天津大学《物理化学》第五版-习题及解答

合集下载

物理化学(天津大学第五版)课后答案

物理化学(天津大学第五版)课后答案

物理化学上册习题解(天津大学第五版)第一章 气体的 pVT 关系1-1 物质的体膨胀系数 V与等温压缩系数 T 的定义如下:1 V 1 VV TV T p试导出理想气体的V、T与压力、温度的关系?解:对于理想气体,pV=nRTV p T1 V VT V 1 V Tp VpT1 (nRT / p)V T1 ( nRT / p) Vp1 nR 1 V T 1 p V p V T 1 nRT 1 V p 1T V p 2 V p1-2 气柜内有 3 90kg 的流量输往使用车间,试问贮121.6kPa 、27℃的氯乙烯( C2H3Cl )气体 300m ,若以每小时 存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为pV121.6 103300n 8.314 14618.623molRT 300.15 3 3 每小时 90kg 的流量折合 p 摩尔数为 v90 10 90 10 1441.153mol h 1M C 2H3Cl 62.45 n/v= ( 14618.623 ÷1441.153 ) =10.144 小时1-3 0 ℃、 101.325kPa 的条件常称为气体的标准状况。

试求甲烷在标准状况下的密度。

解:CH 4 n M CH 4 p M CH 4 101325 16 103 0.714kg m 3V RT 8.314 273.151-4 一抽成真空的球形容器,质量为 25.0000g 。

充以 4℃水之后,总质量为 125.0000g 。

若改用充以 25℃、 13.33kPa 的某碳氢化合物气体,则总质量为 25.0163g 。

试估算该气体的摩尔质量。

解:先求容器的容积V125.0000 25.000 100.0000 cm 3 100.0000cm 3H 2 O(l ) 1n=m/M=pV/RTM RTm 8.314 298.15 (25.0163 25.0000) mol pV 13330 10 430.31g1-5 两个体积均为 V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。

最新天津大学物理化学第五版上、下册答案

最新天津大学物理化学第五版上、下册答案

天津大学物理化学第五版上、下册答案第一章 气体pVT 性质1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1T T pV p V V T V V⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系? 解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯== 每小时90kg 的流量折合p 摩尔数为133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H C n/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。

试求甲烷在标准状况下的密度。

解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ1-4 一抽成真空的球形容器,质量为25.0000g 。

充以4℃水之后,总质量为125.0000g 。

若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。

试估算该气体的摩尔质量。

解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρn=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。

天津大学_第五版_物理化学上册习题答案

天津大学_第五版_物理化学上册习题答案

目录第一章 气体的pVT 关系 ...................................................................... 1 第二章 热力学第一定律 ..................................................................... 9 第三章 热力学第二定律 .................................................................... 29 第四章 多组分系统热力学 ................................................................ 56 第五章 化学平衡 ................................................................................ 66 第六章 相平衡 (82)第一章 气体的pVT 关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1TT p V p V V T V V ⎪⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系?解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V p nRT V p p nRT V p V V TT T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯==每小时90kg 的流量折合p 摩尔数为 133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H Cn/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。

天津大学《物理化学》第五版-习题及解答

天津大学《物理化学》第五版-习题及解答

及。
要确定 ,只需对第二步应用绝热状态方程
因此
,对双原子气体
由于理想气体的 U 和 H 只是温度的函数,
整个过程由于第二步为绝热,计算热是方便的。而第一步为恒温可逆
12 / 144
2.24 求证在理想气体 p-V 图上任 一点处,绝热可逆线的斜率的绝对值大于恒温可逆线的绝 对值。
证明:根据理想气体绝热方程,
T
及过程的

解:过程图示如下
显然,在过程中 A 为恒压,而 B 为恒容,因此
11 / 144
同上题,先求功 同样,由于汽缸绝热,根据热力学第一定律
2.23 5 mol 双原子气体从始态 300 K,200 kPa,先恒温可逆膨胀到压力为 50 kPa,在绝热可
逆压缩到末态压力 200 kPa。求末态温度 T 及整个过程的 解:过程图示如下
及。 解:先确定系统的始、末态
对于途径 b,其功为
根据热力学第一定律
2.6 4 mol 的某理想气体,温度升高 20 C°,求 解:根据焓的定义
的值。
2.10 2 mol 某理想气体,
。由始态 100 kPa, 50 dm 3,先恒容加热使压力体积
增大到 150 dm 3,再恒压冷却使体积缩小至 25 dm 3。求整个过程的

假设气体可看作理想气体,
,则
8 / 144
2.16 水煤气发生炉出口的水煤气的温度是
1100 °C,其中 CO(g)和 H2(g)的摩尔分数均为
0.5。若每小时有 300 kg 的水煤气由 1100 °C 冷却到 100 °C,并用所收回的热来加热水,是
水温由 25 °C 升高到 75 °C。求每小时生产热水的质 量。 CO(g)和 H2(g)的摩尔定压热容

天津大学_第五版_物理化学上册习题答案

天津大学_第五版_物理化学上册习题答案

天津大学_第五版_物理化学上册习题答案(总94页)-本页仅作为预览文档封面,使用时请删除本页-目录第一章 气体的pVT 关系 .................................... 错误!未定义书签。

第二章 热力学第一定律 ..................................... 错误!未定义书签。

第三章 热力学第二定律 ..................................... 错误!未定义书签。

第四章 多组分系统热力学 ................................. 错误!未定义书签。

第五章 化学平衡 ................................................. 错误!未定义书签。

第六章 相平衡 .................................................... 错误!未定义书签。

第一章 气体的pVT 关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1TT p V p V V T V V⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系?解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T T VV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p VV pnRT V p p nRT V pV V T T T κ 1-2 气柜内有、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯== 每小时90kg 的流量折合p 摩尔数为 133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H C n/v=(÷)=小时1-3 0℃、的条件常称为气体的标准状况。

物理化学(天津大学第五版)课后答案

物理化学(天津大学第五版)课后答案

第一章气体的pVT关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下: 试导出理想气体的V α、T κ与压力、温度的关系?解:对于理想气体,pV=nRT1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为每小时90kg 的流量折合p 摩尔数为 133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H Cn/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。

试求甲烷在标准状况下的密度。

解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为25.0000g 。

充以4℃水之后,总质量为125.0000g 。

若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。

试估算该气体的摩尔质量。

解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm Vl O H ==-=ρ n=m/M=pV/RT1-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。

若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。

解:方法一:在题目所给出的条件下,气体的量不变。

并且设玻璃泡的体积不随温度而变化,则始态为)/(2,2,1i i i i RT V p n n n =+=终态(f )时 ⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=+=ff ff f ff f ff T T T T R Vp T V T V R p n n n,2,1,1,2,2,1,2,1 1-6 0℃时氯甲烷(CH 3Cl )气体的密度ρ随压力的变化如下。

天津大学第五版物理化学上册习题答案

天津大学第五版物理化学上册习题答案

物理化学上册习题解(天津大学第五版)第一章气体的pVT关系1-1 物质的体膨胀系数V 与等温压缩系数T 的定义如下:1 V 1 V VTV T V ppT试导出理想气体的V 、T 与压力、温度的关系?解:对于理想气体,pV=nRTV 1VVTp1V(nRTT/ p)p1VnRp1VVTT 1T 1VVpT1V( nRTp/ p)T1VnRT2p1VVpp 11-2 气柜内有121.6kPa 、27℃的氯乙烯(C2H3Cl)气体300m3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为3pV 121.6 10 300n 14618.623molRT 8.314 300.153 390 10 90 10每小时90kg 的流量折合p 摩尔数为 1v 1441 .153mol hM 62.45C H Cl2 3n/v= (14618.623 ÷1441.153 )=10.144 小时1-3 0 ℃、101.325kPa 的条件常称为气体的标准状况。

试求甲烷在标准状况下的密度。

解:CH3n p 101325 16 104 MM 0.714kg m4 4CH CHV RT 8.314 273.1531-4 一抽成真空的球形容器,质量为25.0000g 。

充以4℃水之后,总质量为125.0000g 。

若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。

试估算该气体的摩尔质量。

125.0 25.000 100.0000解:先求容器的容积 3 3V cm 100.0000cm1 H O(l )2n=m/M=pV/RTRTm 8 .314 298.15 (25.0163 25.0000)M 30. 31g4pV 13330 10mol1-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。

天大物理化学(第五版)课后习题答案

天大物理化学(第五版)课后习题答案

天津大学物理化学(第五版)习题答案32.双光气分解反应为一级反应。

将一定量双光气迅速引入一个 280 oC 的容器中, 751 s 后测得系统的压力为 2.710 kPa;经过长时间反应完了后系统压力为 4.008 kPa。

305 oC 时重复试验,经320 s 系统压力为 2.838 kPa;反应完了后系统压力为 3.554 kPa。

求活化能。

解:根据反应计量式,设活化能不随温度变化33.乙醛 (A) 蒸气的热分解反应如下518 oC 下在一定容积中的压力变化有如下两组数据:纯乙醛的初压100 s 后系统总压53.32966.66126.66430.531(1)求反应级数,速率常数;(2) 若活化能为,问在什么温度下其速率常数为518 oC 下的 2 倍:解:( 1)在反应过程中乙醛的压力为,设为n级反应,并令m = n -1,由于在两组实验中kt 相同,故有该方程有解 ( 用 MatLab fzero 函数求解 ) m = 0.972,。

反应为2级。

速率常数(3)根据 Arrhenius 公式34.反应中,在 25 oC 时分别为和,在 35 oC 时二者皆增为 2 倍。

试求:(1)25 oC 时的平衡常数。

(2)正、逆反应的活化能。

(3)反应热。

解:( 1)(2)(3)35.在 80 % 的乙醇溶液中, 1-chloro-1-methylcycloheptane 的水解为一级反应。

测得不同温度 t 下列于下表,求活化能和指前因子A。

0253545解:由 Arrhenius 公式,,处理数据如下3.6610 3.3540 3.2452 3.1432-11.4547-8.0503-6.9118-5.836236.在气相中,异丙烯基稀丙基醚 (A) 异构化为稀丙基丙酮 (B)是一级反应。

其速率常数k 于热力学温度 T 的关系为150 oC 时,由 101.325 kPa的 A 开始,到 B 的分压达到 40.023 kPa,需多长时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天津大学《物理化学》第五版习题及解答目录第一章气体的pVT性质 (2)第二章热力学第一定律 (6)第三章热力学第二定律 (24)第四章多组分系统热力学 (51)第五章化学平衡 (66)第六章相平衡 (76)第七章电化学 (85)第八章量子力学基础 (107)第九章统计热力学初步 (111)第十一章化学动力学 (117)第一章气体的pVT性质1.1 物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。

解:根据理想气体方程1.5 两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。

若将其中的一个球加热到100 °C,另一个球则维持0 °C,忽略连接细管中气体体积,试求该容器内空气的压力。

解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。

标准状态:因此,1.9 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。

(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。

(2)隔板抽取前后,H2及N2的摩尔体积是否相同?(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后即在上述条件下混合,系统的压力认为。

(2)混合气体中某组分的摩尔体积怎样定义?(3)根据分体积的定义对于分压1.11 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。

重复三次。

求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。

解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。

设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,。

重复上面的过程,第n 次充氮气后,系统的摩尔分数为,因此。

1.13 今有0 °C,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals方程计算其摩尔体积。

实验值为。

解:用理想气体状态方程计算用van der Waals计算,查表得知,对于N2气(附录七),用MatLab fzero函数求得该方程的解为也可以用直接迭代法,,取初值,迭代十次结果1.16 25 °C时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为138.7 kPa,于恒定总压下冷却到10 °C,使部分水蒸气凝结为水。

试求每摩尔干乙炔气在该冷却过程中凝结出水的物质的量。

已知25 °C及10 °C时水的饱和蒸气压分别为3.17 kPa及1.23 kPa。

解:该过程图示如下设系统为理想气体混合物,则1.17 一密闭刚性容器中充满了空气,并有少量的水。

但容器于300 K条件下大平衡时,容器内压力为101.325 kPa。

若把该容器移至373.15 K的沸水中,试求容器中到达新的平衡时应有的压力。

设容器中始终有水存在,且可忽略水的任何体积变化。

300 K时水的饱和蒸气压为3.567 kPa。

解:将气相看作理想气体,在300 K时空气的分压为由于体积不变(忽略水的任何体积变化),373.15 K时空气的分压为由于容器中始终有水存在,在373.15 K时,水的饱和蒸气压为101.325 kPa,系统中水蒸气的分压为101.325 kPa,所以系统的总压第二章热力学第一定律2.5 始态为25 °C,200 kPa的5 mol某理想气体,经途径a,b两不同途径到达相同的末态。

途经a先经绝热膨胀到-28.47 °C,100 kPa,步骤的功;再恒容加热到压力200 kPa的末态,步骤的热。

途径b为恒压加热过程。

求途径b的及。

解:先确定系统的始、末态对于途径b,其功为根据热力学第一定律2.6 4 mol的某理想气体,温度升高20 °C,求的值。

解:根据焓的定义2.10 2 mol某理想气体,。

由始态100 kPa,50 dm3,先恒容加热使压力体积增大到150 dm3,再恒压冷却使体积缩小至25 dm3。

求整个过程的。

解:过程图示如下由于,则,对有理想气体和只是温度的函数该途径只涉及恒容和恒压过程,因此计算功是方便的根据热力学第一定律2.13 已知20 °C液态乙醇(C2H5OH,l)的体膨胀系数,等温压缩率,密度,摩尔定压热容。

求20 °C,液态乙醇的。

解:由热力学第二定律可以证明,定压摩尔热容和定容摩尔热容有以下关系2.14 容积为27 m3的绝热容器中有一小加热器件,器壁上有一小孔与100 kPa的大气相通,以维持容器内空气的压力恒定。

今利用加热器件使器内的空气由0 °C加热至20 °C,问需供给容器内的空气多少热量。

已知空气的。

假设空气为理想气体,加热过程中容器内空气的温度均匀。

解:在该问题中,容器内的空气的压力恒定,但物质量随温度而改变注:在上述问题中不能应用,虽然容器的体积恒定。

这是因为,从小孔中排出去的空气要对环境作功。

所作功计算如下:在温度T时,升高系统温度 d T,排出容器的空气的物质量为所作功这正等于用和所计算热量之差。

2.15 容积为0.1 m3的恒容密闭容器中有一绝热隔板,其两侧分别为0 °C,4 mol的Ar(g)及150 °C,2 mol的Cu(s)。

现将隔板撤掉,整个系统达到热平衡,求末态温度t及过程的。

已知:Ar(g)和Cu(s)的摩尔定压热容分别为及,且假设均不随温度而变。

解:图示如下假设:绝热壁与铜块紧密接触,且铜块的体积随温度的变化可忽略不计则该过程可看作恒容过程,因此假设气体可看作理想气体,,则2.16 水煤气发生炉出口的水煤气的温度是1100 °C,其中CO(g)和H2(g)的摩尔分数均为0.5。

若每小时有300 kg的水煤气由1100 °C冷却到100 °C,并用所收回的热来加热水,是水温由25 °C升高到75 °C。

求每小时生产热水的质量。

CO(g)和H2(g)的摩尔定压热容与温度的函数关系查本书附录,水的比定压热容。

解:300 kg的水煤气中CO(g)和H2(g)的物质量分别为300 kg的水煤气由1100 °C冷却到100 °C所放热量设生产热水的质量为m,则2.18 单原子理想气体A于双原子理想气体B的混合物共5 mol,摩尔分数,始态温度,压力。

今该混合气体绝热反抗恒外压膨胀到平衡态。

求末态温度及过程的。

解:过程图示如下分析:因为是绝热过程,过程热力学能的变化等于系统与环境间以功的形势所交换的能量。

因此,单原子分子,双原子分子由于对理想气体U和H均只是温度的函数,所以2.19 在一带活塞的绝热容器中有一绝热隔板,隔板的两侧分别为2 mol,0 °C的单原子理想气体A及5 mol,100 °C的双原子理想气体B,两气体的压力均为100 kPa。

活塞外的压力维持在100 kPa不变。

今将容器内的隔板撤去,使两种气体混合达到平衡态。

求末态的温度T及过程的。

解:过程图示如下假定将绝热隔板换为导热隔板,达热平衡后,再移去隔板使其混合,则由于外压恒定,求功是方便的由于汽缸为绝热,因此2.20 在一带活塞的绝热容器中有一固定的绝热隔板。

隔板靠活塞一侧为2 mol,0 °C的单原子理想气体A,压力与恒定的环境压力相等;隔板的另一侧为6 mol,100 °C的双原子理想气体B,其体积恒定。

今将绝热隔板的绝热层去掉使之变成导热板,求系统达平衡时的T及过程的。

解:过程图示如下显然,在过程中A为恒压,而B为恒容,因此同上题,先求功同样,由于汽缸绝热,根据热力学第一定律2.23 5 mol双原子气体从始态300 K,200 kPa,先恒温可逆膨胀到压力为50 kPa,在绝热可逆压缩到末态压力200 kPa。

求末态温度T及整个过程的及。

解:过程图示如下要确定,只需对第二步应用绝热状态方程,对双原子气体因此由于理想气体的U和H只是温度的函数,整个过程由于第二步为绝热,计算热是方便的。

而第一步为恒温可逆2.24 求证在理想气体p-V图上任一点处,绝热可逆线的斜率的绝对值大于恒温可逆线的绝对值。

证明:根据理想气体绝热方程,得,因此。

因此绝热线在处的斜率为恒温线在处的斜率为。

由于,因此绝热可逆线的斜率的绝对值大于恒温可逆线的绝对值。

2.25 一水平放置的绝热恒容的圆筒中装有无摩擦的绝热理想活塞,活塞左、右两侧分别为50 dm3的单原子理想气体A和50 dm3的双原子理想气体B。

两气体均为0 °C,100 kPa。

A 气体内部有一体积和热容均可忽略的电热丝。

现在经过通电缓慢加热左侧气体A,使推动活塞压缩右侧气体B到最终压力增至200 kPa。

求:(1)气体B的末态温度。

(2)气体B得到的功。

(3)气体A的末态温度。

(4)气体A从电热丝得到的热。

解:过程图示如下由于加热缓慢,B可看作经历了一个绝热可逆过程,因此功用热力学第一定律求解气体A的末态温度可用理想气体状态方程直接求解,将A与B的看作整体,W = 0,因此2.25 在带活塞的绝热容器中有4.25 mol的某固态物质A及5 mol某单原子理想气体B,物质A的。

始态温度,压力。

今以气体B为系统,求经可逆膨胀到时,系统的及过程的。

解:过程图示如下将A和B共同看作系统,则该过程为绝热可逆过程。

作以下假设(1)固体B的体积不随温度变化;(2)对固体B,则从而对于气体B2.26 已知水(H2O, l)在100 °C的饱和蒸气压,在此温度、压力下水的摩尔蒸发焓。

求在在100 °C,101.325 kPa下使1 kg水蒸气全部凝结成液体水时的。

设水蒸气适用理想气体状态方程式。

解:该过程为可逆相变2.28 已知 100 kPa 下冰的熔点为 0 °C,此时冰的比熔化焓热J·g-1. 水的平均定压热容。

求在绝热容器内向1 kg 50 °C 的水中投入 0.1 kg 0 °C 的冰后,系统末态的温度。

计算时不考虑容器的热容。

解:经粗略估算可知,系统的末态温度T应该高于0 °C, 因此2.29 已知 100 kPa 下冰的熔点为0 °C,此时冰的比熔化焓热J·g-1. 水和冰的平均定压热容分别为及。

今在绝热容器内向1 kg 50 °C 的水中投入 0.8 kg 温度 -20 °C 的冰。

求:(1)末态的温度。

相关文档
最新文档