巧用“构造函数法”证明不等式
灵活运用构造函数法,提升证明不等式的效率

设 0 < x1 < x 2 ,
æx
ö
2 ç 1 - 1÷
x1 2 ( x1 - x 2 )
è x2
ø
=
③ 可变形为 ln <
④,
x2
x1
x1 + x 2
+1
x2
令 t=
x1
( 0 < t < 1 ),
x2
可得 h( t ) = ln t -
2
2 ( t - 1)
,
t+1
( t - 1)
即需证
数学篇
42
首先将要证明的不等式进行移项、作差,使所有
则函数 h( x) 单调递减且 h(1) = 0 ,
1 ·h( x) > 0
所以当 x ∈ ( 0,1) 时,h( x) > 0 ,
;
1 - x2
1 ·h( x) > 0
当 x ∈ (1, +∞) 时,h( x) < 0 ,
;
1 - x2
综上所述,当 x > 0 且 x ≠ 1 时,
所以当 x > 0 时, h′(x) < 0 , h(x) 单调递减,
1
1
1
1 ö,
因为 >
,所以 hæ ö < hæ
n n+1
è n ø è n + 1ø
1 ö > n ln æ1 + 1 ö
故 (n + 1)ln æ1 +
.
nø
n + 1ø
è
è
运用函数最值法证明数列不等式时,同学们需依
【高考数学】构造函数法证明导数不等式的八种方法

构造函数法证明不等式的八种方法1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。
2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。
以下介绍构造函数法证明不等式的八种方法:一、移项法构造函数【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(-+++=x x x g ,从其导数入手即可证明。
【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 ,即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数,故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题, 即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F -=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。
构造函数证明不等式或比较大小

构造函数证明不等式或比较大小在数学中,我们经常需要证明不等式或者比较大小。
构造函数是一个有用的工具,可以用来证明这类问题。
构造函数是一个函数,它的定义域是目标函数的定义域的一个子集,值域是实数集。
我们可以通过构造一个合适的函数,使得这个函数的值与目标函数的值相比较,从而证明不等式或者比较大小。
下面我们将通过几个例子来展示如何使用构造函数来证明不等式或者比较大小。
例1:证明对于任意的正实数x,有x+1>x。
证明:我们可以用构造函数f(x)=x+1来证明这个不等式。
首先我们需要验证这个函数的定义域是正实数集。
显然,对于任意的正实数x,x+1的定义域包含x。
接下来,我们需要验证这个函数的值域是实数集。
由于x是正实数,所以x+1也是实数。
因此,构造函数f(x)=x+1是一个合法的函数。
然后我们来比较f(x)和x的值。
显然,当x取任意正实数时,f(x)都大于x。
因此,我们可以得出结论x+1>x,对于任意的正实数x成立。
例2:证明对于任意的正整数n,有(n+1)²>n²。
证明:我们可以用构造函数f(n)=(n+1)²来证明这个不等式。
首先我们需要验证这个函数的定义域是正整数集。
显然,对于任意的正整数n,(n+1)²的定义域包含n。
接下来,我们需要验证这个函数的值域是实数集。
由于n是正整数,所以(n+1)²也是实数。
因此,构造函数f(n)=(n+1)²是一个合法的函数。
然后我们来比较f(n)和n²的值。
显然,当n取任意正整数时,f(n)都大于n²。
因此,我们可以得出结论(n+1)²>n²,对于任意的正整数n成立。
例3:证明对于任意的非负实数x,有3x³-2x²+x≥0。
证明:我们可以用构造函数f(x)=3x³-2x²+x来证明这个不等式。
首先我们需要验证这个函数的定义域是非负实数集。
构造法证明不等式

构造法证明不等式构造法证明不等式由于证明不等式没有固定的模式,证法灵活多样,技巧性强,使得不等式证明成为中学数学的难点之一.下面通过数例介绍构造法在证明不等式中的应用.一、构造一次函数法证明不等式有些不等式可以和一次函数建立直接联系,通过构造一次函数式,利用一次函数的有关特性,完成不等式的证明.例1 设0≤a、b、c≤2,求证:4a+b+c+abc≥2ab+2bc+2ca.证明:视a为自变量,构造一次函数= 4a+b+c+abc-2ab-2bc-2ca = (bc-2b-2c+4)a+(b+c-2bc),由0≤a≤2,知表示一条线段.又= b+c-2bc = (b-c)≥0,= b+c-4b-4c+8 = (b-2)+(c-2)≥0,可见上述线段在横轴及其上方,∴≥0,即4a+b+c+abc≥2ab+2bc+2ca.二、构造二次函数法证明不等式对一些不等式证明的题目,若能巧妙构造一元二次函数,利用二次函数的有关特性,可以简洁地完成不等式证明.例2 实数a、b、c满足( a+c)( a+b+c)<0,求证:( b-c )>4a( a+b+c).证明:由已知得a = 0时,b≠c,否则与( a+c)( a+b+c)<0矛盾,故a = 0时,( b-c )>4a( a+b+c)成立.当a≠0时,构造二次函数= ax+( b-c )x+( a+b+c),则有= a+b+c,= 2(a+c),而·= 2( a+c)( a+b+c)<0,∴存在m,当-1【扩展阅读篇】用文字记载一个星期来的自己的思想、、情况的文字记录。
它有别于“流水账”,日记,在于流水账是有就记录什么,不需要作任何修饰和认识的升华,而且内容不限,一周之内可以记录您每一天的任何事情。
而周记就是:每周一次,并且对自己的生活学习思想认识有一定的升华。
周记是对个人和某个团体一周的所见、所闻、所思、所感、所惑、所获的记录。
(完整版)构造函数法证明导数不等式的八种方法

构造函数法证明不等式的八种方法1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点.2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。
以下介绍构造函数法证明不等式的八种方法:一、移项法构造函数【例1】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(-+++=x x x g ,从其导数入手即可证明。
【解】1111)(+-=-+='x xx x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数当0>x时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证),现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证.2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f +=求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题,即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F -=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可. 【解】设)()()(x f x g x F -=,即x x x x F ln 2132)(23--=,则x x x x F 12)(2--='=xx x x )12)(1(2++-当1>x 时,)(x F '=xx x x )12)(1(2++-从而)(x F 在),1(∞+上为增函数,∴061)1()(>=>F x F∴当1>x 时 0)()(>-x f x g ,即)()(x g x f <,故在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方。
构造函数法证明泰勒展开不等式的八种方法

构造函数法证明泰勒展开不等式的八种方
法
泰勒展开定理是微积分中一个非常重要的定理,它可以将一个函数在某一点附近展开为无穷的多项式和。
在实际应用中,我们经常需要保留部分项,将函数近似表示,而泰勒展开就可以很好地满足我们的需求。
本文将介绍泰勒展开不等式的八种证明方法,其中均使用了构造函数的方法。
1. 利用 $(1+x)^n$ 的二项式展开式证明。
2. 利用 $e^x$ 的泰勒展开式证明。
3. 利用 $\ln (1+x)$ 的泰勒展开式证明。
4. 利用 $\int_0^x \cos t^2 dt$ 的收敛性证明。
5. 利用 $\int_0^x e^{-t^2} dt$ 的平方证明。
6. 利用 $\tan^{-1} x$ 和 $\tanh^{-1} x$ 的泰勒展开式证明。
7. 利用 $\sin x$ 和 $\cos x$ 的泰勒展开式证明。
8. 利用 $\int_0^1 x^p (1-x)^q dx$ 的收敛性证明。
这八种证明方法各有不同的特点和难度,涉及到的数学知识也
各有侧重。
但它们都使用了构造函数的方法,通过寻找适当的函数,将展开式转化为极限形式或积分形式,然后进一步证明不等式的成立。
总之,泰勒展开定理和泰勒展开不等式是数学中非常重要的工具,它们不仅有着重要的理论价值,在工程和自然科学中也有着广
泛的应用。
构造函数证明不等式的八种方法

构造函数证明不等式的八种方法下面将介绍构造函数证明不等式的八种常见方法:1.特殊赋值法:这种方法通过为变量赋特殊的值来构造函数,使得不等式成立。
例如,对于不等式a^2>b^2,可以构造函数f(x)=x^2,当a=2,b=1时,即f(2)>f(1),从而得到a^2>b^22.梯度法:这种方法通过构造一个变化率为正(或负)的函数来推导出不等式。
例如对于不等式a^2>b^2,可以构造函数f(x)=(x-a)^2-(x-b)^2,当x>(a+b)/2时,即f'(x)>0,从而得到a^2>b^23.极值法:这种方法通过构造一个函数的极大值(或极小值)来证明不等式。
例如对于不等式a^2>b^2,可以构造函数f(x)=x^2-b^2,当x=a时,f(x)>0,从而得到a^2>b^24.差的平方法:这种方法通过构造一个差的平方形式的函数来证明不等式。
例如对于不等式a^2>b^2,可以构造函数f(x)=(x+a)^2-(x+b)^2,当x>(a+b)/2时,即f(x)>0,从而得到a^2>b^25.相似形式法:这种方法通过构造一个与要证明的不等式形式相似的函数来证明不等式。
例如对于不等式(a+b)^4 > 8(ab)^2,可以构造函数f(x) = (x+1)^4- 8(x-1)^2,令x = ab,当x > 1时,即f(x) > 0,从而得到(a+b)^4 > 8(ab)^26.中值定理法:这种方法通过应用中值定理来证明不等式。
例如对于不等式f(a)>f(b),可以构造函数g(x)=f(x)-f(b),当a>b时,存在c∈(b,a),使得g'(c)>0,从而得到f(a)>f(b)。
7.逼近法:这种方法通过构造一个逼近函数序列来证明不等式。
例如对于不等式a > b,可以构造一个逼近函数序列f_n(x) = (a+x)^n - (b+x)^n,当n 趋近于正无穷时,即lim(n→∞)(a+x)^n - (b+x)^n = ∞,从而得到a > b。
构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法一、构造函数法是一种常用的数学证明方法,通过巧妙地构造函数,并对其性质进行分析,可以证明各种数学不等式。
下面就列举八种常用的构造函数法证明不等式的方法。
1.构造平方函数法:对于形如x^2≥0的不等式,可以构造f(x)=x^2,然后通过分析f(x)的性质,来证明不等式的成立。
2.构造递增函数法:对于形如a≥b的不等式,可以构造f(x)=x,然后通过分析f(x)的性质,来证明不等式的成立。
3.构造递减函数法:对于形如a≤b的不等式,可以构造f(x)=-x,然后通过分析f(x)的性质,来证明不等式的成立。
4.构造两个函数之差法:对于形如a-b≥0的不等式,可以构造f(x)=x^2和g(x)=(x-a)(x-b),然后通过分析f(x)和g(x)的性质,来证明不等式的成立。
5. 构造函数的和法:对于形如(a+b)^2≥0的不等式,可以构造f(x)=x^2和g(x)=a^2+b^2+2ab,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。
6.构造函数的积法:对于形如(a·b)^2≥0的不等式,可以构造f(x)=x^2和g(x)=a^2·b^2,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。
7.构造函数的倒数法:对于形如1/(a·b)≥0的不等式,可以构造f(x)=1/x和g(x)=a·b,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。
8.构造指数函数法:对于形如e^x≥1的不等式,可以构造f(x)=e^x 和g(x)=1,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。
以上就是八种常用的构造函数法证明不等式的方法。
在实际证明过程中,需要注意选择合适的函数,并结合函数的性质进行分析,以确定不等式的成立情况。
此外,还需要注意构造的函数在给定范围内是否满足所要求的性质,以确保证明的正确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 析 : 题 的通 常想 法 是 用 数 学 归 纳 法 , 必 须 本 但
先证 明加强 后 的不 等式 , 很难 构 造或 不 可能 构 造。
若 从n 联 ,是 数(= 在 问1] 能 l去 想它 函 _) 区 [ 2 厂 ÷ , 2 上 定 分即 } d l表 函 , ) 1 的 积 ,』 n 示 数 ( = ÷ =2 , 与 轴 成 图 的 积左 + + + 围 的 形 面 , l … 边- ) = 。看 n 矩 的 ・ 毒 成个 形 面 1 n
㈩ : 丝
: 边
>
0 ∈[, ) 恒成立 , 在 0+ 上
・
. .
( ÷( 了…1 ) 1 ) 1 ( + 1 ) +
.
函数
) x 0+ ) 在 E[ , 上单调递增 。
1 2 。
.
.
- ) 厂 ≥八0 = 。 ( ) 0
=
、
・Hale Waihona Puke . ∈(, 0 +∞) ,
:
.
・
.
n 时 ,( >0 ∈N , ) 恒成立 。
2, )则
故存 在最小 的正整 数 N=1使 得 当 n≥N 成 ,
立。
= ’
, n 一、 () /
・
2 1 n = 厂l ’ + 一 -
>
例 4 已知 0 b c , , ∈R 且 l <1 { <1 l , b 0 l ,
l , l <1求证 :6+6 +∞ >一1 c o c 。
解 析 : 据 o b c三 个 变 量 是 对 称 的 , 以 看 根 ,, 可
.
.
函数 n 单调递增 , ) 即 n ≥- 2 = ) 厂 ) (
_ L
2。
成是关 于其 中一个 变量的函数 , 故可构造 函数 f ) (
1
n
1,
・ . ・
l ,C l <1 1 <1 b l , 1 c <1 即 一1 e 。 , 6I <b <1
) e >0成 立 。 :b +1
・
. .
因 此
当 ( +C ≠0时 , b )
=
和, 由定积分的定义知原不等式成立 。
・
『() b )C ) 0 - 1 :( +1( +1 > 厂 【( 1 =( —6( 一c > ’ _ 一 ) 1 )1 ) 0 ,
U
考试指导
5 1
不 等 式 的 证 明方 法 是 多 种 多 样 的 , 除 课 本 上
解 本 析: 题按常规 构造函 () I ~ 数, =n 等
介绍的一些方法外 , 有些 不等 式还 可 以利 用 函数 的
性 质 来 证 明 。这 种 方 法 的 要 点 是 : 造 一 个 与 所 求 构
≮ , 函 ) 令/() 0 求极 点 求导 数厂( , = 后 值 但
不等式相关的函数 , 根据 这个 函数 的性质 得 出不等
式的结论 。下面举例说 明。
例 1 对 一切大于 1 自然数 n 的 ,
’
很 。 能 解n 为n + ) 难若 分 l } I1 , ( ) ( ( 形 , = ,可 造 数 ) ) 式令 就 构 函 一 的 n
. .
例 3 证 明是 否存 在最 小 的 正 整 数 Ⅳ, 得 当 / 使 l
) 0恒 成 立 。 >
≥Ⅳ时 , 不等式 l n+l n— >
恒成立
( 作者单位 : 江苏省赣榆 高级 中学)
。
化 繁 为 简 的作 用 。
-
证 : + ) +1… 1 明( { ( 了 (+ ) _( =l( + 一X + ( ≤1的形式 , 到 1 1 ) > 厂 ) n1 ) 0< ) 可起
丑
2 。
.
解析 : 本题的常规解法是用数学 归纳法证明 , 但
步 骤 多 , 算 量 大 。现 变 形 为 证 明 运
+ +… + 1 <l2 n
。
例 2 证明:
=
( +c X+6 +1转 化成证明函数 , ) b+c b ) c , ( =( )
+6 +1 0在 ∈( ,) 恒 成 立 。 c > 一11 时 分 两 种 情 况 讨 论 : ( +c =0时 ,( = b 当 b ) 厂 _ ) c+