式②,得x <1,∴不等式组的解集为﹣2≤x<1, ∴不等式组的整数解有﹣2、﹣1、0. 【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 20.(1)55555555551234567654321,123454321⨯++++++++;(2)65,74,83,92;(3)任意两个橄榄数a m ,a n 的各数位之和的差能被m ﹣n 整除. 【解析】 【分析】(1)根据题中给出的定义,直接可得:(2)设十位数字是x ,个位数字是y ,根据题意得到x+y=11,进而确定两位数; (3)根据数的规律求得a m 的各数位之和m 2,a n 的各数位之和n 2,然后因式分解证明结论. 【详解】(1)根据题中给出的定义,直接可得: 11111112=1234567654321,123454321=⨯++++++++5555555555123454321;(2)设十位数字是x ,个位数字是y ,x >y , 10x+y+10y+x =11(x+y )=121, ∴x+y =11,∴这个两位数是65,74,83,92;(3)a m 的各数位之和1+2+3+…+m+(m ﹣1)+…+2+1=(1)(1)22m m m m +-+=m 2, a n 的各数位之和1+2+3+…+m+(m ﹣1)+…+2+1=(1)(1)22n n n n +-+=n 2, ∴a m ,a n 的各数位之和的差为m 2﹣n 2=(m+n )(m ﹣n ), ∵m >n ,∴m 2﹣n 2=(m+n )(m ﹣n )能被m ﹣n 整除,∴任意两个橄榄数a m ,a n 的各数位之和的差能被m ﹣n 整除. 【点睛】本题考查新定义,字母表示数,自然数求和,因式分解;能够理解定义,熟练掌握因式分解,自然数求和方法是解题的关键.21.(1)y =160(48)28(828)x x x x ⎧≤≤⎪⎨⎪-+≤⎩;(2)当每件的销售价格定为16元时,第一年年利润的最大值为44万元. 【解析】 【分析】(1)依据待定系数法,即可求出y (万件)与x (元/件)之间的函数关系式;(2)分两种情况进行讨论,当x =8时,s max =﹣20;当x =16时,s max =44;根据44>﹣20,可得当每件的销售价格定为16元时,第一年年利润的最大值为44万元. 【详解】解:(1)当4≤x≤8时,设y =kx,将A (4,40)代入得k =4×40=160, ∴y 与x 之间的函数关系式为y =160x; 当8<x≤28时,设y =k'x+b ,将B (8,20),C (28,0)代入得,820280k b k b +=⎧⎨+=''⎩, 解得k 1b 28=-⎧⎨='⎩,∴y 与x 之间的函数关系式为y =﹣x+28,综上所述,y =160(48)28(828)x x x x ⎧⎪⎨⎪-+<≤⎩剟;(2)当4≤x≤8时,s =(x ﹣4)y ﹣160=(x ﹣4)•160x ﹣100=640x-+60,∵当4≤x≤8时,s 随着x 的增大而增大, ∴当x =8时,s max =640x-+60=﹣20; 当8<x≤28时,s =(x ﹣4)y ﹣80=(x ﹣4)(﹣x+28)﹣80=﹣(x ﹣100)2+44, ∴当x =16时,s max =44; ∵44>﹣20,∴当每件的销售价格定为16元时,第一年年利润的最大值为44万元. 【点睛】本题主要考查了反比例函数与二次函数的综合应用,在商品经营活动中,经常会遇到求最大利润,最大销量等问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x 的取值要使实际问题有意义;解题时注意,依据函数图象可得函数关系式为分段函数,解决问题时需要运用分类思想以及数形结合思想进行求解. 22.(1)△EOF ,△AOM ,△DON ;(2)证明见解析 【解析】 【分析】(1)可以证明△ABF ≌△DCE ,根据全等三角形对应角相等可得∠A =∠D ,∠DEC =∠AFB ,所以△EOF 是等腰三角形,再根据等角的余角相等可得∠A =∠AMO ,∠D =∠DNO ,从而得到△AOM 与△DON 也都是等腰三角形;(2)由BE =CF ,可以证明EC =BF ,然后根据方法“边角边”即可证明△ABF 与△DCE 全等. 【详解】(1)解:△EOF ,△AOM ,△DON ;(2)证明:∵AB ⊥EF 于点B ,DC ⊥EF 于点C , ∴∠ABC =∠DCB =90°, ∵CF =BE , ∴CF+BC =BE+BC , 即BF =C E…在△ABF 和△DCE 中, AB DC DCB BF CE =⎧⎪⎨⎪=⎩∠ABC=∠, ∴△ABF ≌△DCE , 【点睛】本题主要考查了全等三角形的证明,常用的方法有“边边边”,“边角边”,“角边角”,“角角边”,本题证明得到BF =CE 是解题的关键. 23.(1)见解析;(2)CD =5. 【解析】 【分析】(1)根据菱形的性质得到AD ∥BC 且AD =BC ,等量代换得到BC =EF ,推出四边形AEFD 是平行四边形,根据矩形的判定定理即可得到结论,(2)设BC =CD =x ,则CF =8﹣x 根据勾股定理即可得到结论. 【详解】(1)证明:∵在菱形ABCD 中, ∴AD ∥BC 且AD =BC , ∵BE =CF , ∴BC =EF , ∴AD =EF , ∵AD ∥EF ,∴四边形AEFD 是平行四边形, ∵AE ⊥BC ,∴∠AEF=90°,∴四边形AEFD是矩形.(2)解:设BC=CD=x,则CF=8﹣x,在Rt△DCF中,∵x2=(8﹣x)2+42 ,∴x=5,∴CD=5.【点睛】本题考查了矩形的判定和性质,菱形的性质,勾股定理,正确的识别图形是解题的关键.24.x=65.【解析】【分析】根据分式方程的解法求解即可. 【详解】去分母得:2x﹣6+x2=x2﹣3x,解得:x=65,检验x=65是原方程的解.【点睛】本题主要考查分式方程的解法,注意根的验证.25.(1)BC (2)详见解析【解析】【分析】(1)延长AH、BC相交于点M,可证明△MCH∽△MBA,得出MH=AH,BM=2BC;由∠DOH=∠AOB=60°,∠ODH=∠OBA=60°,∠OHD=∠OAB=60°,可得△DOH是等边三角形,AE=OA-OE=OA-OD=2,得点E是OA的中点,根据“三线合一”可得BE的长度、BE⊥OA,根据勾股定理求出BM的长,而BC=12BM;(2)AB=OB,由(1)知,AE=OE=OD,可证BD=OB+OD=AB+AE.【详解】解:延长AH、BC相交于点M,∵▱ABCD∴CD=AB=4,CD∥AB∴∠MHC=∠MAB,∠MCH=∠MBA∴△MCH∽△MBAMH MC CH∴==MA MB AB∵CH=2MH MC21∴===MA MB42∴MH=AH,BM=2BC∵△ABO为等边三角形∴∠AOB=∠OAB=∠OBA=60°,OA=AB=4∴∠DOH=∠AOB=60°∴∠ODH=∠OBA=60°,∠OHD=∠OAB=60°∴∠DOH=∠ODH=∠OHD∴△DOH是等边三角形∴OH=OD=DH=2∴MH=AH=OA+OH=4+2=6,EM=OE+OH+MH=10 ∵OD=OE=2∴AE=OA﹣OE=4﹣2=2∴点E是OA的中点∵△ABO为等边三角形∴BE⊥OA,∠ABE=30°BE∴==在Rt△BEM中,∠BEM=90°∴BE2+EM2=BM2222∴+=10BM∴=BM∴=BC(2)∵△ABO为等边三角形∴AB=OB由(1)知,AE=OE=OD∵BD=OB+OD∴BD=AB+AE【点睛】本题考查了等边三角形的判定和性质、勾股定理、相似三角形的判定和性质.这道题的关键是证明点E是OA的中点、BM=2BC.2019-2020学年数学中考模拟试卷一、选择题 1.若函数2m y x+=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是( ) A.m >﹣2 B.m <﹣2 C.m >2 D.m <22.函数11y x =-中自变量x 的取值范围是( ) A .2x ≤B .2x ≤且1x ≠C .x <2且1x ≠D .1x ≠3.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°4.如图,一只蚂蚁从长、宽都是3cm ,高是8cm 的长方体纸盒的A 点沿纸盒面爬到B 点,那么它所行的最短路线的长是( )+8)cmB.10cmC.14cmD.无法确定5.下列选项中,可以用来证明命题“若a 2>b 2,则a >b“是假命题的反例是( ) A .a =﹣2,b =1B .a =3,b =﹣2C .a =0,b =1D .a =2,b =16.某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数不少于20的频率为( )A .0.1B .0.17C .0.33D .0.97.如图,与的平分线相交于点P,,PB与CE交于点H,交BC于F,交AB于G,下列结论:①;②;③ BP垂直平分CE;④,其中正确的判断有()A.①②B.③④C.①③④D.①②③④8.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴的正半轴上,顶点B在函数y=kx(x>0)的图象上,若∠C=60°,AB=2,则k的值为()A B C.1 D.29.如图,点P是正方形ABCD内一点,连接AP并延长,交BC于点Q.连接DP.将△ADP绕点A顺时针旋转90°至△ABP'.连结PP',若AP=1,,,则正方形的边长为()ABCD10.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在BC上,以AC为对角线的所有平行四边形ADCE 中,DE的最小值是()A.10B.8C.6D.411.如图,点A ,B 为反比例函数y=kx在第一象限上的两点,AC ⊥y 轴于点C ,BD ⊥x 轴于点D ,若B 点的横坐标是A 点横坐标的一半,且图中阴影部分的面积为k ﹣2,则k 的值为( )A .43B .83C .143 D .16312.如图,正方形ABCD 的边长为8,M 在DC 上,且DM 2=,N 是AC 上一动点,则DN MN +的最小值为( )A .6B .8C .10D .12二、填空题13.如图,在平面直角坐标系中,()()0,2,A B ,点C 是线段AB 上一点,将OCB ∆沿AB 翻折得到'B CB ∆,且满足'B C AO ∕∕. 若反比例函数y (0)kk x=>图象经过点C ,则k 的值为____.14.函数y =x 的取值范围是______.15.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是______. 16.计算:(﹣2)2019×0.52018=_______.17.如图所示,是一个运算程序示意图,若第一次输人k 的值为216,则第2019次输出的结果是______.18.如图,在△ABC 中,M 、N 分别为AC 、BC 的中点.若S △CMN =1,则S 四边形ABNM =________.三、解答题19.如图1,正方形ABCD 中,AB =5,点E 为BC 边上一动点,连接AE ,以AE 为边,在线段AE 右侧作正方形AEFG ,连接CF 、DF .设BE x =.(当点E 与点B 重合时,x 的值为0),12DF y CF y ==,.小明根据学习函数的经验,对函数12y y 、随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、测量、观察、计算,得到了x 与y 1、y 2的几组对应值;(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点12()()x y x y ,,,,并画出函数y 1,y 2的图象;(3)结合函数图象2,解决问题:当△CDF 为等腰三角形时,BE 的长度约为 cm . 20.如图1,点D 、E 、F 、G 分别为线段AB 、O B 、OC 、AC 的中点. (1)求证:四边形DEFG 是平行四边形;(2)如图2,若点M 为EF 的中点,BE :CF :DG =2:3:MOF =∠EFO .21.初三某班同学小代想根据学习函数的经验,探究函数32y x =-的图象和性质,下面是他的探究过程,请补充完整: (1)函数32y x =-的自变量的取值范围是 ; (2)下表是函数y 与自变量x 的几组对应值:则m= ,n= ;(3)在平面直角坐标系xoy 中,补全此函数的图象:(4)根据函数图象,直接写出不等式322x x >--的解集 ; (5)若函数32y x =-与函数y =x +k 图象有三个不同的交点,则k 的取值范围是 . 22.如图,在△ABC 中,AB =AC ,以AC 为直径做⊙O 交BC 于点D ,过点D 作⊙O 的切线,交AB 于点E ,交CA 的延长线于点F . (1)求证:FE ⊥AB ; (2)填空:当EF =4,35OA OF =时,则DE 的长为 .23.某商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯,如图,已知原阶梯式自动扶梯AB 的长为m ,坡角∠ABE =45°,改造后的斜坡自动扶梯坡角∠ACB =15°,求改造后的斜坡式自动扶梯AC 的长,(精确到0.1m ,参考数据;sin15°≈0.26,cos15°≈0.97,tan15°≈0,27)24.计算:(12)﹣1|+(π﹣3.14)0 25.如图,矩形ABCD 中,E 是AD 的中点,延长CE ,BA 交于点F ,连接AC ,DF .(1)判断四边形ACDF 的形状;(2)当BC=2CD 时,求证:CF 平分∠BCD .【参考答案】*** 一、选择题二、填空题1314.x≥-3 15.1316.-2 17.18.3三、解答题19.(1)见解析;(2)见解析;(3)2.59.【解析】【分析】(1)画图、测量可得;(2)依据表中的数据,描点、连线即可得;(3)由题意得出△CDF是等腰三角形时BE的长度即为y1与y2交点的横坐标,据此可得答案.【详解】(1)补全表格如下:(2)函数图象如下:(3)结合函数图象2,解决问题:当△CDF为等腰三角形时,BE的长度约为2.5906,故答案为:2.59.【点睛】本题是四边形的综合问题,解题的关键是掌握函数思想的运用及函数图象的画法、数形结合思想的运用.20.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据中位线定理得:DG∥BC,11DG BC,EF//BC,EF BC22==,则DG=BC,DE∥BC,根据一组对边平行且相等的四边形是平行四边形可得:四边形DEFG是平行四边形;(2)先根据已知的比的关系设未知数:设BE=2x,CF=3x,DG=,根据勾股定理的逆定理得:∠EOF=90°,最后利用直角三角形斜边中线的性质可得OM=FM,由等边对等角可得结论.【详解】解:(1)∵D是AB的中点,G是AC的中点,∴DG 是△ABC 的中位线, ∴DG ∥BC ,DG =12BC , 同理得:EF 是△OBC 的中位线, ∴EF ∥BC ,EF =12BC , ∴DG =EF ,DG ∥EF ,∴四边形DEFG 是平行四边形;(2)∵BE :CF :DG =2:3:∴设BE =2x ,CF =3x ,DG , ∴OE =2x ,OF =3x ,∵四边形DEFG 是平行四边形,∴DG =EF , ∴OE 2+OF 2=EF 2, ∴∠EOF =90°, ∵点M 为EF 的中点, ∴OM =MF , ∴∠MOF =∠EFO . 【点睛】本题考查的是三角形中位线定理、平行四边形的判定、勾股定理的逆定理,掌握三角形中位线定理是解题的关键.21.(1)x 2≠;(2)m=0.75,n= 3;(3)在平面直角坐标系xoy 中,补全此函数的图象见解析;(4)222x x 或<<<+;(5)2k >. 【解析】 【分析】(1)根据分母不能为0确定自变量的取值范围; (2)把x=-2,3分别代入32y x =-可求得m,n 的值; (3)把两组点分别顺次连接可得图象;(4)作出函数y=x-2的图象,得直线与32y x =-的交点的横坐标为.根据图象可得到不等式的解集;(5)直线y=x+k 与右边曲线总有一个交点,故可求当直线与左边曲线有一个交点时k 的值,将直线向上平移就会满足题中有三个交点的条件,从而得到k 的取值范围. 【详解】(1)根据分母不能为0得│x -2│≠0,解得: x 2≠ ;(2)将x=-2代入32y x =-,得y=0.75,即m=0.75; 将x=3代入32y x =-,得y=3,即n=3; 故答案为:m= 0.75 ,n= 3 ; (3)如图所示:(4)如图,作出函数y=x-2的图象,这条直线与32y x =-的交点的横坐标为观察图象可得,不等式322x x >--的解集为2x <或22x <<+. (5)由(4)的结论可知,直线y=x+k 与32y x =-的图象的右边的曲线总有一个交点,故考虑当x <2时,直线y=x+k 与32y x =-的图象的左边的曲线的交点情况. ∵x <2,∴32y x =-,列方程32x-=x+k , 整理得2(2)(32)0x k x k +-+-=,当240b ac =-=时,方程有唯一解,直线与左边曲线有一个交点,直线继续往上平移,会有两个交点. ∴()2(2)4320k k ---=解得122,2k k ==- (由图像知2k 不合题意舍去)所以当2k >-时,直线y=x+k 与32y x =-共有三个不同的交点.故答案为:2k >. 【点睛】本题主要考查函数与方程的结合,根的判别式的应用,根据定义作出函数的图象,利用数形结合思想是解决本题的关键.22.(1)详见解析;(2)6. 【解析】 【分析】(1)连接OD ,如图,先根据切线的性质得到OD ⊥DF ,然后利用等腰三角形的性质和平行线的判定证明OD ∥AB ,从而可判断EF ⊥AB ;(2)根据平行线分线段比例,由AE ∥OD 得35DE OA DF OF ==,然后根据比例性质可求出DE . 【详解】(1)连接OD ,如图, ∵DF 为⊙O 的切线, ∴OD ⊥DF , ∵OC =OD , ∴∠C =∠ODC , ∵AB =AC , ∴∠B =∠C , ∴∠B =∠ODC , ∴OD ∥AB , ∴EF ⊥AB ; (2)∵AE ∥OD ,∴35DE OA DF OF ==, 即345DE DE =+,解得DE =6, 故答案为:6.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;灵活运用相似比进行几何计算.也考查了等腰三角形的性质和切线的性质.23.改造后的斜坡式自动扶梯AC的长度约为23.1米.【解析】【分析】先在Rt△ABD中,用三角函数求出AD,最后在Rt△ACD中用三角函数即可得出结论.【详解】解:如图,过点A作AD⊥CE于点D,在Rt△ABD中,∠ABD=45°,AB=,∴AD=AB•sin45°=6(m).在Rt△ACD中,∠ACD=15°,sin∠ACD=AD AC,∴AC=AD6sin150.26︒=≈23.1(m),即:改造后的斜坡式自动扶梯AC的长度约为23.1米.【点睛】此题主要考查了解直角三角形的应用,锐角三角函数的应用,求出AD是解本题的关键.24.4【解析】【分析】根据特殊角的三角函数值进行计算即可.【详解】解:原式=4﹣2×2﹣1+1=4﹣1+1=4.【点睛】本题主要考查特殊角的三角函数的计算,这是基本知识点,应当熟练的掌握.25.(1)四边形ACDF是平行四边形;(2)见解析.【解析】【分析】(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF 是平行四边形;(2)先判定ACDF是平行四边形,可得FB=BC,再根据∠BCF=∠DCF=45°,即可得到答案.【详解】解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形;(2)证明:∵BC=2CD,ACDF是平行四边形,∴FB=BC,∴∠BCF=45°,∴∠DCF=45°,∴CF平分∠BCD.【点睛】此题考查矩形的性质,全等三角形的判定与性质,平行四边形的判定,解题关键在于利用全等三角形的性质进行求证.。
自检16 反比例函数-2020年中考考点自检之最新中考真题练(含答案)

自检16 《反比例函数》一.选择题1.(2019•营口)反比例函数y=﹣(x>0)的图象位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(2019•朝阳)若点A(﹣1,y1),B(﹣2,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y1<y3<y2D.y3<y2<y1 3.(2019•莱芜区)如图,直线l与x轴,y轴分别交于A,B两点,且与反比例函数y=(x>0)的图象交于点C,若S△AOB=S△BOC=1,则k=()A.1 B.2 C.3 D.4 4.(2019•日照)在同一平面直角坐标系中,函数y=kx+1(k≠0)和y=(k≠0)的图象大致是()A.B.C.D.5.(2019•遵义)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为4,2,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为()A.2 B.3 C.4 D.6 6.(2019•西藏)已知点A是直线y=2x与双曲线y=(m为常数)一支的交点,过点A作x轴的垂线,垂足为B,且OB=2,则m的值为()A.﹣7 B.﹣8 C.8 D.7 7.(2019•营口)如图,A,B是反比例函数y=(k>0,x>0)图象上的两点,过点A,B分别作x轴的平行线交y轴于点C,D,直线AB交y轴正半轴于点E.若点B的横坐标为5,CD=3AC,cos∠BED=,则k的值为()A.5 B.4 C.3 D.8.(2019•淄博)如图,△OA1B1,△A1A2B2,△A2A3B3,…是分别以A1,A2,A3,…为直角顶点,一条直角边在x轴正半轴上的等腰直角三角形,其斜边的中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…均在反比例函数y=(x>0)的图象上.则y1+y2+…+y10的值为()A.2B.6 C.4D.2 9.(2019•娄底)如图,⊙O的半径为2,双曲线的解析式分别为y=,则阴影部分的面积是()A.4πB.3πC.2πD.π10.(2019•长春)如图,在平面直角坐标系中,Rt△ABC的顶点A、C的坐标分别是(0,3)、(3、0).∠ACB=90°,AC=2BC,则函数y=(k>0,x>0)的图象经过点B,则k的值为()A.B.9 C.D.11.(2019•鸡西)如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数y=上,顶点B在反比例函数y=上,点C在x轴的正半轴上,则平行四边形OABC的面积是()A.B.C.4 D.6 12.(2019•河北)如图,函数y=的图象所在坐标系的原点是()A.点M B.点N C.点P D.点Q 13.(2019•咸宁)在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O 重合,顶点A,B恰好分别落在函数y=﹣(x<0),y=(x>0)的图象上,则sin ∠ABO的值为()A.B.C.D.14.(2019•十堰)如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20 B.﹣16 C.﹣12 D.﹣815.(2019•深圳)已知y=ax2+bx+c(a≠0)的图象如图,则y=ax+b和y=的图象为()A.B.C.D.二.填空题16.如图,Rt△AOB≌Rt△COD,直角边分别落在x轴和y轴上,斜边相交于点E,且tan ∠OAB=2.若四边形OAEC的面积为6,反比例函数y=(x>0)的图象经过点E,则k的值为.17.如图,点A在双曲线y=(x>0)上,过点A作AB⊥x轴于点B,点C在线段AB 上且BC:CA=1:2,双曲线y=(x>0)经过点C,则k=.18.(2019•抚顺)如图,矩形ABCD的顶点A,C在反比例函数y=(k>0,x>0)的图象上,若点A的坐标为(3,4),AB=2,AD∥x轴,则点C的坐标为.19.(2019•朝阳)从点M(﹣1,6),N(,12),E(2,﹣3),F(﹣3,﹣2)中任取一点,所取的点恰好在反比例函数y=的图象上的概率为.20.(2019•南通)如图,过点C(3,4)的直线y=2x+b交x轴于点A,∠ABC=90°,AB=CB,曲线y=(x>0)过点B,将点A沿y轴正方向平移a个单位长度恰好落在该曲线上,则a的值为.21.(2019•锦州)如图,将一个含30°角的三角尺ABC放在直角坐标系中,使直角顶点C与原点O重合,顶点A,B分别在反比例函数y=﹣和y=的图象上,则k的值为.22.(2019•日照)如图,已知动点A在函数的图象上,AB⊥x轴于点B,AC ⊥y轴于点C,延长CA交以A为圆心AB长为半径的圆弧于点E,延长BA交以A为圆心AC长为半径的圆弧于点F,直线EF分别交x轴、y轴于点M、N,当NF=4EM时,图中阴影部分的面积等于.23.(2019•永州)如图,直线y=4﹣x与双曲线y=交于A,B两点,过B作直线BC⊥y轴,垂足为C,则以OA为直径的圆与直线BC的交点坐标是.24.(2019•本溪)如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA,OE 都在x轴上,点C在OB边上,S△ABD=,反比例函数y=(x>0)的图象经过点B,则k的值为.25.(2019•齐齐哈尔)如图,矩形ABOC的顶点B、C分别在x轴,y轴上,顶点A在第二象限,点B的坐标为(﹣2,0).将线段OC绕点O逆时针旋转60°至线段OD,若反比例函数y=(k≠0)的图象经过A、D两点,则k值为.26.(2019•桂林)如图,在平面直角坐标系中,反比例y=(k>0)的图象和△ABC都在第一象限内,AB=AC=,BC∥x轴,且BC=4,点A的坐标为(3,5).若将△ABC向下平移m个单位长度,A,C两点同时落在反比例函数图象上,则m的值为.三.解答题27.(2019•恩施州)如图,已知∠AOB=90°,∠OAB=30°,反比例函数y=﹣(x <0)的图象过点B(﹣3,a),反比例函数y=(x>0)的图象过点A.(1)求a和k的值;(2)过点B作BC∥x轴,与双曲线y=交于点C.求△OAC的面积.28.(2019•济南)如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=(x>0)的图象经过点B.(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求的值;②在线段AB运动过程中,连接BC,若△BCD是以BC为腰的等腰三角形,求所有满足条件的m的值.29.(2019•雅安)如图,在平面直角坐标系中,一次函数y=﹣x+m的图象与反比例函数y=(x>0)的图象交于A、B两点,已知A(2,4)(1)求一次函数和反比例函数的解析式;(2)求B点的坐标;(3)连接AO、BO,求△AOB的面积.30.(2019•大连)如图,在平面直角坐标系xOy中,点A(3,2)在反比例函数y=(x >0)的图象上,点B在OA的延长线上,BC⊥x轴,垂足为C,BC与反比例函数的图象相交于点D,连接AC,AD.(1)求该反比例函数的解析式;(2)若S△ACD=,设点C的坐标为(a,0),求线段BD的长.31.(2019•内江)如图,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第二、四象限内的点A(a,4)和点B(8,b).过点A作x轴的垂线,垂足为点C,△AOC的面积为4.(1)分别求出a和b的值;(2)结合图象直接写出mx+n<的解集;(3)在x轴上取点P,使PA﹣PB取得最大值时,求出点P的坐标.32.(2019•徐州)如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,P在反比例函数y=的图象上.PA的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.33.(2019•河池)在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.(1)如图(1),双曲线y=过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y =与AD交于点P.当△AEP为等腰三角形时,求m的值.参考答案一.选择题1.解:∵反比例函数y=﹣(x>0),k=﹣4<0,∴该函数图象在第四象限,故选:D.2.解:∵点A(﹣1,y1)、B(﹣2,y2)、C(3,y3)在反比例函数y=﹣的图象上,∴y1=﹣=8,y2=﹣=4,y3=﹣,又∵﹣<4<8,∴y3<y2<y1.故选:D.3.解:如图,作CD⊥x轴于D,设OB=a(a>0).∵S△AOB=S△BOC,∴AB=BC.∵△AOB的面积为1,∴OA•OB=1,∴OA=,∵CD∥OB,AB=BC,∴OD=OA=,CD=2OB=2a,∴C(,2a),∵反比例函数y=(x>0)的图象经过点C,∴k=×2a=4.故选:D.4.解:①当k>0时,y=kx+1过一、二、三象限;y=过一、三象限;②当k<0时,y=kx+1过一、二、四象象限;y=过二、四象限.观察图形可知,只有C选项符合题意.故选:C.5.解:过点A作x轴的垂线,交CB的延长线于点E,∵A,B两点在反比例函数y=(x>0)的图象,且纵坐标分别为4,2,∴A(,4),B(,2),∴AE=2,BE=k﹣k=k,∵菱形ABCD的面积为2,∴BC×AE=2,即BC=,∴AB=BC=,在Rt△AEB中,BE==1∴k=1,∴k=4.故选:C.6.解:由题意,可知点A的横坐标是±2,由点A在正比例函数y=2x的图象上,∴点A的坐标为(2,4)或(﹣2,﹣4),又∵点A在反比例函数y=(m为常数)的图象上,∴m+1=8,即m=7,故选:D.7.解:∵BD∥x轴,∴∠EDB=90°,∵cos∠BED==,∴设DE=3a,BE=5a,∴BD===4a,∵点B的横坐标为5,∴4a=5,则a=,∴DE=,设AC=b,则CD=3b,∵AC∥BD,∴===,∴EC=b,∴ED=3b+b=,∴=,则b=1,∴AC=1,CD=3,设B点的纵坐标为n,∴OD=n,则OC=3+n,∵A(1,3+n),B(5,n),∴A,B是反比例函数y=(k>0,x>0)图象上的两点,∴k=1×(3+n)=5n,解得k=,故选:D.8.解:过C1、C2、C3…分别作x轴的垂线,垂足分别为D1、D2、D3…其斜边的中点C1在反比例函数y=,∴C(2,2)即y1=2,∴OD1=D1A1=2,设A1D2=a,则C2D2=a此时C2(4+a,a),代入y=得:a(4+a)=4,解得:a=,即:y2=,同理:y 3=,y 4=,……∴y 1+y2+…+y10=2+++……=,故选:A.9.解:双曲线y=的图象关于x轴对称,根据图形的对称性,把第二象限和第四象限的阴影部分的面积拼到第一和第三象限中的阴影中,可以得到阴影部分就是一个扇形,并且扇形的圆心角为180°,半径为2,所以:S阴影==2π.故选:C.10.解:过点B作BD⊥x轴,垂足为D,∵A、C的坐标分别是(0,3)、(3、0),∴OA=OC=3,在Rt△AOC中,AC=,又∵AC=2BC,∴BC=,又∵∠ACB=90°,∴∠OAC=∠OCA=45°=∠BCD=∠CBD,∴CD=BD==,∴OD=3+=∴B(,)代入y=得:k=,故选:D.11.解:如图作BD⊥x轴于D,延长BA交y轴于E,∵四边形OABC是平行四边形,∴AB∥OC,OA=BC,∴BE⊥y轴,∴OE=BD,∴Rt△AOE≌Rt△CBD(HL),根据系数k的几何意义,S矩形BDOE=5,S△AOE=,∴四边形OABC的面积=5﹣﹣=4,故选:C.12.解:由已知可知函数y=关于y轴对称,所以点M是原点;故选:A.13.解:过点A、B分别作AD⊥x轴,BE⊥x轴,垂足为D、E,∵点A在反比例函数y=﹣(x<0)上,点B在y=(x>0)上,∴S△AOD=,S△BOE=2,又∵∠AOB=90°∴∠AOD=∠OBE,∴△AOD∽△OBE,∴()2=,∴设OA=m,则OB=2m,AB=,在RtAOB中,si n∠ABO=故选:D.14.解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则△BDE≌△FDE,∴BD=FD,BE=FE,∠DFE=∠DBE=90°易证△ADF∽△GFE∴,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,∵D、E在反比例函数y=的图象上,∴E(,4)、D(﹣8,)∴OG=EC=,AD=﹣,∴BD=4+,BE=8+∴,∴AF=,在Rt△ADF中,由勾股定理:AD2+AF2=DF2即:(﹣)2+22=(4+)2解得:k=﹣12故选:C.15.解:根据二次函数y=ax2+bx+c(a≠0)的图象,可得a<0,b>0,c<0,∴y=ax+b过一、二、四象限,双曲线y=在二、四象限,∴C是正确的.故选:C.二.填空题(共11小题)16.解:连接OE,过点E分别作EM⊥OB于点M,EN⊥OD于点N,∵Rt△AOB≌Rt△COD,∴∠OBA=∠ODC,OA=OC,OB=OD,∴OB﹣OC=OD﹣OA,即BC=AD,又∵∠CEB=∠AED,∴△CBE≌△ADE(AAS),∴CE=AE,又∵OC=OA,OE=OE,∴△COE≌△AOE(SSS),∴∠EOC=∠EOA=45°,又∵EM⊥OB,EN⊥OD,∴EM=EN,∵tan∠OAB=2,∴,∴OB=2OA,∵OA=OC,∴OB=2OC,∴点C为BO的中点,同理可得点A为OD的中点,∴S△AOE=S△ADE,在Rt△END中,tan∠CDO=,∴EN=,设EM=EN=x,∴ND=2EN=2x,ON=EN=x,∴OD=3x,∵,∴x=2,∴E(2,2),∴k=2×2=4.故答案为4.17.解:连接OC,∵点A在双曲线y=(x>0)上,过点A作AB⊥x轴于点B,∴S△OAB=×6=3,∵BC:CA=1:2,∴S△OBC=3×=1,∵双曲线y=(x>0)经过点C,∴S△OBC=|k|=1,∴|k|=2,∵双曲线y=(x>0)在第一象限,∴k=2,故答案为2.18.解:∵点A的坐标为(3,4),AB=2,∴B(3,2),∵四边形ABCD是矩形,∴AD∥BC,∵AD∥x轴,∴BC∥x轴,∴C点的纵坐标为2,设C(x,2),∵矩形ABCD的顶点A,C在反比例函数y=(k>0,x>0)的图象上,∴k=2x=3×4,∴x=6,∴C(6,2),故答案为(6,2).19.解:∵k=6,﹣1×6=﹣6≠6,×12=6,2×(﹣3)=﹣6≠6,﹣3×(﹣2)=6,∴N、F两个点在反比例函数y=的图象上,故所取的点在反比例函数y=的图象上的概率是=.故答案为.20.解:作CD⊥x轴于D,BF⊥x轴于F,过B作BE⊥CD于E,∵过点C(3,4)的直线y=2x+b交x轴于点A,∴4=2×3+b,解得b=﹣2,∴直线为y=2x﹣2,令y=0,则求得x=1,∴A(1,0),∵BF⊥x轴于F,过B作BE⊥CD于E,∴BE∥x轴,∴∠ABE=∠BAF,∵∠ABC=90°,∴∠ABE+∠EBC=90°,∵∠BAF+∠ABF=90°,∴∠EBC=∠ABF,在△EBC和△FBA中∴△EBC≌△FBA(AAS),∴CE=AF,BE=BF,设B(m,),∵4﹣=m﹣1,m﹣3=,∴4﹣(m﹣3)=m﹣1,解得m=4,k=4,∴反比例函数的解析式为y=,把x=1代入得y=4,∴a=4﹣0=4,∴a的值为4.故答案为4.21.解:过A作AE⊥y轴于E过B作BF⊥y轴于F,∵∠AOB=90°,∠ABC=30°,∴tan30°==,∵∠OAE+∠AOE=∠AOE+∠BOF=90°,∴∠OAE=∠BOF,∴△AOE∽△BOF,∴===,设A(m,﹣),∴AE=﹣m,OE=﹣,∴OF=AE=﹣m,BF=OE=﹣,∴B(,),∴k=m•=12.故答案为:12.22.解:作DF⊥y轴于点D,EG⊥x轴于G,∴△GEM∽△DNF,∵NF=4EM,∴==4,设GM=t,则DF=4t,∴A(4t,),由AC=AF,AE=AB,∴AF=4t,AE=,EG=,∵△AEF∽△GME,∴AF:EG=AE:GM,即4t:=:t,即4t2=,∴t2=,图中阴影部分的面积=+=2π+π=2.5π,故答案为:2.5π.23.解:由求得或,∴A(1,3),B(3,1),∴OA==,设OA的中点为P,以AB为直径的⊙P与直线BC的交点为M、N,过P点作PD⊥x轴于D,交BC于E,连接PN,∵P是OA的中点,∴P(,),∴PD=,∵BC⊥y轴,垂足为C,∴BC∥x轴,∴PD⊥BC,∴PE=﹣1=,在Rt△PEN中,EM=EN===,∴M(﹣1,1),N(2,1).∴以OA为直径的圆与直线BC的交点坐标是(﹣1,1)和(2,1),故答案为(﹣1,1)和(2,1).24.解:连接OD,∵△OAB是等边三角形,∴∠AOB=60°,∵四边形OCDE是菱形,∴DE∥OB,∴∠DEO=∠AOB=60°,∴△DEO是等边三角形,∴∠DOE=∠BAO=60°,∴OD∥AB,∴S△BDO=S△AOD,∵S四边形ABDO=S△ADO+S△ABD=S△BDO+S△AOB,∴S△AOB=S△ABD=,过B作BH⊥OA于H,∴OH=AH,∴S△OBH=,∵反比例函数y=(x>0)的图象经过点B,∴k的值为,故答案为:.25.解:过点D作DE⊥x轴于点E,∵点B的坐标为(﹣2,0),∴AB=﹣,∴OC=﹣,由旋转性质知OD=OC=﹣、∠COD=60°,∴∠DOE=30°,∴DE=OD=﹣k,OE=OD cos30°=×(﹣)=﹣k,即D(k,﹣k),∵反比例函数y=(k≠0)的图象经过D点,∴k=(k)(﹣k)=﹣k2,解得:k=0(舍)或k=﹣,故答案为:﹣.26.解:∵AB=AC=,BC=4,点A(3,5).∴B(1,),C(5,),将△ABC向下平移m个单位长度,∴A(3,5﹣m),C(5,﹣m),∵A,C两点同时落在反比例函数图象上,∴3(5﹣m)=5(﹣m),∴m=;故答案为;三.解答题(共7小题)27.解:(1)∵比例函数y=﹣(x<0)的图象过点B(﹣3,a),∴a=﹣=1,∴OE=3,BE=1,分别过点A、B作AD⊥x轴于D,BE⊥x轴于E,∴∠BOE+∠OBE=90°,∵∠AOB=90°,∠OAB=30°,∴∠BOE+∠AOD=90°,tan30°==,∴∠OBE=∠AOD,∵∠OEB=∠ADO=90°,∴△BOE∽△OAD∴===,∴AD=•OE==3,OD=•BE==∴A(,3),∵反比例函数y=(x>0)的图象过点A,∴k=×=9;(2)由(1)可知AD=3,OD=,∵BC∥x轴,B(﹣3,1),∴C点的纵坐标为1,过点C作CF⊥x轴于F,∵点C在双曲线y=上,∴1=,解得x=9,∴C(9,1),∴CF=1,∴S△AOC=S△AOD+S梯形ADFC﹣S△COF=S梯形ADCF=(AD+CF)(OF﹣OD)=(3+1)(9﹣)=13.28.解:(1)∵点A(0,8)在直线y=﹣2x+b上,∴﹣2×0+b=8,∴b=8,∴直线AB的解析式为y=﹣2x+8,将点B(2,a)代入直线AB的解析式y=﹣2x+8中,得﹣2×2+8=a,∴a=4,∴B(2,4),将B(2,4)在反比例函数解析式y=(x>0)中,得k=xy=2×4=8;(2)①由(1)知,B(2,4),k=8,∴反比例函数解析式为y=,当m=3时,∴将线段AB向右平移3个单位长度,得到对应线段CD,∴D(2+3,4),即:D(5,4),∵DF⊥x轴于点F,交反比例函数y=的图象于点E,∴E(5,),∴DE=4﹣=,EF=,∴==;②如图,∵将线段AB向右平移m个单位长度(m>0),得到对应线段CD,∴CD=AB,AC=BD=m,∵A(0,8),B(2,4),∴C(m,8),D((m+2,4),∵△BCD是以BC为腰的等腰三形,∴Ⅰ、当BC=CD时,∴BC=AB,∴点B在线段AC的垂直平分线上,∴m=2×2=4,Ⅱ、当BC=BD时,∵B(2,4),C(m,8),∴BC=,∴=m,∴m=5,即:△BCD是以BC为腰的等腰三角形,满足条件的m的值为4或5.29.解:(1)将A(2,4)代入y=﹣x+m与y=(x>0)中得4=﹣2+m,4=,∴m=6,k=8,∴一次函数的解析式为y=﹣x+6,反比例函数的解析式为y=;(2)解方程组得或,∴B(4,2);(3)设直线y=﹣x+6与x轴,y轴交于C,D点,易得D(0,6),∴OD=6,∴S△AOB=S△DOB﹣S△AOD=×6×4﹣×6×2=6.30.解:(1)∵点A(3,2)在反比例函数y=(x>0)的图象上,∴k=3×2=6,∴反比例函数y=;答:反比例函数的关系式为:y=;(2)过点A作AE⊥OC,垂足为E,连接AC,设直线OA的关系式为y=kx,将A(3,2)代入得,k=,∴直线OA的关系式为y=x,∵点C(a,0),把x=a代入y=x,得:y=a,把x=a代入y=,得:y=,∴B(a,),即BC═a,D(a,),即CD=∵S△ACD=,∴CD•EC=,即,解得:a=6,∴BD=BC﹣CD==3;答:线段BD的长为3.31.解:(1)∵点A(a,4),∴AC=4,∵S△AO C=4,即,∴OC=2,∵点A(a,4)在第二象限,∴a=﹣2 A(﹣2,4),将A(﹣2,4)代入y=得:k=﹣8,∴反比例函数的关系式为:y=,把B(8,b)代入得:b=﹣1,∴B(8,﹣1)因此a=﹣2,b=﹣1;(2)由图象可以看出mx+n<的解集为:﹣2<x<0或x>8;(3)如图,作点B关于x轴的对称点B′,直线AB′与x轴交于P,此时PA﹣PB最大(PA﹣PB=PA﹣PB′≤AB′,共线时差最大)∵B(8,﹣1)∴B′(8,1)设直线AP的关系式为y=kx+b,将A(﹣2,4),B′(8,1)代入得:解得:k=,b=,∴直线AP的关系式为y=x+,当y=0时,即x+=0,解得x=,∴P(,0)32.解:(1)如图,作PM⊥OA于M,PN⊥OB于N,PH⊥AB于H.∴∠PMA=∠PHA=90°,∵∠PAM=∠PAH,PA=PA,∴△PAM≌△PAH(AAS),∴PM=PH,∠APM=∠APH,同理可证:△BPN≌△BPH,∴PH=PN,∠BPN=∠BPH,∴PM=PN,∵∠PMO=∠MON=∠PNO=90°,∴四边形PMON是矩形,∴∠MPN=90°,∴∠APB=∠APH+∠BPH=(∠MPH+∠NPH)=45°,∵PM=PN,∴可以假设P(m,m),∵P(m,m)在y=上,∴m2=9,∵m>0,∴m=3,∴P(3,3).(2)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∵AB2=OA2+OB2,∴a2+b2=(6﹣a﹣b)2,可得ab=6a+6b﹣18,∴3a+3b﹣9=ab,∵PM∥OC,∴=,∴=,∴OC=,同法可得OD=,∴S△COD=•OC•DO=•=•=•=9.解法二:证明△COP∽△POD,得OC•OD=OP2=18,可求△COD的面积等于9.(3)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∴OA+OB+AB=6,∴a+b+=6,∴2+≤6,∴(2+)≤6,∴≤3(2﹣),∴ab≤54﹣36,∴S △AOB=ab≤27﹣18,∴△AOB的面积的最大值为27﹣18.33.解:(1)如图1中,∵四边形ABCD是矩形,∴DE=EB,∵B(6,0),D(0,8),∴E(3,4),∵双曲线y=过点E,∴k1=12.∴反比例函数的解析式为y=.(2)如图2中,∵点M,N在反比例函数的图象上,∴DN•AD=BM•AB,∵BC=AD,AB=CD,∴DN•BC=BM•CD,∴=,∴=,∴=,∵∠MCN=∠BCD,∴△MCN∽△BCD,∴∠CNM=∠CDB,∴MN∥BD,∴△CMN∽△CBD.∵B(6,0),D(0,8),∴直线BD的解析式为y=﹣x+8,∵C,C′关于MN对称,∴CC′⊥MN,∴CC′⊥BD,∵C(6,8),∴直线CC′的解析式为y=x+,∴C′(0,).(3)如图3中,①当AP=AE=5时,∵P(m,5),E(m+3,4),P,E在反比例函数图象上,∴5m=4(m+3),∴m=12.②当EP=AE时,点P与点D重合,∵P(m,8),E(m+3,4),P,E在反比例函数图象上,∴8m=4(m+3),∴m=3.③显然PA≠PE,若相等,则PE∥x轴,显然不可能.综上所述,满足条件的m的值为3或12.。
押广东深圳卷第11-15题(因式分解、概率、圆、反比例函数、三角形变换)(解析版)-备战24中考数学

押广东深圳卷第11-15题押题方向一:因式分解3年广州深圳卷真题考点命题趋势2023年广州深圳卷第12题因式分解从近年广州深圳中考来看,因式分解是近几年广州深圳的必考题,考查比较简单;预计2024年广州深圳卷还将继续重视因式分解的考查。
2022年广州深圳卷第11题因式分解2022年广州深圳卷第11题因式分解1.(2023·广东深圳·中考真题)已知实数a ,b ,满足6a b +=,7ab =,则22a b ab +的值为.【答案】42【分析】首先提取公因式,将已知整体代入求出即可.【详解】22a b ab +()ab a b =+76=⨯42=.故答案为:42.【点睛】此题考查了求代数式的值,提公因式法因式分解,整体思想的应用,解题的关键是掌握以上知识点.2.(2022·广东深圳·中考真题)分解因式:=.【答案】()()11a a +-.【分析】利用平方差公式分解因式即可得到答案【详解】解:()()2111a a a -=+-.故答案为:()()11a a +-【点睛】本题考查的是利用平方差公式分解因式,掌握利用平方差公式分解因式是解题的关键.3.(2021·广东深圳·中考真题)因式分解:2728a -=.【答案】7(2)(2)a a +-【分析】先提取公因式7,然后再使用平方差公式求解即可.【详解】解:原式2=7(4)7(2)(2)a a a -=+-,故答案为:7(2)(2)a a +-.【点睛】本题考查了因式分解的方法,先提公因式,再看能否套平方差公式或完全平方式.因式分解是核心考点,常在填空题中出现。
多项式的因式分解,先提取公因式,再利用平方差、完全平方公式分解即可.1.(2024·广东深圳·二模)分解因式:3312m m -+=.【答案】3(2)(2)m m m -+-【分析】本题考查了因式分解,熟练掌握因式分解的方法是解题的关键.先提取公因式,再用平方差公式因式分解,即得答案.【详解】323123(4)3(2)(2)m m m m m m m -+=--=-+-.故答案为:3(2)(2)m m m -+-.2.(2023·广东深圳·模拟预测)因式分解:416x -=.【答案】2(4)(2)(2)x x x ++-【分析】利用平方差公式:()()22a b a b a b -=+-,进行两次分解.【详解】解:416x -()()2244x x =+-()()()2422x x x =++-.故答案为:2(4)(2)(2)x x x ++-.【点睛】此题主要考查了用公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.229ax ay -=.【答案】()()33a x y x y +-【分析】先提公因式a ,再利用平方差公式分解因式即可.【详解】解:229ax ay -()229a x y =-()()33a x y x y =+-,故答案为:()()33a x y x y +-.【点睛】本题考查因式分解,熟练掌握提供因式法和公式法分解因式是解答的关键.4.(2023·广东深圳·模拟预测)因式分解:2242mx mx m -+=.【答案】()221m x -【分析】先提公因式2m,再利用完全平方公式()2222a b a ab b ±=±+分解即可.【详解】解:2242mx mx m -+,()2221m x x =-+,()221m x =-.故答案为:()221m x -.【点睛】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用公式法因式分解,同时因式分解要彻底,直到不能分解为止.5.(2024·广东揭阳·一模)因式分解:()()224a x y b y x -+-=.【答案】()()()22x y a b a b -+-【分析】本题考查了因式分解的应用,熟练掌握因式分解的方法是解答本题的关键.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.先提取公因式,再用平方差公式分解.【详解】解:()()224ax y b y x -+-()()224a x y b x y =---()()224x y a b =--()()()22x y a b a b =-+-.故答案为:()()()22x y a b a b -+-.6.(2024·浙江温州·一模)已知5a b +=,4ab =,则多项式的值为.【答案】20【分析】本题考查整式、因式分解的知识,解题的关键是对多项式22a b ab +变形为()ab a b +,再把ab 、a b +的值,代入,即可.【详解】∵()22a b ab ab a b +=+,∴当5a b +=,4ab =时,()224520a b ab ab a b +=+=⨯=,故答案为:20.押题方向二:概率3年广州深圳卷真题考点命题趋势2023年广州深圳卷第11题概率从近年广州深圳中考来看,概率是近几年广州深圳的常考题;预计2024年广州深圳卷还将继续重视概率的考查。
2023年北京市中考数学知识点分布与试卷分析

北京市初中数学专题知识点I、数与代数部分:一、数与式:1、实数:1)实数旳有关概念;常考点:倒数、相反数、绝对值(选择第1题,必考题4分) 2)科学记数法表达一种数(选择题第二题,必考4分)3) 实数旳运算法则:混合运算(解答题13题,必考4分)4)实数非负性应用:3、整式: 1)整式旳概念和简朴运算、化简求值(解答题5分)2)运用提公因式法、公式法进行因式分解(选择填空必考题4分)4、分式:化简求值、计算(解答题)、分式求取值范围(一般为填空题)(易错点:分母不为0)5、二次根式:求取值范围、化简运算(填空、解答题4分)二、方程与不等式:1、解分式方程(易错点:注意验根)、一元二次方程(常考解答题)2、解不等式、解集旳数轴表达、解不等式组解集(常考解答题)3、解方程组、列方程(组)解应用题(若为分式方程仍勿忘检查)(必考解答题)4、一元二次方程根旳鉴别式三、函数及其图像1、平面直角坐标系与函数1)函数自变量取值范围,并会求函数值;2)坐标系内点旳特性;3)能结合图像对简朴实际问题中旳函数关系进行分析(选择8题)2、一次函数(一般与反比例函数相结合,以解答题形式出现。
)3、反比例函数4、二次函数(必考解答题,基本在24题出现,一般是求解析式以及与特殊几何图形综合,动态探究等,有时也在选择题第八题中出现。
)II、空间与图形一、图形旳认识1、立体图形、视图和展开图(不是常考题型,不过假如出现则以选择题形式出现)2、线段、射线、直线(其中垂直平分线、线段中点性质及应用常在解答题中出现,两点间线段最短常用于处理途径最短旳问题)3、角与角分线(解答题)4、相交线与平行线5、三角形(三角形旳内角和、外角和、三边关系常以选择题形式出现,而三角形中位线旳性质应用又是解答题中常用旳添加辅助线旳措施,其中有关三角形全等旳性质、鉴定是必考解答题,三角形运动、折叠、旋转、平移(全等变换)、拼接等又是探究问题中旳重要考点之一)6、等腰三角形与直角三角形(该考点常与四边形与圆相结合在解答题中出现,而与函数综合形成代数几何综合题,也是必考旳解答题)7、多边形:内角和公式、外角和定理(选择题)8、四边形(特殊旳平行四边形:性质、鉴定、以及与轴对称、旋转、平移和函数等结合应用以动点问题、面积问题及有关函数解析式问题出现,同步,梯形问题是中考中旳必考解答题,而与四边形有关旳图形探究题又是最终一道解答题25题旳一般考察形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学试卷一、选择题1、如图,AB 是O ⊙的直径,AD 是O ⊙的切线,点C 在O ⊙上,BC OD ∥,23AB OD ==,,则BC 的长为( ) A .23 B .32CD2、关于x 的函数y =k (x +1)和y =(k ≠0)在同一坐标系中的图象大致是( )3、(2014•随州,第8题3分)关于反比例函数y =的图象,下列说法正确的是( )4.(2014•重庆A ,第12题4分)如图,反比例函数y =﹣在第二象限的图象上有两点A 、B ,它们的横坐标分别为﹣1,﹣3,直线AB 与x 轴交于点C ,则△AOC 的面积为( )A .8 B .10 C .12 D. 245.(4分)(2014•贵州黔西南州, 第9题4分)已知如图,一次函数y =ax +b 和反比例函数y =的图象相交于A 、B 两点,不等式ax +b >的解集为( )A . x <﹣3B . ﹣3<x <0或x >1C . x <﹣3或x >1D . ﹣3<x <16、(2014衡阳,第11题3分)圆心角为120,弧长为12π的扇形半径为【 】A .6B .9C .18D .367.如图1,在Rt △ABC 中,∠ACB=900,点P 以每秒1cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止。
过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示。
当点P 运动5秒时,PD 的长是【 】A .1.5cmB .1.2cmC .1.8cmD .2cm8.如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数1my =x的图象经过点A ,反比例函数2ny =x的图象经过点B ,则下列关于m ,n 的关系正确的是A. m=﹣3nB. m =C. m =D. m二、填空题1.在△ABC 中,∠B=35°,AD 是BC 边上的高,并且DC BD AD ·=2,则∠BCA 的度数为 。
2.如图,□ABCD 中,E 是AB 中点,F 在AD 上,且AF =12FD ,EF 交AC 于G ,则AG ︰AC =______.3从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是4、第45届世界体操锦标赛将于2014年10月3日至12日在南宁隆重举行,届时某校将从小记者团内负责体育赛事报道的3名同学(2男1女)中任选2名前往采访,那么选出的2名同学恰好是一男一女的概率是5、一般地,如果在一次实验中,结果落在区域D 中每一个点都是等可能的,用A 表示“实验结果落在D 中的某个小区域M 中”这个事件,那么事件A 发生的概率P A =.如图,现在等边△ABC 内射入一个点,则该点落在△ABC 内切圆中的概率是6、直径为10cm的⊙O中,弦AB=5cm,则弦AB所对的圆周角是.7、(2014•青岛,第12题3分)如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C 的切线,且∠BDC=110°.连接AC,则∠A的度数是°.8、把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为5.9、一圆锥体形状的水晶饰品,母线长是10cm,底面圆的直径是5cm,点A为圆锥底面圆周上一点,从A点开始绕圆锥侧面缠一圈彩带回到A点,则彩带最少用多少厘米(接口处重合部分忽略不计)()A.10πcm B.10cm C.5πcm D. 5cm三、解答题1、如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.(1)AC与CD相等吗?为什么?(2)若AC=2,OD的长度.2.如图,△ABC内接于⊙O,∠B=600,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若O的直径.3.如图,AB为⊙O的直径,C为⊙O上一点,AD的过C点的直线互相垂直,垂足为D,且AC平分∠DAB.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为3,AD=4,求AC的长.4、(2014•宁夏,第23题8分)在等边△ABC中,以BC为直径的⊙O与AB交于点D,DE⊥AC,垂足为点E.(1)求证:DE为⊙O的切线;(2)计算.5、(2014•陕西,第24题8分)如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6,过点B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.(1)求证:AD平分∠BAC;(2)求AC的长.6、如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2.(1)求证:AC是⊙O的切线;(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)7、(2014•四川成都,第19题10分)如图,一次函数y=kx+5(k为常数,且k≠0)的图象与反比例函数y=﹣的函数交于A(﹣2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.8、(2014•泰州,第26题,14分)平面直角坐标系xOy中,点A、B分别在函数y1=(x>0)与y2=﹣(x<0)的图象上,A、B的横坐标分别为a、b.(第1题图)(1)若AB∥x轴,求△OAB的面积;(2)若△OAB是以AB为底边的等腰三角形,且a+b≠0,求ab的值;(3)作边长为3的正方形ACDE,使AC∥x轴,点D在点A的左上方,那么,对大于或等于4的任意实数a,CD边与函数y1=(x>0)的图象都有交点,请说明理由.9、(2014•黔南州,第22题8分)如图的方格地面上,标有编号A、B、C的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的鸟,将随意地落在图中的方格地面上,问小鸟落在草坪上的概率是多少?(2)现从3个小方格空地中任意选取2个种植草坪,则刚好选取A和B的2个小方格空地种植草坪的概率是多少(用树形图或列表法求解)?10、(2014•四川广安,第21题6分)大课间活动时,有两个同学做了一个数字游戏:有三张正面写有数字﹣1,0,1的卡片,它们背面完全相同,将这三张卡片背面朝上洗匀后,其中一个同学随机抽取一张,将其正面的数字作为p的值,然后将卡片放回并洗匀,另一个同学再从这三张卡片中随机抽取一张,将其正面的数字作为q值,两次结果记为(p,q).(1)请你帮他们用树状图或列表法表示(p ,q )所有可能出现的结果; (2)求满足关于x 的方程x 2+px +q =0没有实数解的概率.11.如图,抛物线与x 轴交于A (1,0)、B (﹣3,0)两点,与y 轴交于点C (0,3),设抛物线的顶点为D .(1)求该抛物线的解析式与顶点D 的坐标. (2)试判断△BCD 的形状,并说明理由.(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与△BCD 相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由.12、如图,在平面直角坐标系xOy 中,顶点为M 的抛物线()2y ax bx a 0>=+经过点A 和x 轴正半轴上的点B ,AO=OB=2,∠AOB=1200.(1)求这条抛物线的表达式;(2)连接OM ,求∠AOM 的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.13、如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD ∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).15、在△ABC中,∠ACB=90°,∠A<45°,点O为AB中点,一个足够大的三角板的直角顶点与点O重合,一边OE经过点C,另一边OD与AC交于点M.(1)如图1,当∠A=30°时,求证:MC2=AM2+BC2;(2)如图2,当∠A≠30°时,(1)中的结论是否成立?如果成立,请说明理由;如果不成立,请写出你认为正确的结论,并说明理由;(3)将三角形ODE 绕点O 旋转,若直线OD 与直线AC 相交于点M ,直线OE 与直线BC 相交于点N ,连接MN ,则MN 2=AM 2+BN 2成立吗? 答: (填“成立”或“不成立”)17、抛物线y=﹣x 2平移后的位置如图所示,点A ,B 坐标分别为(﹣1,0)、(3,0),设平移后的抛物线与y 轴交于点C ,其顶点为D .(1)求平移后的抛物线的解析式和点D 的坐标; (2)∠ACB 和∠ABD 是否相等?请证明你的结论; (3)点P 在平移后的抛物线的对称轴上,且△CDP 与△ABC 相似,求点P 的坐标.18、如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点C (0,-3),点P 是直线BC 下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO,PC,并将△POC沿y轴对折,得到四边形POP'C.是否存在点P,使四边形POP'C 为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.。