2010学年度第二学期普陀区初三质量调研数学试卷答案(完全版)
2010学年度第二学期普陀区高三年级质量调研数学试卷标准答案1104B

n
(x,
y,
z)
,则有
n
EF
0
得到 y 0, z xx0 ,取 x 1,所以 n
(1,0, x0 ) ,则
n EQ 0
EA n n
0.8
,又
x0
0
,解得
x0
4 3
,所以点
Q( 4 ,2,0) 3
即
CQ
( 2 ,0,0) 3
,则
CQ 2 .所以在线段 CD 上存在一点 Q 满足条件,且长度为 2 .
所以, AB OG bd ac 0 ,即 AB OG . 2
故 O 、 G 、 H 必定三点共线.
23. (本题满分 18 分)
(理科)解:(1)因为对角线互相垂直的四边形 ABCD 面积 S AC BD ,而由于 2
AC d 为定长,则当 BD 最大时,四边形 ABCD 面积 S 取得最大值. 由圆的性质,垂直 于 AC 的弦中,直径最长,故当且仅当 BD 过圆心 M 时,四边形 ABCD 面积 S 取得最大 值,最大值为 dr . (2)解法一:由题意,不难发现,当点 P 运动到与圆心 M 重合时,对角线 AC 和 BD 的 长同时取得最大值 AC BD 2r ,所以此时四边形 ABCD 面积 S 取得最大值,最大值
我们可以先确定 a5 , a6 使得 a5 a6 0 ,因为公差不为零的等差数列an 必是单调的
数列,只要它的最大项和最小项在 ( 2,0) (0, 2) 中,即可满足要求. 所以只要 a5 , a6 对
应的点尽可能的接近原点.如取 a5 0.1, a6 0.1,存在满足条件的一个等差数列an 可
上海市普陀区2010年九年级数学质量调研试卷及答案

2009-2010学年度第二学期普陀区初三质量调研数学试卷(时间:100分钟,满分:150分)考生注意:所有答案务必按照规定在答题纸上完成,写在试卷上不给分一、单项选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.下列二次根式中,是同类二次根式的是………………………………………( ).; (B);;.2. 两条对角线互相垂直平分的四边形是………………………………………………( ).(A) 等腰梯形; (B) 菱形; (C) 矩形; (D) 平行四边形.3.下列条件中,能判定两个等腰三角形相似的是……………………………………( ). (A )都含有一个30°的内角; (B )都含有一个45°的内角; (C )都含有一个60°的内角; (D )都含有一个80°的内角.4.如果一元二次方程220x x k -+=有两个不相等的实数根,那么k 的取值X 围是( ).(A) 1k ≥; (B) 1k ≤; (C) 1k >; (D) 1k <.5.如右图,△ABC 中,D 是边BC 的中点,BA a =,AD b =,那么BC 等于…( ).(A )a +b ; (B )12(a +b);(C )2(a +b ); (D )—(a +b).6. 气象台预报“本市明天降水概率是80%”,对此消息,下面几种说法正确的是…( ).(A) 本市明天将有80%的地区降水; (B) 明天降水的可能性比较大; (C) 本市明天降有80%的时间降水; (D) 明天肯定下雨.ADBC 第5题二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置] 7.计算:23(2)a a ⋅=.8.生物学家发现一种病毒的长度约为,用科学记数法表示为 =mm . 9.当a=2时,1a -=.10.不等式组24,50x x >-⎧⎨-<⎩的解集是.11.一元二次方程20(0)ax bx c a ++=≠有一根为零的条件是. 12.将图形(右)绕中心旋转180°后的图形是(画出图形). 13.函数32y x =-的定义域是. 14. 已知一次函数3y kx =+的图像与直线2y x =平行,那么此一次函数的解析式为. 15.梯形ABCD 中,AD ∥BC ,如果∠A=5∠B ,那么∠B=度.16. 在四边形ABCD 中,如果AB ∥CD ,AB=BC ,要使四边形ABCD 是菱形,还需添加一个条件,这个条件可以是.17.如果一斜坡的坡度为i 310米,那么物体升高了米.18.中心角是40°的正多边形的边数是.三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分, 满分78分) 19.化简:1(1)11a a a -÷++. 20.解方程组:2224,2 1.x y x xy y +=⎧⎨-+=⎩ 21.如图,在平行四边形ABCD 中,点G 是BC 延长线上一点,AG 与BD 交于点E ,与DC 交于点F ,第12题如果AB=m,CG=12 BC,求:(1)DF的长度;(2)三角形ABE与三角形FDE的面积之比.22. 如图所示,已知在△ABC中,AB=AC,AD是∠BAC的平分线,交BC于点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE是矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?请加以证明.23.为了引导学生树立正确的消费观,某机构随机调查了一所小学100名学生寒假中使用零花钱的情况(钱数取整数元),根据调查制成了频率分布表,如下:(1)补全频率分布表;(2)使用零化钱钱数的中位数在第组;(3)此机构认为,应对消费200元以上的学生提出勤俭节约的建议,那么应对该校800名学生中约名学生提出此项建议.24. 如图,在平面直角坐标系中,点O为原点,已知点A的坐标为(2,2),点B、C在x轴上,BC=8,AB=AC,直线AC与y轴相交于点D.1)求点C、D的坐标;2)求图象经过B、D、A三点的二次函数解析式及它的顶点坐标.组别分组频数频率12 2034 305 106 5合计25.如图,已知Sin∠ABC=13,⊙O 的半径为2, 圆心O 在射线BC 上,⊙O 与射线BA 相交于E 、F 两点,EF=(1) 求BO 的长;(2) 点P 在射线BC 上,以点P 为圆心作圆,使得⊙P 同时与⊙O 和射线BA 相切, 求所有满足条件的⊙P 的半径.BC 上2009学年度第二学期普陀区九年级质量调研数学试卷参考答案及评分说明一、单项选择题:(本大题共6题,每题4分,满分24分) 1.(A) ; 2.(B) ; 3.(C); 4.(D); 5.(C) ; 6.(B) .二、填空题:(本大题共12题,每题4分,满分48分)7. 45a ; 8. 34.310-⨯; 9. 1;10. 25x -<<; 11.c =0; 12. ;13.2x ≠;14.23y x =+; 15. 30; 16.AB =CD 等; 17.5 ;18. 9. 三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19.解: 原式=1()(1)11a a a a a +-+++…………………………………………………………4′(各2分)=(1)a a -+…………………………………………………………………………………2′第21题=1a a -- ……………………………………………………………………………………2′=1-. ………………………………………………………………………………………2′20.2224,(1)2 1.(2)x y x xy y +=⎧⎨-+=⎩解:由(2)式得到:2()1x y -=,…………………………………………………………………………1′再得到 1x y -=或者1x y -=-,……………………………………………………………1′与(1)式组成方程组:24,1.x y x y +=⎧⎨-=⎩或24,1.x y x y +=⎧⎨-=-⎩……………………………………………3′ 解得:112,1.x y =⎧⎨=⎩,222,35.3x y ⎧=⎪⎪⎨⎪=⎪⎩……………………………………………………………………4′经检验,原方程组的解是:112,1.x y =⎧⎨=⎩,222,35.3x y ⎧=⎪⎪⎨⎪=⎪⎩……………………………………………1′ 21.解:(1)∵四边形ABCD 是平行四边形,∴AB=CD=m ,AB ∥CD . ………………………………2′∵CG =12BC , ∴CG =13BG ,………………………………………………1′∵AB ∥CD ,∴CF CGAB BG=.…………………………………………………………………………………1′ ∴13CF m =, …………………………………………………………………………………1′ ∴23DF m =.…………………………………………………………………………………1′ (2)∵AB ∥CD ,∴△ABE ∽△FDE ,………………………………………………………………………………2′∴239()24ABE FDE S S ∆∆==. …………………………………………………………………………2′∴ 三角形ABE 与三角形FDE 的面积之比为9∶4.22.证明:(1) ∵AB=AC ,AD 是∠BAC 的平分线,∴AD ⊥BC , ………………………………………1′ ∴∠ADC =90°. ∵AD 是∠BAC 的平分线,∴∠1=12∠BAC ,…………………………………1′同理:∠2=12∠MAC .…………………………………1′∵∠BAC +∠MAC=180°. ∴∠1+∠2=90°.即∠EAD =90°. …………………………………1′ ∵CE ⊥AN ,∴∠AEC =90°. …………………………………1′ ∴四边形ADCE 是矩形.…………………………1′(2)当△ABC 是等腰直角三角形时,四边形ADCE 是一个正方形.……………………………1′A BCD EM N第22题12证明:∵∠BAC =90°,AB=AC ,AD 是∠BAC 的平分线,∴AD 是斜边BC 上的中线,∴AD=DC .……………………………………………………………………………………1′ ∵四边形ADCE 是矩形, …………………………………………………………………1′∴四边形ADCE 是正方形.…………………………………………………………………1′23.解:(1)见右,每个数1分,共8分;(2) 3;…………………………………………2′ (3)120.…………………………………………2′24.解:(1)过点A 作AE ⊥x 轴,垂足为点E .…………1′∵点A 的坐标为(2,2),∴点E 的坐标为(2,0∵AB=AC ,BC =8,∴BE=CE , ……………………………………1′点B 的坐标为(-2,0), 点C 的坐标为(6,0组别 分 组频数 频率1 1023 25456合 计1001设直线AC 的解析式为:y kx b =+(0k ≠), 将点A 、C 的坐标代入解析式,得到: 132y x =-+.………………………1′ ∴点D 的坐标为(0,3). …………………1′(2)设二次函数解析式为:2y ax bx c =++(0a ≠), ∵ 图象经过B 、D 、A 三点,∴4230,423 2.a b a b -+=⎧⎨++=⎩ (2)′解得:1,21.2a b ⎧=-⎪⎪⎨⎪=⎪⎩………………………………………………………1′∴此二次函数解析式为:211322y x x =-++. ………………………1′ 顶点坐标为(12,138). ………………………………………………1′ 25.(1)解:联接EO ,过点O 作OH ⊥BA 于点H . ………………2′∵EF=EH………………………………1′∵⊙O 的半径为2,即EO =2,∴OH=1. …………………………………………………1′在Rt△BOH 中,∵Sin∠ABC=13,………………………………………1′ ∴BO=3. …………………………………………………1′(2) 当⊙P与直线相切时,过点P 的半径垂直此直线. …………………………………………1′(a )当⊙P 与⊙O 外切时,DCFABO第25题 E GH①⊙P与⊙O切于点D时,⊙P与射线BA相切,…………………………………………………1′Sin∠ABC=113PPrr=-,得到:14Pr=;………………………………1′②⊙P与⊙O切于点G时,⊙P与射线BA相切,Sin∠ABC =133PPrr=+,得到:52Pr=. ………………………………1′(b) 当⊙P与⊙O内切时,①⊙P与⊙O切于点D时,⊙P与射线BA相切,……………………………1′Sin∠ABC =113PPrr=+,得到:12Pr=;………………………………1′②⊙P与⊙O切于点G时,⊙P与射线BA相切,Sin∠ABC =153PPrr=-,得到:54Pr=. ………………………………1′综上所述:满足条件的⊙P的半径为14、52、12、54.……………………1′。
上海市普陀区2010年中考数学第二次模拟试卷及答案

2009-2010学年度第二学期普陀区初三质量调研数学试卷2010.4(时间:100分钟,满分:150分)考生注意:所有答案务必按照规定在答题纸上完成,写在试卷上不给分题 号 一 二 三 四 总 分得 分一、单项选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.下列二次根式中,与2是同类二次根式的是………………………………………( ).(A) 8; (B) 3- ; (C) 12 ; (D) 48 .2. 两条对角线互相垂直平分的四边形是………………………………………………( ).(A) 等腰梯形; (B) 菱形; (C) 矩形; (D) 平行四边形. 3.下列条件中,能判定两个等腰三角形相似的是……………………………………( ).(A )都含有一个30°的内角; (B )都含有一个45°的内角; (C )都含有一个60°的内角; (D )都含有一个80°的内角.4.如果一元二次方程220x x k -+=有两个不相等的实数根,那么k 的取值范围是( ).(A) 1k ≥; (B) 1k ≤; (C) 1k >; (D) 1k <.5.如右图,△ABC 中,D 是边BC 的中点,BA a =,AD b =,那么BC 等于…( ).(A )a +b ; (B )12(a +b);(C )2(a +b ); (D )—(a +b).6. 气象台预报“本市明天降水概率是80%”,对此消息,下面几种说法正确的是…ADBC 第5题(A) 本市明天将有80%的地区降水; (B) 明天降水的可能性比较大; (C) 本市明天降有80%的时间降水; (D) 明天肯定下雨.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置] 7.计算:23(2)a a ⋅= .8.生物学家发现一种病毒的长度约为0.0043mm ,用科学记数法表示为 = mm . 9.当a=2时,1a -= .10.不等式组24,50x x >-⎧⎨-<⎩的解集是 .11.一元二次方程20(0)ax bx c a ++=≠有一根为零的条件是 . 12.将图形(右)绕中心旋转180°后的图形是 (画出图形). 13.函数312y x =-的定义域是 . 14. 已知一次函数3y kx =+的图像与直线2y x =平行,那么此一次函数的解析式为 .15.梯形ABCD 中,AD ∥BC ,如果∠A=5∠B ,那么∠B= 度.16. 在四边形ABCD 中,如果AB ∥CD ,AB=BC ,要使四边形ABCD 是菱形,还需添加一个条件,这个条件可以是 .17.如果一斜坡的坡度为i =1∶3,某物体沿斜面向上推进了10米,那么物体升高了米.18.中心角是40°的正多边形的边数是 .三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,第12题第21题19.化简:1(1)11a a a -÷++.20.解方程组:2224,2 1.x y x xy y +=⎧⎨-+=⎩21.如图,在平行四边形ABCD 中,点G 是BC 延长线上一点,AG 与BD 交于点E ,与DC 交于点F , 如果AB=m ,CG =12BC , 求:(1)DF 的长度;(2)三角形ABE 与三角形FDE 的面积之比.M22. 如图所示,已知在△ABC 中,AB=AC ,AD 是∠BAC的平分线,交BC 于点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E , (1)求证:四边形ADCE 是矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个 正方形?请加以证明.23. 为了引导学生树立正确的消费观,某机构随机调查了一所小学100名学生寒假中使用零花钱的情况(钱数取整数元),根据调查制成了频率分布表,如下:(1) 补全频率分布表;(2) 使用零化钱钱数的中位数在第 组; (3) 此机构认为,应对消费200元以上的学生提出勤俭节约的建议,那么应对该校800名学生中约名学生提出此项建议.24. 如图,在平面直角坐标系中,点O 为原点,已知点A 的坐标为(2,2),点B 、C 在x 轴上,BC =8,AB=AC ,直线AC 与y 轴相交于点D . 1)求点C 、D 的坐标;2)求图象经过B 、D 、A 三点的二次函数解析式 及它的顶点坐标.组别分 组频数 频率1 0.5—50.5 0.12 50.5—100.5 20 0.23 100.5—150.54 150.5—200.5 30 5 200.5—250.5 10 6250.5—300.5 5 合 计25.如图,已知Sin∠ABC=13,⊙O的半径为2,圆心O在射线BC上,⊙O与射线BA相交于E、F两点,EF=23,(1)求BO的长;(2)点P在射线BC上,以点P为圆心作圆,使得⊙P同时与⊙O和射线BA相切,求所有满足条件的⊙P的半径.BC上D CFA B O第25题EG2009学年度第二学期普陀区九年级质量调研数学试卷参考答案及评分说明一、单项选择题:(本大题共6题,每题4分,满分24分)1.(A) ; 2.(B) ; 3.(C); 4.(D) ; 5.(C) ; 6.(B) .二、填空题:(本大题共12题,每题4分,满分48分)7. 45a ; 8. 34.310-⨯; 9. 1; 10.25x -<<; 11. c =0; 12. ;13.2x ≠; 14.23y x =+; 15. 30; 16.AB =CD 等; 17.5 ; 18. 9. 三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19.解:原式=1()(1)11a a a a a +-+++…………………………………………………………4′(各2分)=(1)a a -+ …………………………………………………………………………………2′=1a a -- ……………………………………………………………………………………2′第21题=1-. ………………………………………………………………………………………2′20.2224,(1)2 1.(2)x y x xy y +=⎧⎨-+=⎩解:由(2)式得到:2()1x y -=,…………………………………………………………………………1′再得到1x y -=或者1x y -=-,……………………………………………………………1′与(1)式组成方程组:24,1.x y x y +=⎧⎨-=⎩或24,1.x y x y +=⎧⎨-=-⎩……………………………………………3′ 解得:112,1.x y =⎧⎨=⎩,222,35.3x y ⎧=⎪⎪⎨⎪=⎪⎩……………………………………………………………………4′ 经检验,原方程组的解是:112,1.x y =⎧⎨=⎩,222,35.3x y ⎧=⎪⎪⎨⎪=⎪⎩……………………………………………1′ 21.解:(1)∵四边形ABCD 是平行四边形,∴AB=CD=m ,AB ∥CD . ………………………………2′∵CG =12BC , ∴CG =13BG ,………………………………………………1′∵AB ∥CD ,∴CF CGAB BG=.…………………………………………………………………………………1′ ∴13CF m =, …………………………………………………………………………………1′ ∴23DF m =.…………………………………………………………………………………1′ (2)∵AB ∥CD ,∴△ABE ∽△FDE ,………………………………………………………………………………2′∴239()24ABE FDE S S ∆∆==. …………………………………………………………………………2′∴ 三角形ABE 与三角形FDE 的面积之比为9∶4.22.证明:(1) ∵AB=AC ,AD 是∠BAC 的平分线,∴AD ⊥BC , ………………………………………1′ ∴∠ADC =90°. ∵AD 是∠BAC 的平分线,∴∠1=12∠BAC ,…………………………………1′同理:∠2=12∠MAC .…………………………………1′∵∠BAC +∠MAC=180°. ∴∠1+∠2=90°.即∠EAD =90°. …………………………………1′ ∵CE ⊥AN ,∴∠AEC =90°. …………………………………1′A CD EM N第22题12∴四边形ADCE 是矩形.…………………………1′(2)当△ABC 是等腰直角三角形时,四边形ADCE 是一个正方形.……………………………1′ 证明:∵∠BAC =90°,AB=AC ,AD 是∠BAC 的平分线,∴AD 是斜边BC 上的中线,∴AD=DC .……………………………………………………………………………………1′ ∵四边形ADCE 是矩形, …………………………………………………………………1′∴四边形ADCE 是正方形.…………………………………………………………………1′23.解:(1)见右,每个数1分,共8分; (2) 3;…………………………………………2′ (3)120.…………………………………………2′24.解:(1)过点A 作AE ⊥x 轴,垂足为点E . (1)∵点A 的坐标为(2,2),∴点E 的坐标为(2,0).……………………1组别 分 组频数 频率1 0.5—50.5 102 50.5—100.53 100.5—150.5 250.25 4 150.5—200.50.3 5 200.5—250.50.1 6250.5—300.50.05 合 计 1001∵AB=AC ,BC =8,∴BE=CE , ……………………………………1′ 点B 的坐标为(-2,0), ……………………1′ 点C 的坐标为(6,0).………………………1′设直线AC 的解析式为:y kx b =+(0k ≠), 将点A 、C 的坐标代入解析式,得到: 132y x =-+.………………………1′ ∴点D 的坐标为(0,3). …………………1′(2)设二次函数解析式为:2y ax bx c =++(0a ≠), ∵ 图象经过B 、D 、A 三点,∴4230,423 2.a b a b -+=⎧⎨++=⎩…………………………………………………………………2′解得:1,21.2a b ⎧=-⎪⎪⎨⎪=⎪⎩………………………………………………………1′∴此二次函数解析式为:211322y x x =-++. ………………………1′ 顶点坐标为(12,138). ………………………………………………1′25.(1)解:联接EO ,过点O 作OH ⊥BA 于点H . ………………2′∵EF =23,∴EH =3.………………………………1′∵⊙O 的半径为2,即EO =2,∴OH=1. …………………………………………………1′在Rt △BOH 中,DCFABO第25题 E GH∵Sin∠ABC=13,………………………………………1′∴BO=3.…………………………………………………1′(2)当⊙P与直线相切时,过点P的半径垂直此直线.…………………………………………1′(a)当⊙P与⊙O外切时,①⊙P与⊙O切于点D时,⊙P与射线BA相切,…………………………………………………1′Sin∠ABC=113PPrr=-,得到:14Pr=;………………………………1′②⊙P与⊙O切于点G时,⊙P与射线BA相切,Sin∠ABC =133PPrr=+,得到:52Pr=. ………………………………1′(b) 当⊙P与⊙O内切时,①⊙P与⊙O切于点D时,⊙P与射线BA相切,……………………………1′Sin∠ABC =113PPrr=+,得到:12Pr=;………………………………1′②⊙P与⊙O切于点G时,⊙P与射线BA相切,Sin∠ABC =153PPrr=-,得到:54Pr=. ………………………………1′综上所述:满足条件的⊙P的半径为14、52、12、54.……………………1′11 / 11。
上海市普陀区2010学年度第二学期预备年级期中28校联考数学试卷(含答案)

上海市普陀区2010学年度第二学期预备年级期中28校联考数学试卷(考试时间70分钟,满分100分)一.填空题(本大题共14题,每空格2分,满分36分) 1.____________和____________统称为有理数.统称为有理数. 2.23-的相反数是_______,其绝对值是________,其倒数是________. 3.有理数123和123-在数轴上所对应的点是点A 和点B ,那么点A 和点B 分别到数轴的__________的距离相等.的距离相等.4.如果+10%表示“增加10%”,那么“减少8%”可以记作____________. 5.方程4x x -=的解是=x __________. 6.-176400用科学记数法表示为用科学记数法表示为 _________. 7.绝对值小于4的整数有___________________.8.“x 与2-的差是非负数”用不等式表示为用不等式表示为 __________.9.把方程()()2472x x +=--去括号,得________________________. 10.若5y -=,则y =____________.11.如果m n £,那么2_____2m n --;如果7x > 4时,那么时,那么 73x - ____1.(填不等号)(填不等号)12.()()2011201011---= _________.13.不等式50x -+£非负整数解是非负整数解是 .14.某市某商场为做好“家电下乡”的惠农服务,决定从厂家购进甲、乙、丙三种不同型号的电视机108台,其中甲种电视机的台数是丙种的4倍,购进三种电视机的总金额不超过147000元,已知甲、乙、丙三种型号的电视机的出厂价分别为1000元/台、1500元/台、2000元/台.则该商场至少购买丙种电视机_________台.台.二.单项选择题(本大题共4题,每题3分,满分12分) 15.下列说法正确的是(.下列说法正确的是( ). A .正数与负数互为相反数;.正数与负数互为相反数; B .一个数的相反数是负数;.一个数的相反数是负数; C .表示相反意义的量的两个数互为相反数;.表示相反意义的量的两个数互为相反数; D .任何有理数都有相反数..任何有理数都有相反数.)4-5-4-3-2-154-5-4-3-2-1525.在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如,试根据图中的信息,解答下列问题:图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?请你帮助小明算一算,用哪种方式购票更省钱?31,2,1-5-4-3-15431)195=……)884x x --4-3-2-1321022x -³1x £-……(1分)分)这个不等式的解集在数轴上表示为:这个不等式的解集在数轴上表示为:……(1分)分)六.列方程解应用题(本大题共2题,每题5分,满分10分) 24.解:设甲、乙两人的速度分别为43x x 、米/秒,……(1分)分)根据题意,得根据题意,得()20043400x x ´-=……(2分)分) 解这个方程,得解这个方程,得 2x =所以所以 483=6x x =,.……(1分)分) 答:甲、乙两人的速度分别为8米/秒和6米/秒. ……(1分)分) 25.解:(1)设到某公园游玩去了x 个成人,则去了(12- x )个学生,个学生,根据题意,得根据题意,得4020(12)400x x +-= ……………… (2分)分) 解这个方程,得解这个方程,得 8x =.……………… (1分)[]来 所以所以 124x -=. 答:小明他们一共去了8个成人,4个学生.…… ( 1分)分) (2)若按团体票购票:16400.6384´´=.∵384400<, ∴按团体票购票更省钱.…… ( 1分)分)-4-3-2-13210。
上海市普陀区2006-2007学年度第二学期九年级数学质量调研试卷

某某市普陀区2006-2007学年度第二学期九年级数学质量调研试卷一、填空题:(本大题共12题,每小题3分,满分36分) 1.计算:=-⨯-+-4123201__________. 2.分解因式:=++-y x y x 2222________________________.3.不等式组⎩⎨⎧<+≥-0323x x 的解集是________.4.函数23-+=x x y 的定义域为___________________. 5.如果x 1, x 2是方程2x 2–6x +3=0的两个根,那么221221x x x x +的值为___________.6. 已知y 与x 成反比例,并且当x =2时,y =-1; 那么当y =21时,x 的值是____________. 7. 数据2,1,0,3,-1的中位数等于___________.8. 已知如图8. 水坝的横断面是梯形,坝顶宽3m ,坝高6m ,迎水坡的坡度为1:3,背水坡角为60,那么坝底宽BC =___________m .9. 已知梯形的上底长为2,中位线长为4,则梯形的下底长为___________. 10. 图10. 平面直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案中左右眼睛的坐标分别是(-4,2),(-2,2),右图案中左眼的坐标是(3,4),那么右图案中右眼的坐标是__________.11. 两圆有多种位置关系,图11中不存在的两圆位置关系是___________.12.如图12. 已知AD : DB =1:3,DE ∥BC ,那么S △ADE:S △ABC 的值是_________.图8 图10 图11 图12二、单项选择题:(本大题共4题,每题4分,满分16分)[每题列出的四个答案中,只有一个是正确的,把正确答案的代号填入括号内] 13. 一次函数y =x +1的图像不经过 ………………………………………( ). (A)第一象限; (B)第二象限; (C)第三象限; (D)第四象限. 14. ×10n ,那么n 为 ………………………………( ). (A)3; (B)6; (C)-3; (D)6. 15. 如图15. 在⊙O 中,AB 为弦,OC ⊥AB 于C ,若AO =5,OC =3,那么弦AB 的长为 ……………………………………………………………( ).(A)10; (B)8; (C )6; (D)4.图15 16. 用两个边长为a 的等边三角形纸片拼成的四边形是……………………( ). (A)等腰梯形; (B)正方形; (C)矩形; (D)菱形.三、解答题:(本大题共5小题,第17、18小题各9分,其余每小题各10分,满分48分) 17.化简:462222-+-++-x x x x x x x .18. 解方程组 ⎩⎨⎧=+-=+.065,202222y xy x y x19.某校200名女生的身高统计数据如下:组别 身高/cm 女生人数 第一组 135≤x <145 50第二组 145≤x <155 p第三组 155≤x <165 70第四组165≤x <175q请你结合图表回答下列问题:(1) 表中的的p =_____,q=_______; (2) 请把直方图补充完整;(3)这组数据的中位数落在第____组; (4)此次被调查的女生的身高能否作为该校女生身高的一个随机样本?答:___________.图19ABCD 中,AD =2AB ,M 、N 分别为AD 、BC 的中点,AN 、BM交于点P ,CM 、DN 交于点Q . 求证:(1)四边形ABNM 为菱形;(2)四边形PNQM为矩形.证明:21.已知:如图,△ABC中,∠B=30 ,∠ACB=120 ,D是BC上一点,∠ADC=45 ,BD=83,求DC的长.四、解答题:(本大题共4题,第22、23、24小题各12分,第25小题14分,满分50分)22. 如图,在△ABC中,AB=AD,DC=BD,DE⊥BC,DE交AC于点E,BE交AD于点F. 求证:(1)△BDF∽△CBA;(2)AF=DF.证明:23. 某校初三(2)班一个综合实践活动小组去A 、B 两个超市调查去年和今年元旦期间的销售情况,下图是调查后小敏与其它两位同学进行交流的情景,根据他们的对话,请你分别求出A 、B 两个超市今年元旦期间的销售额.24.如图,Rt △ABC ,∠ABC =90 ,圆O 与圆M 外切,圆O 与线段AC 、线段BC 、线段AB 相切于点E 、D 、F ,圆M 与线段AC 、线段BC 都相切,其中AB=5,BC =12. 求(1)圆O 的半径r ;(2)tg2C; (3)sin2C; (4) 圆M 的半径m r .25.已知,二次函数y =12)3(2122-++--m x m x 的图象与x 轴相交于A )0,(1x 、B(x 2,0)两点,且x 1<0,x 2>0,图象与y 轴交于点C ,OB =2OA ; (1) 求二次函数的解析式;(2) 在x 轴上,点A 的左侧,求一点E ,使△ECO 与△CAO 相似,并说明直线EC 经过(1)中二次函数图象的顶点D ;DO CAB MFE(3) 过(2)中的点E 的直线y =b x +41与(1)中的抛物线相交于M 、N 两点,分别过M 、N 作x 轴的垂线,垂足为M ΄、N ΄,点P 为线段MN 上一点,点P 的横坐标为t ,过点P 作平行于y 轴的直线交(1)中所求抛物线于点Q ,是否存在t 值,使S N N MM ''梯形:S QMN ∆=35:12. 若存在,求出满足条件的t 值;若不存在,请说明理由.[参考答案]一、填空题:(本大题共12题,每小题3分,满分36分)1、3;2、(x +y )(x -y +2);3、x < -3;4、x ≧-3且x ≠2;5、29; 6、-1; 7、1; 8、(3+83) ; 9、6; 10、(5,4); 11、两圆相交; 12、161.二、单项选择题:(本大题共4题,每题4分,满分16分)[每题列出的四个答案中,只有一个是正确的,把正确答案的代号填入括号内]13、(D); 14、(C ); 15、(B); 16、(D).三、解答题(本大题共5小题,第17、18小题各9分,其余每小题各10分,满分48分)17. 解: ……………………………………2΄……………………………………3΄……………………………………1΄ ………………………………………………………2΄………………………………………………………………1΄⎪⎩⎪⎨⎧⎩⎨⎧=+==+.3,20)2(.2,20)1(.182222y x y x y x y x =下两个方程组解:原方程组可化为如……………………………………4΄解方程组(1)得⎩⎨⎧-=-===⎩⎨⎧.2,4.242211y x y x ,…………………………………2΄ 解方程组(2)得⎪⎩⎪⎨⎧-=-===⎩⎨⎧.2,23.2,232211y x y x ……………………………2΄ ∴原方程组的解为⎩⎨⎧⎩⎨⎧-=-===.2,4.2,42111y x y x ⎪⎩⎪⎨⎧-=-===⎩⎨⎧.2,23.2,234433y x y x ………1΄ .24)2)(2()2)(4()2)(2(622)2)(2()6()2()2()2)(2(6)2(222232++=-+-+=-+---++=-++--++=-++-++-=x x x x x x x x x x x xx x x x x x x x x x x x x x x x x x x x x x 原式19. 解:(1) p =60,q =20;…………………………………………………………4΄(2) 图正确;………………………………………………………………2΄ (3)二;………………………………………………………………………2΄ (4)不能.………………………………………………………………………2΄20.证明:(1)∵四边形ABCD 是平行四边形,点M 、N 分别为AD 、BC 中点,∴AM ∥BN . AM=21AD ,BN =21CD ,AD=BC .…………………………2΄ ∴AM=BN ,∴ABNM 是平行四边形.…………………………………1΄ ∵AD =2AB ,∴AB =21AD ,∴AB=AM .………………………………1΄ ∴四边形ABNM 是菱形.………………………………………………1΄ (2)∵四边形ABNM 是菱形,∴∠MPN =90°,∠BNA =∠MNA .………………………………………2΄ 同理可得: 四边形MNCD 是菱形.∠MQN =90°,∠MND =∠D .………………………………1΄∴∠MNA +∠MND =90.………………………………………………1΄ ∴四边形PNQM 为矩形.………………………………………………1΄21. 解:如图,过点A 作AE ⊥BC 交BC 的延长线于点E ,……………………1΄∵∠B =30°, ∴tg30º=3133==BE AE . ………………………………………………1΄ 设AE =x , 则 BE =3x .………………………………………………1΄∵∠ACB =120°,∴∠ACE =60°, ∴tg60º=3=CEAE,∴CE =33 x .………………………………………1΄ ∵BD =83, ∴DE =BE -BD =3x -83.……………………………1΄∵∠ADC =45 , ∴AE=DE .……………………………………………1΄∴(3-1)x =83, ∴x =12+43.…………………………………1΄∴CE =33x =43+4 , ∴BE =3x =123+12, ∴CD =BE-BD-CE =123+12-83-43-4=8 .………………………………3΄四、解答题(本大题共4题,第22、23、24小题各12分,第25小题14分,满分50分) 22.证明:(1) ∵BD=DC ,DE ⊥BC ,∴EB=EC .∴∠EBD=∠C .……………………………………3΄∵AB=AD ,∴∠ADB =∠ABC , …………………………………1΄ ∴△BDF ∽△CBA .………………………………………………2΄ (2)∵△BDF ∽△CBA ,∴CBBDAB FD =. ………………………………………………………2΄ ∵AB=AD ,BC BD 21=,∴2121==CB BCAD FD . ………………………………………………2΄ ∴AF=DF .…………………………………………………………2΄23. 解:设去年A 超市的销售额为x 万元,B 超市的销售额为y 万元.………1΄由题意得: ⎩⎨⎧=+++=+.170%)101(%)151(,150y x y x …………………………4΄解得 ⎩⎨⎧==.50,100y x …………………………………………………………4΄所以,A 超市销售额: 100(1+15%)=115(万元),…………………1΄B 超市销售额: 50(1+10%)=55(万元).…………………1΄答:去年A 超市的销售额为115万元,B 超市的销售额为55万元.…………1΄ 24.解:(1)∵∠B=90º,c=5,a =12,∴b =13.……………………………………1΄r =2b c a -+=2213512=-+.………………1΄(2) 在图2中,连结CO 、OD ,∵圆O 内切于三角形ABC ,∴CO 平分∠ACB ,∠CDO =90º.…………2΄ tg ∠DCO =512122=-=CD r .……………1΄ (3) sin ∠DCO =2626102222=+=COr . ……2΄ (4) ∵圆M 与圆O 、线段AC 、线段BC 都相切,∴圆心M 必在CO 上. 过点M 作MH ⊥OD ,∴MH ∥CD ,………………………………1΄∴∠OMH=∠DCO .∴sin ∠OMH =OMOH=sin ∠DCO =2626,图2DO CABF EO CAB图1DEF H DO CABM图3F EG∴261=+-M M r r r r ,即26122=+-M M r r ,…………2΄ 解得 2526454-=M r . ……………………1΄ .25解:(1) ∵二次函数y =12)3(2122-++--m x m x 的图象与x 轴相交于A )0,(1x 、B(x 2,0)两点,∴)3(221+-=+m x x ,)12(2221--=m x x .又∵x 1<0,x 2>0,OB =2OA ,∴122x x -=.……………………………………………………………3΄ 整理得:01682=++m m ,………………………………………………1΄ 解得 421-==m m . ∴二次函数的解析式为: 4212++-=x x y .…………………………1΄ (2)∵二次函数的解析式为:4212++-=x x y , ∴点A (-2,0)、 B (4,0)、 C (0,4) .设点E (x ,0), 则OE=-x .∵∠COA =∠EOC = 90,要使△ECO ∽△CAO , 只有OC OA OE OC =. ∴424=-x , ∴x =-8. ∴当点E 坐标为(-8,0),△ECO 与△CAO 相似.…………………………1΄ 设直线EC 解析式为: y =k ′x +b ′,将点E 、点C 的坐标代入得:{.048,4=+'-='k b 解得 {.4,21='='b k∴直线EC 的解析式为: y =421+x .………………………………………2΄ ∵抛物线顶点D (1,29), …………………………………………………2΄ 分别将点D 的坐标代入解析式的左右式,得到 左式=右式.∴直线EC 经过(1)中抛物线的顶点D .……………………………………1΄(3)存在t 值,使S N N MM ''梯形:S QMN ∆=35:12. ………………………………1΄ ∵直线y =b x +41过点E (-8,0), ∴0=b +-⨯)8(41, ∴b =2. ∴y =241+x . ∴x =4(y -2) .∵直线y =241+x 与(1)中的二次函数4212++-=x x y 相交于M 、N 两点, ∴y =()[]4)2(424212+-+-⨯-y y , 整理得 0363582=+-y y . 设M (x ),m m y ,N (),n n y x ,∴MM ’=y m , NN ’=y n .∴y m , y n 是方程8036352=+-y y 的两个实数根,∴y m +y n =835. ∴S N N MM ''梯形= ))((21m n n m x x y y -+. …………………………………………1΄ ∵点P 在直线y =241+x 上,点Q 在(1)中的抛物线上, ∴点P (t ,)241+t ,点Q (t ,)4212++-t t . ∴PQ =2432124142122++-=--++-t t t t t . 分别过M 、N 作直线PQ 的垂线,垂足为点G 、H ,则GM =t -x m , NH =x t n -.∴S △QMN =S △QMP+S △QNP=)(21m n x x PQ -=))(24321(212m n x x t t -++- . ………1΄ ∵S N N MM ''梯形:S QMN ∆=35:12, ∴).24321(1235835,1235))(24321(21))((2122++-=∴=-++--+t t x x t t x x y y m n m n n m整理得: 02322=--t t , 解得 : 2,2121=-=t t . ∴时或当2t 21=-=t , S N N MM ''梯形:S QMN ∆=35:12.…………………………………1΄图25。
上海普陀初三第二学期质量调研试卷数学

2009学年度第二学期普陀区初三质量调研数学试卷2010.4(时间:100分钟,满分:150分)考生注意:所有答案务必按照规定在答题纸上完成,写在试卷上不给分一、单项选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.下列二次根式中,是同类二次根式的是………………………………………( ).; (B) ;; .2. 两条对角线互相垂直平分的四边形是………………………………………………( ).(A) 等腰梯形; (B) 菱形; (C) 矩形; (D) 平行四边形.3.下列条件中,能判定两个等腰三角形相似的是……………………………………( ). (A )都含有一个30°的内角; (B )都含有一个45°的内角; (C )都含有一个60°的内角; (D )都含有一个80°的内角.4.如果一元二次方程220x x k -+=有两个不相等的实数根,那么k 的取值范围是( ).(A) 1k ≥; (B) 1k ≤; (C) 1k >; (D) 1k <.5.如右图,△ABC 中,D 是边BC 的中点,BA a =,AD b =,那么BC 等于…( ).(A )a +b ; (B )12(a +b );(C )2(a +b ); (D )—(a +b ).6. 气象台预报“本市明天降水概率是80%”,对此消息,下面几种说法正确的是…( ).(A) 本市明天将有80%的地区降水; (B) 明天降水的可能性比较大; (C) 本市明天降有80%的时间降水; (D) 明天肯定下雨. 二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置] 7.计算:23(2)a a ⋅= .ADB第5题第21题8.生物学家发现一种病毒的长度约为0.0043mm ,用科学记数法表示为 = mm . 9.当a=2时,1a -= .10.不等式组24,50x x >-⎧⎨-<⎩的解集是 .11.一元二次方程20(0)ax bx c a ++=≠有一根为零的条件是 .12.将图形(右)绕中心旋转180°后的图形是 (画出图形). 13.函数y =的定义域是 . 14. 已知一次函数3y kx =+的图像与直线2y x =平行,那么此一次函数的解析式为 .15.梯形ABCD 中,AD ∥BC ,如果∠A=5∠B ,那么∠B= 度.16. 在四边形ABCD 中,如果AB ∥CD ,AB=BC ,要使四边形ABCD 是菱形,还需添加一个条件,这个条件可以是 .17.如果一斜坡的坡度为i 10米,那么物体升高了米.18.中心角是40°的正多边形的边数是 . 三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分, 满分78分) 19.化简:1(1)11a a a -÷++. 20.解方程组:2224,2 1.x y x xy y +=⎧⎨-+=⎩21.如图,在平行四边形ABCD 中,点G 是BC 延长线上一点,AG 与BD 交于点E ,与DC 交于点F , 如果AB=m ,CG =12BC , 求:(1)DF 的长度;(2)三角形ABE 与三角形FDE 的面积之比.第12题AEM N22. 如图所示,已知在△ABC 中,AB=AC ,AD 是∠BAC的平分线,交BC 于点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E , (1)求证:四边形ADCE 是矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个 正方形?请加以证明.23. 为了引导学生树立正确的消费观,某机构随机调查了一所小学100名学生寒假中使用零花钱的情况(钱数取整数元),根据调查制成了频率分布表,如下: (1) 补全频率分布表;(2) 使用零化钱钱数的中位数在第 组; (3) 此机构认为,应对消费200元以上的学生提出 勤俭节约的建议,那么应对该校800名学生中约 名学生提出此项建议.24. 如图,在平面直角坐标系中,点O 为原点,已知点A 的坐标为(2,2),点B 、C 在x 轴 上,BC =8,AB=AC ,直线AC 与y 轴相交于点D . 1)求点C 、D 的坐标;2)求图象经过B 、D 、A 三点的二次函数解析式 及它的顶点坐标.25.如图,已知Sin∠ABC=13,⊙O 的半径为2, 圆心O 在射线BC 上,⊙O 与射线BA 相交于E 、F 两点,EF=(1) 求BO 的长;(2) 点P 在射线BC 上,以点P 为圆心作圆,使得⊙P 同时与⊙O 和射线BA 相切, 求所有满足条件的⊙P 的半径.BC 上2009学年度第二学期普陀区九年级质量调研数学试卷组别分 组频数 频率1 0.5—50.5 0.12 50.5—100.5 200.23 100.5—150.54 150.5—200.5 30 5 200.5—250.5 10 6参考答案及评分说明一、单项选择题:(本大题共6题,每题4分,满分24分)1.(A) ; 2.(B) ; 3.(C); 4.(D) ; 5.(C) ; 6.(B) . 二、填空题:(本大题共12题,每题4分,满分48分)7. 45a ; 8. 34.310-⨯; 9. 1;10. 25x -<<; 11. c =0; 12. ; 13.2x ≠; 14.23y x =+; 15. 30; 16.AB =CD 等; 17.5 ; 18. 9. 三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19.解: 原式=1()(1)11a a a a a +-+++…………………………………………………………4′(各2分)=(1)a a -+ …………………………………………………………………………………2′=1a a -- ……………………………………………………………………………………2′=1-. ………………………………………………………………………………………2′20.2224,(1)2 1.(2)x y x xy y +=⎧⎨-+=⎩解:由(2)式得到:2()1x y -=,…………………………………………………………………………1′再得到1x y -=或者1x y -=-,……………………………………………………………1′与(1)式组成方程组:24,1.x y x y +=⎧⎨-=⎩或第21题24,1.x y x y +=⎧⎨-=-⎩……………………………………………3′ 解得:112,1.x y =⎧⎨=⎩,222,35.3x y ⎧=⎪⎪⎨⎪=⎪⎩……………………………………………………………………4′ 经检验,原方程组的解是:112,1.x y =⎧⎨=⎩,222,35.3x y ⎧=⎪⎪⎨⎪=⎪⎩……………………………………………1′ 21.解:(1)∵四边形ABCD 是平行四边形,∴AB=CD=m ,AB ∥CD . ………………………………2′∵CG =12BC , ∴CG =13BG ,………………………………………………1′∵AB ∥CD ,∴CF CGAB BG=.…………………………………………………………………………………1′ ∴13CF m =, …………………………………………………………………………………1′ ∴23DF m =.…………………………………………………………………………………1′ (2)∵AB ∥CD ,∴△ABE ∽△FDE ,………………………………………………………………………………2′∴239()24ABE FDE S S ∆∆==. …………………………………………………………………………2′∴ 三角形ABE 与三角形FDE 的面积之比为9∶4. 22.证明:(1) ∵AB=AC ,AD 是∠BAC 的平分线,∴AD ⊥BC , ………………………………………1′ ∴∠ADC =90°. ∵AD 是∠BAC 的平分线,∴∠1=12∠BAC ,…………………………………1′同理:∠2=12∠MAC .…………………………………1′∵∠BAC +∠MAC=180°. ∴∠1+∠2=90°.即∠EAD =90°. …………………………………1′ ∵CE ⊥AN ,∴∠AEC =90°. …………………………………1′ ∴四边形ADCE 是矩形.…………………………1′(2)当△ABC 是等腰直角三角形时,四边形ADCE 是一个正方形.……………………………1′ 证明:∵∠BAC =90°,AB=AC ,AD 是∠BAC 的平分线,∴AD 是斜边BC 上的中线,∴AD=DC .……………………………………………………………………………………1′ ∵四边形ADCE 是矩形, …………………………………………………………………1′∴四边形ADCE 是正方形.…………………………………………………………………1′ 23.解:(1)见右,每个数1分,共8分;A BCD EM N第22题12(2) 3;…………………………………………2′ (3)120.…………………………………………2′ 24.解:(1)过点A 作AE ⊥x 轴,垂足为点E .…………1′∵点A 的坐标为(2,2), ∴点E 的坐标为(2,0).……………………1′∵AB=AC ,BC =8,∴BE=CE , ……………………………………1′点B 的坐标为(-2,0), ……………………1′ 点C 的坐标为(6,0).………………………1′设直线AC 的解析式为:y kx b =+(0k ≠), 将点A 、C 的坐标代入解析式,得到: 132y x =-+.………………………1′ ∴点D 的坐标为(0,3). …………………1′(2)设二次函数解析式为:2y ax bx c =++(0a ≠), ∵ 图象经过B 、D 、A 三点,∴4230,423 2.a b a b -+=⎧⎨++=⎩…………………………………………………………………2′解得:1,21.2a b ⎧=-⎪⎪⎨⎪=⎪⎩………………………………………………………1′∴此二次函数解析式为:211322y x x =-++. ………………………1′ 顶点坐标为(12,138). ………………………………………………1′ 25.(1)解:联接EO ,过点O 作OH ⊥BA 于点H . ………………2′组别 分 组 频数 频率12 3 4 5 6DCFABOE GH∵EF=EH………………………………1′∵⊙O的半径为2,即EO=2,∴OH=1.…………………………………………………1′在Rt△BOH中,∵Sin∠ABC=13,………………………………………1′∴BO=3.…………………………………………………1′(2)当⊙P与直线相切时,过点P的半径垂直此直线.…………………………………………1′(a)当⊙P与⊙O外切时,①⊙P与⊙O切于点D时,⊙P与射线BA相切,…………………………………………………1′Sin∠ABC=113PPrr=-,得到:14Pr=;………………………………1′②⊙P与⊙O切于点G时,⊙P与射线BA相切,Sin∠ABC =133PPrr=+,得到:52Pr=. ………………………………1′(b) 当⊙P与⊙O内切时,①⊙P与⊙O切于点D时,⊙P与射线BA相切,……………………………1′Sin∠ABC =113PPrr=+,得到:12Pr=;………………………………1′②⊙P与⊙O切于点G时,⊙P与射线BA相切,Sin∠ABC =153PPrr=-,得到:54Pr=. ………………………………1′综上所述:满足条件的⊙P的半径为14、52、12、54.……………………1′。
2011普陀区初三数学二模卷答案[1]
![2011普陀区初三数学二模卷答案[1]](https://img.taocdn.com/s3/m/409240cf6137ee06eff918a3.png)
2010学年第二学期普陀区质量调研考试数学卷答案要点与评分标准一.选择题:(本大题共6题,满分24分)1.C ; 2.A ; 3.D ; 4.C ; 5.B ; 6.A二.填空题:(本大题共12题,满分48分) 7.8; 8.()()22a a b a b +-; 9.3x =; 10.64.2510⨯;11.2; 12.二、四; 13.0.6a ; 14.35;15.DC BC =或DAC BAC ∠=∠或∠D =∠B ; 16.2133a b +; 17.14+;18.π2三.解答题:(本大题共7题,满分78分)19.解:245(2),21.3x x x x ⎧++⎪⎨-<⎪⎩≤①②由①得x ≥-2.……………………………………………………………………(3分)由②得x <3.……………………………………………………………………(3分)不等式组的解集在数轴上表示如下:………………………………(2分)所以原不等式组的解集为-2≤x <3.………………………………………(1分) 所以原不等式组的整数解为-2,-1,0,1,2.………………………(1分)20.解:设123-=x xy ,则原方程变形为0322=--y y .……………………………(2分) 解这个方程,得 .3,121=-=y y ………………………………………………(2分)∴1123-=-x x 或3123=-x x. 解得 51=x 或1=x .………………………………………………………………(4分)经检验:51=x 或1=x 都是原方程的解.………………………………………(1分)∴原方程的解是51=x 或1=x .………………………………………………(1分)21.解:(1) 作图正确…………………………………………………………………(2分)∵矩形ABCD ,∴90B ∠=,BC AD =. ∵在Rt △ABC 中,AB =4,AD =2∴由勾股定理得:AC =……………………………………………(1分)设EF 与AC 相交与点O , 由翻折可得AO CO =……………………………………………(1分)90AOE ∠=.∵在Rt △ABC 中,tan 1BC AB ∠=, 在Rt △AOE 中,tan 1EOAO∠=.∴EO BCAO AB=, ……………………………(1分)∴2EO =. ……………………………(1分)同理:FO =.∴EF . ……………………………………………………………(1分)(2)过点E 作EHCD ⊥垂足为点H ,……………………………………………(1分)2EH BC ==……………………………………………………………………(1分)∴sin 5EH EFC EF ∠==.…………………………………………(1分)22.(1)60; …………………………………………………………………………(3分) (2)90; …………………………………………………………………………(3分) (3)0.7. …………………………………………………………………………(4分) 23.(1) 证明:∵AB AC =,AH CB ⊥,∴BH HC =.……………………………………………………(2分) ∵FH EH =,∴四边形EBFC 是平行四边形.………………………………(2分) 又∵AH CB ⊥,∴四边形EBFC 是菱形.…………………………………………(2分)(2)证明:∵四边形EBFC 是菱形.∴1232ECF ∠=∠=∠.…………………………………………(2分) H 1OFE DCBA∵AB AC =,AH CB ⊥,∴142BAC ∠=∠.………(1分) ∵BAC ∠=ECF ∠∴43∠=∠.……………(1分) ∵AH CB ⊥ ∴41290∠+∠+∠= .…(1分) ∴31290∠+∠+∠= .即:AC CF ⊥.…………………(1分)24.解:(1) 联结AC ,过点C 作CHAB ⊥,垂直为H ,由垂径定理得:AH =12AB =2,…………………………………(1分) 则OH =1.…………………………………………………………(1分) 由勾股定理得:CH =4.…………………………………………(1分)又点C 在x 轴的上方,∴点C 的坐标为()1,4.………………(1分)(2)设二次函数的解析式为()20y ax bx c a =++≠由题意,得0,093,4.a b c a b c a b c =-+⎧⎪=++⎨⎪=++⎩解这个方程组,得1,2,3.a b c =-⎧⎪=⎨⎪=⎩………………………………………(3分)∴ 这二次函数的解析式为y =-x 2+2x +3.………………………………(1分)(3)点M 的坐标为()2,3…………………………………………………(2分)或(45),-或(421)-,-……………………………(2分)25.解:(1)在Rt △ABC 中,∵∠A =30°,∴60ABC ∠=.………………………………………………………(1分) 由旋转可知:'BC BC =,'60BABC ∠=∠= ,'BCBα∠=∠ ∴△'B BC 为等边三角形.……………(2分)∴'BCB α∠=∠=60.……………(1分)(2)① 当090α︒<<︒时,点D 在AB 边上(如图).∵ DE ∥''A B ,4321H FECBA EDB'A'CBA∴CD CECA CB =''..…………………………………………………(1分) 由旋转性质可知,CA ='CA ,CB ='CB , ∠ACD=∠BCE .∴ CD CECA CB =,.…………………………………………………(1分) ∴CD CACE CB=. ∴ △CAD ∽△CBE . .………………………………………(1分) ∴BE BCAD AC=. ∵∠A =30° ∴y x=3BC AC =.……………………………………………(1分)∴y x =(0﹤x ﹤2)…………………………………………(2分) ②当090α︒<<︒时,点D 在AB 边上AD =x ,2BD AB AD x =-=-,∠DBE=90°.此时,211(2)2236BDESS BD BE x +==⨯=-⨯= . 当S =13ABC S ∆时,266+=.整理,得2210x x -+=.解得 121x x ==,即AD =1. …………………………………(2分)当90120α︒<<︒时,点D 在AB 的延长线上(如图).仍设AD =x ,则2BD x =-,∠DBE=90°..211(2)2236BDES S BD BE x -==⨯=-= . 当S =13ABC S ∆时,266-=.整理,得2210x x --=.解得11x =21x =.即AD =…………………………………………………(2分) 综上所述:AD =1或AD =EDB'A'CBA。
2010年普陀区模拟卷[1]
![2010年普陀区模拟卷[1]](https://img.taocdn.com/s3/m/96b43c8eb8f67c1cfad6b8c0.png)
2009学年度第二学期普陀区初三质量调研数学试卷2010.4(时间:100分钟,满分:150分)考生注意:所有答案务必按照规定在答题纸上完成,写在试卷上不给分一、单项选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.下列二次根式中,是同类二次根式的是………………………………………().(A) ;(B) ;(C) ;(D) .2. 两条对角线互相垂直平分的四边形是………………………………………………().(A) 等腰梯形;(B) 菱形;(C) 矩形;(D) 平行四边形.3.下列条件中,能判定两个等腰三角形相似的是……………………………………(). (A)都含有一个30°的内角;(B)都含有一个45°的内角;(C)都含有一个60°的内角;(D )都含有一个80°的内角.4.如果一元二次方程220x x k-+=有两个不相等的实数根,那么k的取值范围是().(A) 1k≥;(B) 1k≤;(C) 1k>;(D) 1k<.5.如右图,△ABC中,D是边BC的中点,BA a=,AD b=,那么BC等于…(). (A)a+b;(B)12(a+b);(C)2(a+b);(D)—(a+b).6. 气象台预报“本市明天降水概率是80%”,对此消息,下面几种说法正确的是…().(A) 本市明天将有80%的地区降水;(B) 明天降水的可能性比较大;(C) 本市明天降有80%的时间降水;(D) 明天肯定下雨.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.计算:23(2)a a⋅= .8.生物学家发现一种病毒的长度约为0.0043mm,用科学记数法表示为= mm .9.当a=2时,1a-= .ADB C第5题10.不等式组24,50x x >-⎧⎨-<⎩的解集是 .11.一元二次方程20(0)ax bx c a ++=≠有一根为零的条件是 . 12.将图形(右)绕中心旋转180°后的图形是 (画出图形). 13.函数y =的定义域是 . 14. 已知一次函数3y kx =+的图像与直线2y x =平行,那么此一次函数的解析式为 . 15.梯形ABCD 中,AD ∥BC ,如果∠A=5∠B ,那么∠B= 度.16. 在四边形ABCD 中,如果AB ∥CD ,AB=BC ,要使四边形ABCD 是菱形,还需添加一个条件,这个条件可以是 .17.如果一斜坡的坡度为i =1,某物体沿斜面向上推进了10米,那么物体升高了米.18.中心角是40°的正多边形的边数是 .三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分, 满分78分) 19.化简:1(1)11a a a -÷++.20.解方程组:2224,2 1.x y x xy y +=⎧⎨-+=⎩第12题第21题21.如图,在平行四边形ABCD 中,点G 是BC 延长线上一点,AG 与BD 交于点E ,与DC 交于点F ,如果AB=m ,CG =12BC , 求:(1)DF 的长度;(2)三角形ABE 与三角形FDE 的面积之比.22. 如图所示,已知在△ABC 中,AB=AC ,AD 是∠BAC的平分线,交BC 于点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E , (1)求证:四边形ADCE 是矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个 正方形?请加以证明.23. 为了引导学生树立正确的消费观,某机构随机调查了一所小学100名学生寒假中使用零花钱的情况(钱数取整数元),根据调查制成了频率分布表,如下:(1) 补全频率分布表;(2) 使用零化钱钱数的中位数在第 组; (3) 此机构认为,应对消费200元以上的学生提出 勤俭节约的建议,那么应对该校800名学生中约 名学生提出此项建议.组别 分 组 频数 频率 1 0.5—50.5 0.1 2 50.5—100.5 20 0.2 3 100.5—150.5 4 150.5—200.5 30 5 200.5—250.5 10 6 250.5—300.5 5 合 计 A B C D E MN 第22题24. 如图,在平面直角坐标系中,点O为原点,已知点A的坐标为(2,2),点B、C在x轴上,BC=8,AB=AC,直线AC与y轴相交于点D.1)求点C、D的坐标;2)求图象经过B、D、A三点的二次函数解析式及它的顶点坐标.25.如图,已知Sin∠ABC=13,⊙O的半径为2,圆心O在射线BC上,⊙O与射线BA相交于E、F两点,EF=(1)求BO的长;(2)点P在射线BC上,以点P为圆心作圆,使得⊙P同时与⊙O和射线BA相切,求所有满足条件的⊙P的半径.BC上D CFA B O第25题EG2009学年度第二学期普陀区九年级质量调研数学试卷参考答案及评分说明一、单项选择题:(本大题共6题,每题4分,满分24分)1.(A) ; 2.(B) ; 3.(C); 4.(D) ; 5.(C) ; 6.(B) .二、填空题:(本大题共12题,每题4分,满分48分) 7. 45a ; 8. 34.310-⨯; 9. 1;10. 25x -<<; 11. c =0; 12. ;13.2x ≠; 14.23y x =+; 15. 30; 16.AB =CD 等; 17.5 ; 18. 9. 三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19.解: 原式=1()(1)11a a a a a +-+++…………………………………………………………4′(各2分)=(1)a a -+ …………………………………………………………………………………2′=1a a -- ……………………………………………………………………………………2′=1-. ………………………………………………………………………………………2′ 20.2224,(1)2 1.(2)x y x xy y +=⎧⎨-+=⎩解:由(2)式得到:2()1x y -=,…………………………………………………………………………1′再得到1x y -=或者1x y -=-,……………………………………………………………1′与(1)式组成方程组:24,1.x y x y +=⎧⎨-=⎩或24,1.x y x y +=⎧⎨-=-……………………………………………3′第21题解得:112,1.x y =⎧⎨=⎩,222,35.3x y ⎧=⎪⎪⎨⎪=⎪⎩……………………………………………………………………4′ 经检验,原方程组的解是:112,1.x y =⎧⎨=⎩,222,35.3x y ⎧=⎪⎪⎨⎪=⎪⎩……………………………………………1′ 21.解:(1)∵四边形ABCD 是平行四边形,∴AB=CD=m ,AB ∥CD . ………………………………2′∵CG =12BC , ∴CG =13BG ,………………………………………………1′∵AB ∥CD ,∴CF CGAB BG=.…………………………………………………………………………………1′ ∴13CF m =, …………………………………………………………………………………1′∴23DF m =.…………………………………………………………………………………1′ (2)∵AB ∥CD , ∴△ABE ∽△FDE ,………………………………………………………………………………2′∴239()24ABE FDE S S ∆∆==. …………………………………………………………………………2′ ∴ 三角形ABE 与三角形FDE 的面积之比为9∶4.22.证明:(1) ∵AB=AC ,AD 是∠BAC 的平分线,∴∠ADC =90°.∵AD 是∠BAC 的平分线,∴∠1=12∠BAC ,…………………………………1′ 同理:∠2=12∠MAC .…………………………………1′∵∠BAC +∠MAC=180°. ∴∠1+∠2=90°.即∠EAD =90°. …………………………………1′∵CE ⊥AN , ∴∠AEC =90°. …………………………………1′ ∴四边形ADCE 是矩形.…………………………1′(2)当△ABC 是等腰直角三角形时,四边形ADCE 是一个正方形.……………………………1′证明:∵∠BAC =90°,AB=AC ,AD 是∠BAC 的平分线,∴AD 是斜边BC 上的中线,∴AD=DC .……………………………………………………………………………………1′ ∵四边形ADCE 是矩形, …………………………………………………………………1′∴四边形ADCE 是正方形.…………………………………………………………………1′23.解:(1)见右,每个数1分,共8分;(2) 3;…………………………………………2′ (3)120.…………………………………………2′24.解:(1)过点A 作AE ⊥x 轴,垂足为点E .…………1′ ∵点A 的坐标为(2,2), ∴点E 的坐标为(2,0).……………………1′ ∵AB=AC ,BC =8,∴BE=CE , ……………………………………1′ 点B 的坐标为(-2,0), ……………………1′ 点C 的坐标为(6,0).………………………1′A B CD EM N第22题12设直线AC 的解析式为:y kx b =+(0k ≠), 将点A 、C 的坐标代入解析式,得到: 132y x =-+.………………………1′ ∴点D 的坐标为(0,3). …………………1′(2)设二次函数解析式为:2y ax bx c =++(0a ≠), ∵ 图象经过B 、D 、A 三点, ∴4230,423 2.a b a b -+=⎧⎨++=⎩…………………………………………………………………2′ 解得:1,21.2a b ⎧=-⎪⎪⎨⎪=⎪⎩………………………………………………………1′∴此二次函数解析式为:211322y x x =-++. ………………………1′ 顶点坐标为(12,138). ………………………………………………1′25.(1)解:联接EO ,过点O 作OH ⊥BA 于点H . ………………2′∵EF=EH.………………………………1′∵⊙O 的半径为2,即EO =2,∴OH=1. …………………………………………………1′在Rt △BOH 中,∵Sin ∠ABC=13,………………………………………1′ ∴BO=3. …………………………………………………1′(2) 当⊙P 与直线相切时,过点P 的半径垂直此直线. …………………………………………1′(a )当⊙P 与⊙O 外切时,①⊙P 与⊙O 切于点D 时,⊙P 与射线BA 相切,…………………………………………………1′ Sin ∠ABC=113P P r r =-,得到:14P r =;………………………………1′ DCFABO第25题E GH②⊙P与⊙O切于点G时,⊙P与射线BA相切,Sin∠ABC =133PPrr=+,得到:52Pr=. ………………………………1′(b) 当⊙P与⊙O内切时,①⊙P与⊙O切于点D时,⊙P与射线BA相切,……………………………1′Sin∠ABC =113PPrr=+,得到:12Pr=;………………………………1′②⊙P与⊙O切于点G时,⊙P与射线BA相切,Sin∠ABC =153PPrr=-,得到:54Pr=. ………………………………1′综上所述:满足条件的⊙P的半径为14、52、12、54.……………………1′。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010学年度第二学期普陀区初三质量调研 数学试卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一 律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应的位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的选择项中,有且只有一个选择项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1. 下列计算正确的是(A ) 347x x x += ; (B ) 44x x x ÷=; (C ) 325x x x ⋅=; (D )325()x x=.2. 一元二次方程221x x -=的常数项是(A ) -1; (B ) 1; (C ) 0; (D ) 2. 3. 某一段时间,小芳测得连续五天的日最高气温后,整理得出下表(有两个数据被遮盖).被遮盖的两个数据依次是(A ) 3℃,2; (B ) 3℃,4; (C ) 4℃,2; (D ) 4℃,4.4. 如果两圆的半径分别是2 cm 和3cm ,圆心距为5cm ,那么这两圆的位置关系是(A ) 内切; (B ) 相交; (C ) 外切; 5. 如图1如果∠1=32o ,那么∠2的度数是(A ) 32o ; (B ) 58o ; (C ) 68o ; (D ) 60o .6. 如图2,△ABC 中,点D 、E 分别是AB 、AC 的中点,由此得到结论:①BC =2DE ; ②△ADE ∽△ABC ;③AD AB AEAC=;④=1:3A D E D B C E S S 四边形:.其中正确的有(A )4个; (B )3个; (C )2个; (D )1个.二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.计算: 312-⎛⎫⎪⎝⎭= ▲ .8. 分解因式:324a ab -= ▲ . 9.方程 x =的根是 ▲ .10. 成功、精彩、难忘的中国2010年上海世博会,众多境外参观者纷至沓来。
国家统计局上海调查总队调查显示:上海世博会境外参观者近4250000人次.4250000人次可用科学记数法表示为 ▲ 人次. 11. 已知函数1()2f x x=-,那么f = ▲ .12. 在平面直角坐标系中,反比例函数k y x= ( k <0 ) 图像的两支分别在第 ▲象限.13. 一件卡通玩具进价a 元,如果加价60%出售,那么这件卡通玩具可盈利 ▲ 元.14. 在 5张完全相同的卡片上分别画上等边三角形、平行四边形、直角梯形、正六边形和圆. 在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是 ▲ .15. 如图3,已知A B A D =,在不添加任何辅助线的前提下,要使E D CBA 图2△≌△A B C A还需添加一个条件,这个条件可以是 ▲ .(只需写出一个)16. 如图4,在△A B C 中,边B C 、A B 上的中线A D 、C E 相交于点G ,设向量AB a = ,BC b = ,如果用向量a ,b 表示向量A G ,那么A G= ▲ .17. 等腰梯形ABCD 中,A D B C ∥,45410°B A D B C ∠===,,,那么梯形ABCD 的周长是 ▲ .18.如图5,直角△A B C 中,90A C B ∠=︒,1A C B C ==, DE F 的圆心为A ,如果图中两个阴影部分的面积相等,那么A D 的长是 ▲ .(结果保留π)三、解答题(本大题共7题,满分78分) 19. (本题满分10分)解不等式组:245(2),21.3x x x x ⎧++⎪⎨-<⎪⎩≤①②把它的解集在数轴上表示出来,并求它的整数解.20.(本题满分10分)解方程: 2332302121x x x x ⎛⎫⎛⎫--= ⎪ ⎪--⎝⎭⎝⎭.图4图5BAFDCBA图321.(本题满分10分,第(1)小题7分,第(2)小题3分)如图6,矩形纸片ABCD 的边长AB =4,AD =2.翻折矩形纸片,使点A 与点C 重合,折痕分别交AB 、CD 于点E 、F ,(1)在图6中,用尺规作折痕EF 所在的直线(保留作图痕迹,不写作法),并求线段EF 的长; (2)求∠EFC 的正弦值.22.(本题满分10分,第(1)(2)小题满分各3分,第(3)小题满分4分) 国家教育部规定“中小学生每天在校体育活动时间不低于1小时”.2011年,为了了解我市毕业班学生体育活动情况,随机对我市240名毕业班学生进行调查,调查内容为:第一问 你平均每天在校参加体育活动的时间是多少?A .超过1小时B .0.5~1小时C .低于0.5小时 如果第一问没有选A ,请继续回答第二问第二问 在校参加体育活动的时间没有超过1小时的原因是什么? A .不喜欢 B .没时间 C .其他 以下是根据所得的数据制成的统计图的一部分.图6D CBA第一问各选项人数分布扇形图每天在校锻炼没有超过1小时原因分布条形图人数根据以上信息,解答下列问题:(1)每天在校锻炼时间超过1小时的人数是 ; (2)请将条形图补充完整;(3)2011年我市初中毕业生约为8.4万人,请你估计今年全市初中毕业生中每天锻炼时间低于0.5小时的学生约有 万人. 23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分) 如图7,等腰三角形ABC 中,AB =AC ,AH 垂直BC , 点E 是AH 上一点,延长AH 至点F ,使FH =EH , (1)求证:四边形EBFC 是菱形; (2)如果B A C ∠=E C F ∠,求证:A C C F ⊥.24.(本题满分12分,第(1)小题4分,第(2)小题4分、第(3)小题4分) 如图8,在平面直角坐标系xOy 中,半径为的C 与x 轴交于()1,0A -、()3,0B 两点,且点C 在x 轴的上方.(1)求圆心C 的坐标;(2)已知一个二次函数的图像经过点A 、B 求这二次函数的解析式;(3)设点P 在y 轴上,点M 在(2图像上,如果以点P 、M 、A 、B 是平行四边形,请你直接写出点M 的坐标.BA25.(本题满分14分,第(1)小题4分,第(2)小题①6分、第(2)小题②4分) 直角三角板ABC 中,∠A =30°,BC =1.将其绕直角顶点C 逆时针旋转一个角α(0120α︒<<︒且α≠ 90°),得到Rt △''A B C ,(1)如图9,当''A B 边经过点B 时,求旋转角α的度数;(2)在三角板旋转的过程中,边'A C 与AB 所在直线交于点D ,过点 D 作DE ∥''A B 交'C B 边于点E ,联结BE . ①当090α︒<<︒时,设AD x =,BE y =,求y 与x 之间的函数解析式及定义域;②当13BDE ABCS S = 时,求A D 的长.CBACBA图9备用图备用图2010学年第二学期普陀区质量调研考试数学卷答案要点与评分标准一.选择题:(本大题共6题,满分24分)1.C ; 2.A ; 3.D ; 4.C ; 5.B ; 6.A二.填空题:(本大题共12题,满分48分)7.8; 8.()()22a a b a b +-; 9.3x =; 10.64.2510⨯; 11.2+; 12.二、四; 13.0.6a ; 14.35;15.D C BC =或D A C B A C ∠=∠或∠D =∠B ;16.2133a b+; 17.14+;18.ππ2三.解答题:(本大题共7题,满分78分)19.解:245(2),21.3x x x x ⎧++⎪⎨-<⎪⎩≤①②由①得x ≥-2.……………………………………………………………………(3分)由②得x <3.……………………………………………………………………(3分)不等式组的解集在数轴上表示如下:………………………………(2分)所以原不等式组的解集为-2≤x <3.………………………………………(1分)所以原不等式组的整数解为-2,-1,0,1,2.………………………(1分)20.解:设123-=x x y ,则原方程变形为0322=--y y .……………………………(2分) 解这个方程,得.3,121=-=y y ………………………………………………(2分)∴1123-=-x x 或3123=-x x .解得51=x 或1=x .………………………………………………………………(4分) 经检验:51=x 或1=x 都是原方程的解.………………………………………(1分) ∴原方程的解是51=x 或1=x .………………………………………………(1分) 21.解:(1) 作图正确…………………………………………………………………(2分)∵矩形ABCD ,∴90B ∠= ,B C A D =. ∵在Rt △ABC 中,AB =4,AD =2∴由勾股定理得:AC =……………………………………………(1分)设E F 与A C 相交与点O ,由翻折可得AO C O ==……………………………………………(1分)90AOE ∠= . ∵在Rt △ABC 中, tan 1B C A B ∠=, 在Rt △AOE 中,tan 1E OA O∠=.∴E O B C A OA B=, ……………………………(1分)∴2EO =. ……………………………(1分)同理:2FO =.∴EF =. ……………………………………………………………(1分)(2)过点E 作EH C D ⊥垂足为点H ,……………………………………………(1分) 2E H B C ==……………………………………………………………………H 1OFE DCBA(1分)∴sin5EHEFCEF∠===.…………………………………………(1分)22.(1)60;…………………………………………………………………………(3分)(2)90;…………………………………………………………………………(3分)(3)0.7. …………………………………………………………………………(4分)23.(1)证明:∵A B A C=,A H C B⊥,∴BH H C=.……………………………………………………(2分)∵FH EH=,∴四边形E B F C是平行四边形.………………………………(2分)又∵A H C B⊥,∴四边形E B F C是菱形.…………………………………………(2分)(2)证明:∵四边形E B F C是菱形.∴1232E C F∠=∠=∠.…………………………………………(2分)∵A B A C=,A H C B⊥,∴142B A C∠=∠.………(1分)∵B A C∠=E C F∠∴43∠=∠.……………(1分)∵A H C B⊥∴41290∠+∠+∠= .…(1分)∴31290∠+∠+∠= .即:AC C F⊥.…………………(1分)24.解:(1)联结AC,过点C作C H A B⊥,垂直为H,由垂径定理得:AH=12A B=2,…………………………………(1分)则OH=1.…………………………………………………………(1分)由勾股定理得:CH=4.…………………………………………(14321HFECBA分)又点C 在x 轴的上方,∴点C 的坐标为()1,4.………………(1分)(2)设二次函数的解析式为()20y ax bx c a =++≠由题意,得0,093,4.a b c a b c a b c =-+⎧⎪=++⎨⎪=++⎩解这个方程组,得1,2,3.a b c =-⎧⎪=⎨⎪=⎩………………………………………(3分)∴ 这二次函数的解析式为y =-x 2+2x +3.………………………………(1分)(3)点M 的坐标为()2,3…………………………………………………(2分)或(45),-或(421)-,-……………………………(2分)25.解:(1)在Rt △ABC 中,∵∠A =30°,∴60ABC ∠= .………………………………………………………(1分)由旋转可知:'B C BC=,'60B ABC ∠=∠=,'B CB α∠=∠∴△'B BC 为等边三角形.……………(2分)∴'B CB α∠=∠=60 .……………(1分)(2)① 当090α︒<<︒时,点D 在AB 边上(如图).∵ DE ∥''A B ,∴C D C E C A C B =''..…………………………………………………(1分)EDB'A'CBA由旋转性质可知,CA ='C A ,CB ='C B , ∠ACD=∠BCE .∴C D C E C AC B=,.…………………………………………………(1分)∴C D C A C EC B=.∴ △CAD ∽△CBE . .………………………………………(1分)∴B E BC A DA C=.∵∠A =30° ∴y x=3BC AC=.……………………………………………(1分)∴3y x =(0﹤x ﹤2)…………………………………………(2分)②当090α︒<<︒时,点D 在AB 边上AD =x ,2BD AB AD x =-=-,∠DBE=90°.此时,211(2)2236BD E S S B D B E x +==⨯=-⨯=.当S =13ABC S ∆66=.整理,得 2210x x -+=.解得121x x ==,即AD =1. …………………………………(2分)当90120α︒<<︒时,点D 在AB 的延长线上(如图).仍设AD =x ,则2BD x =-,∠DBE=90°..21133(2)2236BDEx x S S B D B E x -==⨯=-⨯=.当S =13ABC S ∆时,266-=.整理,得 2210x x --=.解得11x =+,21x =-舍去).EDB'A'CBA即AD=…………………………………………………(2分)综上所述:AD=1或AD=。