天大物理化学第五版
最新天津大学物理化学第五版上、下册答案

天津大学物理化学第五版上、下册答案第一章 气体pVT 性质1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1T T pV p V V T V V⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系? 解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯== 每小时90kg 的流量折合p 摩尔数为133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H C n/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρn=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
天津大学物理化学第五版上、下答案

天津大学物理化学第五版上、下答案第一章 气体pVT 性质1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1T T pV p V V T V V⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系? 解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯== 每小时90kg 的流量折合p 摩尔数为133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H C n/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρn=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
天大物理化学第五版课后习题答案(1)概要

第一章气体的pVT性质1.1物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.5两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到100 ︒C,另一个球则维持0 ︒C,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.9 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽取前后,H2及N2的摩尔体积是否相同?(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后即在上述条件下混合,系统的压力认为。
(2)混合气体中某组分的摩尔体积怎样定义?(3)根据分体积的定义对于分压1.11 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。
重复三次。
求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。
解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。
设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,。
重复上面的过程,第n次充氮气后,系统的摩尔分数为,因此。
1.13 今有0 C,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals方程计算其摩尔体积。
实验值为。
解:用理想气体状态方程计算用van der Waals计算,查表得知,对于N2气(附录七),用MatLab fzero函数求得该方程的解为也可以用直接迭代法,,取初值,迭代十次结果1.16 25 ︒C时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为138.7 kPa,于恒定总压下冷却到10 ︒C,使部分水蒸气凝结为水。
天津大学 第五版 物理化学上册习题答案

第一章 气体的pVT 关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1TT p V p V V T V V ⎪⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系?解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯==每小时90kg 的流量折合p 摩尔数为 133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H Cn/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CH ρ 1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρn=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
物理化学课件(天大第五版)-真实气体

真实气体在相变过程中的 特性
REPORTING
相变过程的概念
相变过程
物质从一种相态转变为另一种相 态的过程,如气态转变为液态或 固态,液态转变为固态或气态,
固态转变为液态或气态。
相变点
物质发生相变的温度和压力点, 如水的冰点为0°C和1个大气压。
相平衡
在一定的温度和压力下,物质的 不同相态可以共存,形成一个平
REPORTING
真实气体的内能
总结词
真实气体的内能是指气体内部所有分子动能和势能的 总和,与温度、体积和物质的量有关。
详细描述
真实气体的内能是气体热力学状态的重要参数之一,它 反映了气体内部微观粒子所具有的能量。根据热力学的 知识,真实气体的内能与温度、体积和物质的量有关。 当温度升高时,气体分子的平均动能增大,导致内能增 加;而当体积增大时,分子间的平均距离增大,势能增 大,也会导致内能增加。物质的量越大,气体的内能也 越大。因此,在等温、等压条件下,真实气体的内能随 物质的量增加而增加。
反应速率
物质在相变过程中反应速率的快 慢,表示物质化学反应速度的变 化。
2023
REPORTING
THANKS
感谢观看
衡状态。
相变过程中的热力学性质
热容
在相变过程中,物质吸收或释放热量时温度的变 化,表示物质热稳定性的变化。
熵
物质在相变过程中熵的变化,表示物质内部无序 度的变化。
焓
物质在相变过程中焓的变化,表示物质能量的变 化。
相变过程中的动力学性质
扩散系数
物质在相变过程中扩散系数的变 化,表示物质传递速度的变化。
无序程度增加,因此气体的熵也随物质的量增加而增加。
天大物理化学(第五版)课后习题答案

天津大学物理化学(第五版)习题答案32.双光气分解反应为一级反应。
将一定量双光气迅速引入一个 280 oC 的容器中, 751 s 后测得系统的压力为 2.710 kPa;经过长时间反应完了后系统压力为 4.008 kPa。
305 oC 时重复试验,经320 s 系统压力为 2.838 kPa;反应完了后系统压力为 3.554 kPa。
求活化能。
解:根据反应计量式,设活化能不随温度变化33.乙醛 (A) 蒸气的热分解反应如下518 oC 下在一定容积中的压力变化有如下两组数据:纯乙醛的初压100 s 后系统总压53.32966.66126.66430.531(1)求反应级数,速率常数;(2) 若活化能为,问在什么温度下其速率常数为518 oC 下的 2 倍:解:( 1)在反应过程中乙醛的压力为,设为n级反应,并令m = n -1,由于在两组实验中kt 相同,故有该方程有解 ( 用 MatLab fzero 函数求解 ) m = 0.972,。
反应为2级。
速率常数(3)根据 Arrhenius 公式34.反应中,在 25 oC 时分别为和,在 35 oC 时二者皆增为 2 倍。
试求:(1)25 oC 时的平衡常数。
(2)正、逆反应的活化能。
(3)反应热。
解:( 1)(2)(3)35.在 80 % 的乙醇溶液中, 1-chloro-1-methylcycloheptane 的水解为一级反应。
测得不同温度 t 下列于下表,求活化能和指前因子A。
0253545解:由 Arrhenius 公式,,处理数据如下3.6610 3.3540 3.2452 3.1432-11.4547-8.0503-6.9118-5.836236.在气相中,异丙烯基稀丙基醚 (A) 异构化为稀丙基丙酮 (B)是一级反应。
其速率常数k 于热力学温度 T 的关系为150 oC 时,由 101.325 kPa的 A 开始,到 B 的分压达到 40.023 kPa,需多长时间。
天大物理化学第五版化学平衡ppt课件市公开课金奖市赛课一等奖课件

通式: dG = BBd
3
第3页
上式在恒T、p下两边同时除以d,有:
G
T,p
BB B
ΔrGm
G —— 一定温度、压力和构成条件下,反应进行
T,p 了d 微量进度折合成每摩尔进度时所引起
系
统吉布斯函数改变;
或者说是反应系统为无限大量时进行了1 mol 进度化学反应时所引起系统吉布斯函数改变, 简称为摩尔反应吉布斯函数,通常以rGm 表 示。
n NO2 nB
21 0.3156 1 1
当
p2 = 50 kPa时,解得 2 = 0.2605,
y 2
2 2 1 2
0.4133
此题还能够用另一个办法进行平衡构成计算:
因平衡时总压 : p pN2O4 pNO2
代入:
K
(pNO / p )2
2
p / p N2O4
可得: (pNO2 / p )2 K (pNO2 / p ) K (p / p ) 0
N2O4 (g) 2NO2(g)
开始时n/mol 1
0
平衡时n/mol 1
2
nB=1+ 2 =1+
B 1
K
Kn p
p
B
(2 )2
nB
(1 )
p
1
4 2
p
p (1 ) (1 )(1 ) p
20
第20页
[K /(K 4p / p )]1/ 2
当 p1 = 100 kPa时,解得 1 = 0.1874,y1
解此一元二次方程可得:
p1 = 100 kPa时, pNO2 / p = 0.3156, y1 = pNO2 / p = 0.3156
天津大学-第五版-物理化学上习题答案

第一章 气体的pVT 关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1T T pV p V V T V V⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系 解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯== 每小时90kg 的流量折合p 摩尔数为133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H C n/v=(÷)=小时1-3 0℃、的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为。
充以4℃水之后,总质量为。
若改用充以25℃、的某碳氢化合物气体,则总质量为。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρn=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Δp = p内-p外
13
球形液滴(凸液面),附加压力为: p p内 p外 pl pg
液体中的气泡(凹液面),附加压力: p p内 p外 pg pl
对一般多组分体系: G f (T , p, nB , nC )
当系统作表面功时,G 还是面积A的函数,若系统内只 有一个相界面,且两相T、p相同 ,
QG f (T , p, As , n B , nC L )
dG S dT V d p
B( )d n B( ) dA s
B
G
U
H
A
A s
T , p,n B( )
A s
S,V ,n B( )
A s
S, p,n B( )
A s
T ,V ,n B( )
恒T、p、 、恒组分 下积分,有: G s A s
全微分得:
dG
s T
,p
dA s
A sd
可知自发降低表面自由焓有两种途径——降低表面积 降低表面张力
dT ,pG s < 0
10
3. 表面张力及其影响因素:
(1)与物质的本性有关——分子间相互作用力越大, 越大。
例:气-液界面: (金属键) > (离子键) > (极性键) > (非极性键)
(2) 与接触相的性质有关。
(3) 温度的影响:温度升高,界面张力下降。
极限情况:T→Tc时, →0。
:引起表面收缩的单位长度上的力,单位:N·m-1。
7
(2)表面功
当用外力F 使皂膜 面积增大dA时,需克 服表面张力作可逆表 面功。
W Fdx 2ldx dA
即:
W r
dA s
:使系统增加单位表面所需的可逆功 ,称为表面功。
单位:J·m-2。 (IUPAC以此来定义表面张力) 8
12
§10.2 弯曲液面的附加压力及其后果
1. 弯曲液面的附加压力——Laplace方程
pg
一般情况下,液体表面是水平的,
pl
水平液面下液体所受压力即为外界压力。
弯曲液面的附加压力
图中为球形液滴的某一球缺,凸液面
上方为气相,压力pg ;下方为液相,压力 pl ,底面与球形液滴相交处为一圆周。圆周
外液体对球缺表面张力 作用在圆周线上,
人们把粒径在1~1000nm的粒子组成的分散系统称为 胶体(见第十二章),由于其具有极高的分散度和很大的 比表面积,会产生特有的界面现象,所以经常把胶体与 界面现象一起来研究,称为胶体表面化学。
4
我们身边的胶体界面现象
曙光晚霞
碧海蓝天
雨滴
露珠
在界面现象这一章中,将应用物理化学的基本原理,对界面的特殊 性质及现象进行讨论和分析。
直径:1cm 表面积:3.1416 cm2
直径:10nm 表面积:314.16 m2
表面积是原来的106倍
界面相示意图
一些多孔物质如:硅胶、活性炭等,也具有很大的比表面积。
3
物质的分散度可用比表面积as来表示,其定义为 as = As/m
单位为m2kg-1。
小颗粒的分散系统往往具有很大的比表面积,因此 由界面特殊性引起的系统特殊性十分突出。
5
§10.1 界面张力 1. 液体的表面张力,表面功及表面吉布斯函数
的由来:
表面分子受力不对称
所以液体表面有自动收缩的倾向,扩展表面要作功。
6
(1) 液体的表面张力 实验:
l
若使膜维持不变,需在金属丝上加一力F,其大小与金
属丝长度 l 成正比,比例系数 。因膜有两个表面,故有:
F 2l
即: F / 2l
14
弯曲液面附加压力Δp 与液面曲率半径之间关系的推导:
水平分力相互平衡, 垂直分力指向液体内部,
其单位周长的垂直分力为cos
球缺底面圆周长为2r1 ,得垂直分力在圆周上的合力为: F=2r1 cos
因cos = r1/ r ,球缺底面面积为 r12 ,
2r1 r1 / r
故弯曲液面对于单位水平面上的附加压力 p r12
第十章 界面现象
1
自然界中物质的存在状态:
气—液界面
气
液—液界面
液
固—液界面
固
固—气界面
固—固界面
界面:所有两相的接触面
界面现象
2
界面并不是两相接触的几何 面,它有一定的厚度,一般约几 个分子厚,故有时又将界面称为 “界面相”。
界面的结构和性质与相邻两 侧的体相都不相同。
例:水滴分散成微小水滴
分为1018个
这样定义的p总是一个正值,方向指向凹面曲率半径中心。
表面张力的方向是和液面相切的,并和两部分的分界线垂直。如果 液面是平面,表面张力就在这个平面上。如果液面是曲面,表面张力则 在这个曲面的切面上。
需要说明的一点是,如果在液体表面上任意划一条分界线把液面分 成a、b两部分,则 a 部分表面层中的分子对 b 部分的吸引力,一定等于 b 部分对 a 部分的吸引力,这两部分的吸引力大小相等、方向相反。这 种表面层中任意两部分间的相互吸引力,造成了液体表面收缩的趋势。 由于表面张力的存在,液体表面总是趋于尽可能缩小,微小液滴往往呈 圆球形,正是因为相同体积下球形面积最小。
气相中分子密度↑
T↑
液相中分子距离↑
↓ (有例外)
0 1 T / Tc n 其中:0与n为经验常数。
11
(4)压力的影响。
a.表面分子受力不对称的程度 ↓
P↑
b.气体分子可被表面吸附,改变, ↓
↓
c.气体分子溶于液相
一般:p↑10atm, ↓1mN/m,例:
1atm 10atm
H2O = 72.8 mN/m H2O = 71.8 mN/m
(3)表面吉布斯函数:
恒温、恒压下的可逆非体积功等于系统的吉布斯函数变
W r dGT ,p dA s
G
即:
A s
T ,p,N
:恒温恒压下,增加单位表面时系统所增加的Gibbs函数。
单位:J·m-2。
三者物理意义不同,但量值和量纲等同,单位均 可化为: N·m-1
9
2. 热力学公式
整理后得:
p 2
r
——Laplace方程
15
p
2
r
——Laplace方程
讨论:① 该形式的Laplace公式只适用于球形液面。 ②曲面内(凹)的压力大于曲面外(凸)的压力, Δp>0。 ③ r 越小,Δp越大;r越大,Δp越小。
平液面:r →∞,Δp→0,(并不是 = 0)
④ Δp永远指向球心。