数学建模中插值的运用

合集下载

数学建模数学实验插值及案例

数学建模数学实验插值及案例

数学建模数学实验插值及案例在科学研究和工程实践中,数学建模扮演着至关重要的角色。

通过建立数学模型,我们可以对现实世界的现象进行模拟和预测。

其中,插值方法是一种重要的数学建模工具,用于估计在给定数据点之间的未知值。

本文将探讨插值方法的基础理论以及一个具体的数学实验案例。

插值方法是一种数学技术,通过在给定的数据点之间估计未知的值。

最常用的插值方法包括线性插值、多项式插值和样条插值等。

线性插值是最简单的插值方法,它将数据点之间的变化视为线性的,即变化率保持恒定。

多项式插值方法则通过构建一个多项式函数来逼近数据点的变化趋势。

样条插值则通过将数据点连接成平滑的曲线来进行插值。

本案例将利用多项式插值方法对房价进行预测。

我们收集了一组房屋价格数据,包括房屋的面积、房龄、位置等信息。

然后,我们使用多项式插值方法构建一个函数来描述房价与这些因素之间的关系。

通过调整多项式的阶数,我们可以控制模型的复杂性。

我们使用该模型来预测新的房价。

在本案例中,我们使用了200个样本数据进行训练,并使用另外100个数据点进行测试。

我们发现,通过增加多项式的阶数,模型的预测精度可以得到提高。

然而,当阶数增加到一定程度后,模型的性能改善不再明显。

我们还发现模型的预测结果对训练数据的分布非常敏感,对于分布偏离较大的新数据点,预测结果可能会出现较大误差。

通过本次数学实验,我们深入了解了插值方法在数学建模中的应用。

在实际问题中,插值方法可以帮助我们更好地理解数据的变化趋势和预测未知的值。

然而,插值方法也存在一定的局限性,如本实验中模型对训练数据分布的敏感性。

未来工作中,我们可以尝试采用其他更加复杂的模型,如神经网络、支持向量机等来提高预测精度。

我们还应充分考虑数据的分布特性,以提高模型的泛化能力。

插值方法是数学建模中的重要工具之一,它可以让我们更好地理解和预测数据的趋势。

通过本次数学实验,我们深入了解了多项式插值方法的工作原理和实现过程,并成功地将其应用于房价预测问题中。

数学建模插值与拟合

数学建模插值与拟合

数学建模插值与拟合数据插值与拟合插值与插值函数:已知由(可能未知或⾮常复杂)产⽣的⼀批离散数据,且个互异插值节点,在插值区间内寻找⼀个相对简单的函数,使其满⾜下列插值条件:再利⽤已求得的计算任⼀⾮插值节点的近似值,这就是插值。

其中称为插值函数,称为被插函数。

最⼩⼆乘拟合:已知⼀批离散的数据,互不相同,寻求⼀个拟合函数,使与的误差平⽅和在最⼩⼆乘意义下最⼩。

在最⼩⼆乘意义下确定的称为最⼩⼆乘拟合函数。

1)Lagrange插值法a.待定系数法:假设插值多项式,利⽤待定系数法即可求得满⾜插值条件的插值函数。

关键在于确定待定系数。

b.利⽤基函数的构造⽅法⾸先构造个满⾜条件:的次插值基函数,再将其线性组合即可得如下的Lagrange插值多项式:其中c.Lagrange插值余项注:上述两种构造⽅法所得的Lagrange插值多项式是⼀样的,即满⾜插值条件的Lagrange插值多项式是唯⼀的。

2)分段线性插值作分段线性插值的⽬的在于克服Lagrange插值⽅法可能发⽣的不收敛性缺点。

所谓分段线性插值就是利⽤每两个相邻插值节点作线性插值,即可得如下分段线性插值函数:其中特点:插值函数序列具有⼀致收敛性,克服了⾼次Lagrange插值⽅法的缺点,故可通过增加插值节点的⽅法提⾼其插值精度。

但存在于节点处不光滑、插值精度低的缺点。

3)三次样条插值三次样条插值的⽬的在于克服Lagrange插值的不收敛性和提⾼分段线性插值函数在节点处的光滑性。

所谓三次样条插值⽅法就是在满⾜下列条件:a.b.在每个⼦区间上是三次多项式的三次样条函数中寻找满⾜如下插值条件:以及形如等边界条件的插值函数的⽅法。

特点:三次样条插值函数序列⼀致收敛于被插函数,因此可通过增加节点的⽅法提⾼插值的精度。

4)插值⽅法的Matlab实现⼀维数据插值MATLAB中⽤函数interp1来拟合⼀维数据,语法是YI = INTERP1(X,Y,XI,⽅法)其中(X,Y)是已给的数据点,XI 是插值点,其中⽅法主要有'linear' -线性插值,默认'pchip' -逐段三次Hermite插值'spline' -逐段三次样条函数插值其中最后⼀种插值的曲线⽐较平滑例:x=0:.12:1; x1=0:.02:1;y=(x.^2-3*x+5).*exp(-5*x).*sin(x);plot(x,y,'o'); hold on;y1=interp1(x,y,x1,'spline');plot(x1,y1,':')如果要根据样本点求函数的定积分,⽽函数⼜是⽐较光滑的,则可以⽤样条函数进⾏插值后再积分,在MATLAB 中可以编写如下程序:function y=quadspln(x0,y0,a,b)f=inline(‘interp1(x0,y0,x,’’spline’’)’,’x’,’x0’,’y0’);y=quadl(f,a,b,1e-8,[],x0,y0);现求six(x)在区间[0,pi]上的定积分,只取5点x0=[0,0.4,1,2,pi];y0=sin(x0);I=quadspln(x0,y0,0,pi)结果得到的值为 2.01905,精确值为2⼆元函数插值:MATLAB中⽤函数interp2来拟合⼆维⽹格(X,Y)上的数据Z,语法是YI = INTERP2(X,Y, Z,XI, YI,⽅法)其中(X,Y,Z)是已给的数据点,(XI,YI)是插值点坐标,其中⽅法主要有'linear' -线性插值,默认'pchip' -逐段三次Hermite插值'spline' -逐段三次样条函数插值其中最后⼀种插值的曲⾯⽐较平滑例:[x,y]=meshgrid(-3:.6:3,-2:.4:2);z=(x.^2-2*x).*exp(-x.^2-y.^2-x..*y);[x1,y1]=meshgrid(-3:.2:3,-2:.2:2);%⽣成⽹格,x1和y1均为同样size的矩阵z1=interp2(x,y,z,x1,y1,’spline’); %z1是矩阵,size 和x1,y1相同surf(x1,y1,z1);axis([-3,3,-2,2,-0.7,1.5]);-33如果数据不是在⽹格上取的,则可⽤函数griddata 来解决语法是YI = griddata(X,Y, Z ,XI, YI ,‘v4’)其中(X , Y ,Z )是已给的数据点,(XI ,YI )是插值点坐标,其中除了⽅法‘v4’外还有 'linear' -线性插值,默认 'cublc' -逐段三次Hermite 插值 'nearest' 其中‘v4’⽅法⽐较好例x=-3+6*rand(200,1); %⽣成随机点的x坐标向量xy=-2+4*rand(200,1); %⽣成随机点的y坐标向量yz=(x.^2-2*x).*exp(-x.^2-y.^2-x.*y); % 上述点的样本值向量z[x1,y1]=meshgrid(-3:.2:3,-2:.2:2); %⽣成⽹格,x1和y1均为同样size的矩阵z1=griddata(x,y,z,x1,y1,’v4’);surf(x1,y1,z1);axis([-3,3,-2,2,-0.7,1.5]);⽣成的图类似上图。

插值算法的介绍及其在数学建模中的应用

插值算法的介绍及其在数学建模中的应用

插值算法的介绍及其在数学建模中的应⽤⽬录插值算法的介绍及其在数学建模中的应⽤%本⽂根据清风数学建模课程插值算法及相关资料总结⽽成,仅供学习使⽤%本⽂参考了(),对介绍的顺序及内容进⾏了改进%由于本⽂仅仅是简要介绍插值算法在建模中的应⽤,因此样条插值的可微性证明等各种复杂繁琐的部分在本⽂中不再引⼊%本⽂仅介绍⼀维数据的插值,多维数据的插值⽅法与⼀维插值类似⼀、插值的介绍及其作⽤数模⽐赛中,常常需要根据已知的样本点进⾏数据的处理和分析,⽽有时候现有数据较少或数据不全,不⾜以⽀撑分析的进⾏,这时就需要使⽤插值法“模拟产⽣”⼀些新的但⼜⽐较靠谱的值来满⾜需求,这就是插值的作⽤。

%在直观上,插值就是找到⼀个连续函数使其经过每个样本点%插值法还可⽤于短期的预测问题(插值与拟合经常会被弄混,为了区分,这⾥简要介绍⼀下拟合:即找到⼀个函数,使得该函数在最⼩⼆乘的意义下与已知样本点的总体差别最⼩,该函数不⼀定要经过样本点。

通常情况下,拟合要求已知样本点的数据较多,当数据较少时不适⽤)⼆、插值法原理三、插值法的分类%注:下⾯的1、2、3、4 并⾮是并列关系,⼏个部分之间也有交叉,⽬的在于逐渐引出数学建模中最常⽤的两种插值⽅法:三次样条插值与三次埃尔⽶特插值。

1、普通多项式插值多项式插值中,拉格朗⽇插值与⽜顿插值是经典的插值⽅法,但它们存在明显的龙格现象(下⾯会解释龙格现象),且不能全⾯反映插值函数的特性(仅仅保证了插值多项式在插值节点处与被插函数有相等的函数值)。

然⽽在许多实际问题中,不仅要求插值函数与被插值函数在所有节点处有相同的函数值,它也需要在⼀个或全部节点上插值多项式与被插函数有相同的低阶甚⾄⾼阶的导数值。

对于这些情况,拉格朗⽇插值和⽜顿插值都不能满⾜。

因此,数学建模中⼀般不使⽤这两种⽅法进⾏插值,这⾥也不再介绍这两种⽅法。

龙格现象(Runge phenomenon): 1901年,Carl Runge 在他的关于⾼次多项式插值风险的研究中,发现⾼次插值函数可能会在两端处波动极⼤,产⽣明显的震荡,这种现象因此被称为龙格现象。

插值法的应用与研究

插值法的应用与研究

插值法的应用与研究插值法是一种计算技术,它能够根据已知的函数或数据点,以计算更新的函数或数据点来进行拟合和外推。

插值算法的应用及其研究十分普遍,几乎每一个工程领域都可以看见它的身影。

本文将详细介绍插值法的应用、研究方法以及研究成果。

一、插值法在工程领域的应用1、物理建模中的应用插值可用于实验物理中的数值拟合,以进行物体状态表述;几何建模和曲面绘制中利用插值可以构建复杂的模型,以描述物体形状;统计方面插值可以用于估计场地内物理参量分布,如土壤、空气温度等;再者,建模还可以用插值法确定关节的运动轨迹。

2、数据处理中的应用插值法在数据处理中也能有很大的作用,用来平滑多峰型数据,以提高信号处理方法的精度;用来增大数据采样精度,以更加精准地表示动画和图像;用来求取自然界特征参量,以更准确地描述物体轨迹。

三、插值法的研究方法插值法的研究主要由以下方面组成:1、插值模型的建立常用的插值模型有牛顿插值、拉格朗日插值等,为了更精准地拟合函数,研究者在此基础上推出了多项式插值、多元插值等模型。

2、插值算法的设计插值算法主要是围绕以上各种插值模型设计的,可以采用基本设计,也可以采用复杂设计,以实现更快、更准确的数据拟合。

3、插值精度的验证插值精度由拟合准确度及影响因素决定,实验中可以设计精细的试验,以验证插值算法的准确性。

四、插值法的研究成果插值法的研究取得了令人满意的成果。

1、在应用拉格朗日插值法研究中,研究者提出了一种改进算法,在计算速度上比基本算法有较大提升;并提出了一种时变拉格朗日插值,在实验数据拟合中精度提高较多;2、常用的复合插值算法,如Lanczos插值法和样条插值法,在实际应用中也发挥了良好的效果。

3、研究者还提出了多项式插值算法,更超越了常规方法,在特定条件下可以实现更高的准确度,如以采样数据的准确度、计算速度和内存利用量等方面。

以上就是插值法的应用及其研究的相关内容,插值法在实际应用中,不仅发挥了关键的作用,也取得了满意的效果,它也必将迎来更大的发展空间。

数学建模之Newton 插值法

数学建模之Newton 插值法
15h0称为步长此时可以使用差分来简化newton插值公式教材上简称为差分定义为一阶向前差分16高阶差分二阶向前差分规定17定义不变算子阶差分的具体表达式1822差分表matlab相关函数
计算方法
第二章
插值法
—— Newton 插值法
1
Newton 插值
为什么 Newton 插值
Lagrange 插值简单易用,但若要增加一个节点时,全部基函 数 lk(x) 都需重新计算,不太方便。
13
插值举例
可以看出,当增加一个节点时,牛顿插值公式只 需在原来的基础上增加一项,前面的计算结果仍 然可以使用。与拉格朗日插值相比,牛顿插值具 有灵活增加节点的优点!
注:增加插值节点时,须加在已有插值节点的后面!
14
向前差分
在实际应用中,通常采用等距节点: xi = x0 + i h ,i = 1, 2, …, n h>0,称为步长
Nn(x)
f [ x, x0 , ... , xn ]( x x0 )...(x xn1 )( x xn )
Rn(x)
10
Newton 插值公式
f (x) = Nn(x) + Rn(x)
N n ( x ) a0 a1 ( x x0 ) a2 ( x x0 )( x x1 ) an ( x xi )
f ( k ) ( ) f [ x0 , x1 , , xk ] k!
差商的等价定义:(教材上的所采用的定义) f [ x0 , , xk 2 , xk ] f [ x0 , , xk 1 ] f [ x0 , x1 , , xk ] xk xk 2 若 h(x) = c f(x),则 h[ x0 , x1 ,, xk ] c f [ x0 , x1 ,, xk ] 若 h(x) = f(x) + g(x),则 h[ x0 , x1 ,, xk ] f [ x0 , x1 ,, xk ] g[ x0 , x1 ,, xk ]

插值法补全数据建模实例

插值法补全数据建模实例

插值法补全数据建模实例插值法是一种数据建模方法,可以用于补全数据。

下面是一个利用插值法补全数据建模的实例:题目:利用插值算法将偶数周的数据补全,并画出图线。

使用的函数和方法:- 直接从Excel 赋值创建矩阵。

- 使用`size()`函数获取矩阵的大小(1 为获取行数,2 为获取列数)。

- 创建字符串数组。

- 创建0 矩阵`zeros()`。

- 三次样条插值`spline`,三次埃尔米特插值`pchip()`。

- 画图`plot()`:颜色、点型、线型、线宽(`linewidth`)。

- 画子图`subplot(m,n,p)`。

- 设置`xy`坐标名称:`xlabel`,`ylabel`。

- 设置图的标题:`title()`。

代码:```clc;week =(1,3,5,7,9,11,13,15);name = ("轮虫(10^6/L)","溶氧(mg/l)","COD(mg/l)","水温(℃)","PH 值","盐度","透明度(cm)","总碱度","氯离子","透明度","生物量");%y 矩阵直接用从 Excel 复制创建result_spline = zeros(size(sample,1),15);%用于接收使用样条插值之后的全部结果result_pchip = zeros(size(sample,1),15);new_week =1 : 15;%遍历全部指标,利用三次样条插值进行计算for row =1 : size(sample , 1)row_sample = sample(row , :);```在这个例子中,我们使用了三次样条插值和三次埃尔米特插值来补全偶数周的数据,并将结果存储在`result_spline`和`result_pchip`矩阵中。

数值分析在数学建模中的应用

数值分析在数学建模中的应用

数值分析在数学建模中的应用数值分析是数学中的一个重要分支,它主要研究用计算机计算方法解决数学问题的理论和方法。

在数学建模中,数值分析发挥着非常重要的作用,可以帮助我们更好地理解和解决实际问题。

本文将探讨数值分析在数学建模中的应用。

一、插值法插值法是数值分析中常用的一种方法,其基本思想是根据一些已知的数据点,推导出这些数据点之间的未知数值。

在数学建模中,我们常常需要根据给定的数据点去估计其他数据点的数值。

插值法可以帮助我们根据已知数据点推导出未知数据点,从而更好地分析和处理问题。

二、数值解微分方程微分方程在数学建模中是非常重要的,它描述了很多现实世界中的现象和规律。

但是有些微分方程很难或者无法通过解析方法求解,这时就需要借助数值分析的方法。

数值解微分方程可以帮助我们模拟和预测各种现象的发展趋势,为实际问题的研究和应用提供帮助。

三、最优化问题在数学建模中,有很多问题可以归结为最优化问题,即在一定条件下寻找使某个函数值达到最大或最小的变量取值。

数值分析中的最优化方法可以帮助我们求解各种最优化问题,例如线性规划、非线性规划等。

这些方法可以有效地提高问题的求解效率,为决策提供重要的参考依据。

四、线性代数问题线性代数在数学建模中也占据着重要地位,许多实际问题可以用线性代数的方法进行建模和求解。

在数值分析中,我们可以通过矩阵运算、线性方程组等方法解决各种线性代数问题,从而更好地理解和处理实际问题。

这些方法在计算机科学、金融工程、物理学等领域都得到了广泛的应用。

五、误差分析数值分析中的另一个重要问题是误差分析,即通过分析数值计算中的误差来源和传播规律,评估数值计算的可靠性和准确性。

误差分析可以帮助我们提高数值计算的精度和稳定性,避免因误差累积导致的计算结果不准确。

在数学建模中,误差分析是不可或缺的一部分,可以帮助我们更加准确地理解和解决实际问题。

综上所述,数值分析在数学建模中发挥着重要的作用,可以帮助我们更好地理解和解决各种实际问题。

数学建模中的插值问题

数学建模中的插值问题
X Y 1200 1600 2000 2400 2800 3200 3600 1200 1130 1320 1390 1500 1500 1500 1480 1600 1250 1450 1500 1200 1200 1550 1500 2000 1280 1420 1500 1100 1100 1600 1550 2400 1230 1400 1400 1350 1550 1550 1510 2800 1040 1300 900 1450 1600 1600 1430 3200 900 700 1100 1200 1550 1600 1300 3600 500 900 1060 1150 1380 1600 1200 4000 700 850 950 1010 1070 1550 980
第二片(上三角形区域):(x, y)满足
y y j1 y j x i 1 x i (x x i ) y i
插值函数为:
f ( x, y) f1 (f 4 f1 )( y y j ) (f 3 f 4 )( x x i )
注意:(x, y)当然应该是在插值节点所形成的矩形区 域内。显然,分片线性插值函数是连续的; 返回 24
7
称为拉格朗日插值基函数。
拉格朗日(Lagrange)插值
特别地: 两点一次(线性)插值多项式:
L1 x
x x1
x0 x1
y0
x x0
x1 x0
y1
三点二次(抛物)插值多项式:
x x0 x x 2 x x0 x x1 x x1 x x2 L2 x y0 y1 y2 x0 x1 x0 x2 x1 x0 x1 x2 x2 x0 x2 x1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例:测得平板表面3×5网格点处的温度分别为: 82 81 80 82 84 79 63 61 65 81 84 84 82 85 86 试作出平板表面的温度分布曲面z=f(x,y)的图形.
1.先在三维坐标画出原始数据,画出粗糙的温度分布曲线图. 输入以下命令:
x=1:5; y=1:3; temps=[82 81 80 82 84;79 63 61 65 81;84 84 82 85 86]; mesh(x,y,temps)
返回
分段线性插值
y

xj-1 xj



Ln ( x ) y j l j ( x )j 0 n Nhomakorabeax0
xj+1
xn
x
x x j 1 , x j 1 x x j n越大,误差越小. x j x j 1 x x j 1 l j ( x) , x j x x j 1 lim Ln ( x) g ( x), x0 x x j x j 1 n 0, 其他
* *
y
*
y1 y0





x0 x1 x*
xn
返回
拉格朗日(Lagrange)插值
已知函数f(x)在n+1个点x0,x1,…,xn处的函数值为 y0,y1,…,yn .求一n次多项式函数Pn(x),使其满足: Pn(xi)=yi,i=0,1,…,n. 解决此问题的拉格朗日插值多项式公式如下
返回
分片线性插值
y
(xi, yj+1) (xi+1, yj+1) (xi, yj) (xi+1, yj)







x
O
将四个插值点(矩形的四个顶点)处的函数值依次 简记为: f (xi, yj)=f1,f (xi+1, yj)=f2,f (xi+1, yj+1)=f3,f (xi, yj+1)=f4
分两片的函数表达式如下:
第一片(下三角形区域): (x, y)满足
插值函数为: f ( x, y ) f1 ( f 2 f1 )(x xi ) ( f 3 f 2 )( y y j )
第二片(上三角形区域):(x, y)满足 y j 1 y j y ( x xi ) yi xi 1 xi 插值函数为: f ( x, y ) f1 ( f 4 f1 )( y y j ) ( f 3 f 4 )(x xi )
用MATLAB作网格节点数据的插值
z=interp2(x0,y0,z0,x,y,’method’)
被插值点 的函数值
插值 节点
被插值点
插值方法
‘nearest’ 最邻近插值; ‘linear’ 双线性插值; ‘cubic’ 双三次插值;
缺省时 双线性插值. 要求x0,y0单调;x,y可取为矩阵,或x 取行向量,y取为列向量,x,y的值分别不能超 出x0,y0的范围.
To MATLAB (temp)

已知飞机下轮廓线上数据如下,求x每改变0.1时的y值.
X Y 0 0 3 1.2 5 1.7 7 2.0 9 2.1 11 2.0 12 1.8 13 1.2 14 1.0 15 1.6
y
机翼下 轮廓线




x
To MATLAB(plane) 返回
直接验证可知, Ln x 满足插值条件.

1 g ( x) , 5 x 5 2 1 x
采用拉格朗日多项式插值:选取不同插值 节点n+1个,其中n为插值多项式的次数,当n分 别取2,4,6,8,10时,绘出插值结果图形.
To MATLAB lch(larg1)
拉格朗日多项式插值的 这种振荡现象叫 Runge现象
lim S ( x ) g ( x )
n
g(x)为被插值函数.

1 g ( x) , 6 x 6 2 1 x
用三次样条插值选取11个基点计算插值(ych) To MATLAB ych(larg1)
返回
用MATLAB作插值计算
一维插值函数: yi=interp1(x,y,xi,'method')
si ( xi ) si 1 ( xi ), si( xi ) si1 ( xi ), si( xi ) si1 ( xi ) (i 1, , n 1)
4) S ( x0 ) S ( xn ) 0 ( 自然边界条件) 2) 3) 4) ai , bi , ci , di S ( x)
三次样条插值
S ( x) {si ( x), x [ xi1 , xi ], i 1, , n}
1) si ( x) ai x 3 bi x 2 ci x d i (i 1, , n) 2) S ( xi ) yi (i 0,1, , n) 3) S ( x) C 2 [ x0 , xn ]
返回
三次样条插值
比分段线性插值更光滑
y



a
xi-1 xi
b
x
在数学上,光滑程度的定量描述是:函数(曲 线)的k阶导数存在且连续,则称该曲线具有k阶光 滑性. 光滑性的阶次越高,则越光滑.是否存在较低 次的分段多项式达到较高阶光滑性的方法?三次 样条插值就是一个很好的例子.
2.以平滑数据,在 x、y方向上每隔0.2个单位的地方进行插值.
再输入以下命令:
xi=1:0.2:5; yi=1:0.2:3;
zi=interp2(x,y,temps,xi',yi,'cubic');
mesh(xi,yi,zi) 画出插值后的温度分布曲面图. To MATLAB (wendu)
例 山区地貌:
计算量与n无关;
xn

用分段线性插值法求插值,并观察插值误差.
1 g ( x) , 6 x 6 2 1 x
1.在[-6,6]中平均选取5个点作插值(xch11)
2.在[-6,6]中平均选取11个点作插值(xch12)
3.在[-6,6]中平均选取21个点作插值(xch13)
4.在[-6,6]中平均选取41个点作插值(xch14) To MATLAB xch11,xch12, xch13, xch14.
数学建模与数学实验
插 值
实验目的
1.了解插值的基本内容.
实验内容
[1]一维插值 [2]二维插值
[3]实验作业
一 一、插值的定义 二、插值的方法



拉格朗日插值
分段线性插值
三次样条插值 三、用MATLAB解插值问题
返回
二维插值
一、二维插值定义 二、网格节点插值法
最邻近插值 分片线性插值 双线性插值
二维插值的定义
第一种(网格节点):
y
O
x
已知 mn个节点
其中 互不相同,不妨设
构造一个二元函数
通过全部已知节点,即
再用
计算插值,即
第二种(散乱节点):
y



O
x
已知n个节点
其中 互不相同,
称为拉格朗日插值基函数.
拉格朗日(Lagrange)插值
特别地: 两点一次(线性)插值多项式:
x x0 x x1 L1 x y0 y1 x0 x1 x1 x0
三点二次(抛物)插值多项式:
x x1 x x2 y x x0 x x2 y x x0 x x1 y L2 x 0 1 2 x0 x1 x0 x2 x1 x0 x1 x2 x2 x0 x2 x1
构造一个二元函数
通过全部已知节点,即
再用
计算插值,即
返回
y


(x1, y2)
最邻近插值
(x2, y2) x
(x1, y1) (x2, y1)
O
二维或高维情形的最邻近插值,与被插值点最邻近的 节点的函数值即为所求. 注意:最邻近插值一般不连续.具有连续性的最简单 的插值是分片线性插值.
三、用MATLAB解插值问题
网格节点数据的插值
散点数据的插值
返回
一维插值的定义
已知 n+1个节点 ( x j , y j ) ( j 0,1,, n,其中 x j
互不相同,不妨设 a x0
*
x1 xn b),
求任一插值点
x ( x j ) 处的插值 y * .
节点可视为由
通过此例对最近邻点插值、双线性插值方法和双三次插值方法的插 值效果进行比较.
To MATLAB (moutain) 返回
用MATLAB作散点数据的插值计算
插值函数griddata格式为: cz =griddata(x,y,z,cx,cy,‘method’)
被插值点 的函数值
Pn ( x) Li ( x) yi
i 0
n
其中Li(x) 为n次多项式:
( x x0 )( x x1 ) ( x xi 1 )(x xi 1 ) (x xn ) Li ( x) ( xi x0 )( xi x1 ) ( xi xi 1 )( xi xi 1 ) ( xi xn )
hours=1:12; temps=[5 8 9 15 25 29 31 30 22 25 27 24]; h=1:0.1:12; t=interp1(hours,temps,h,'spline'); (直接输出数据将是很多的) plot(hours,temps,'+',h,t,hours,temps,'r:') %作图 xlabel('Hour'),ylabel('Degrees Celsius’)
相关文档
最新文档