物理化学(天津大学第四版)上册答案完整版
物理化学天津大学第四版答案

物理化学天津大学第四版答案【篇一:5.天津大学《物理化学》第四版_习题及解答】ass=txt>目录第一章气体的pvt性质 ....................................................................................................... (2)第二章热力学第一定律 ....................................................................................................... . (6)第三章热力学第二定律 ....................................................................................................... .. (24)第四章多组分系统热力学 ....................................................................................................... . (51)第五章化学平衡 ....................................................................................................... .. (66)第六章相平衡 ....................................................................................................... (76)第七章电化学 ....................................................................................................... (85)第八章量子力学基础 ....................................................................................................... . (107)第九章统计热力学初步 ....................................................................................................... ...... 111 第十一章化学动力学 ....................................................................................................... . (117)第一章气体的pvt性质1.1 物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
物理化学(天津大学第四版)课后答案 第六章 相平衡

0 1.08 1.79 2.65 2.89 2.91 3.09 3.13 3.17 (1) 画出完整的压力-组成图(包括蒸气分压及总压,液相线及气相线);
(2) 组成为
的系统在平衡压力
下,气-液两相平衡,求
课 后 答 案 网
平衡时气相组成 及液相组成 。
(3) 上述系统 5 mol,在
课 后 答 案 网
(3) 某组成为 (含 CCl4 的摩尔分数)的 H2O-CCl4 气体混合物在 101.325 kPa 下恒压冷却到 80 °C 时,开始凝结出液体水,求此混合气体的组成; (4) 上述气体混合物继续冷却至 70 °C 时,气相组成如何; (5) 上述气体混合物冷却到多少度时,CCl4 也凝结成液体,此时气相组成如
(5) 上述气体混合物继续冷却至 66.53 °C 时,CCl4 也凝结成液 体(共沸),此时 H2O 和 CCl4 的分压分别为 26.818 kPa 和 74.507 kPa,因此
课 后 答 案 网
6.12 A–B二组分液态部分互溶系统的液-固平衡相图如附图,试指出各个相区
(2) 当温度由共沸点刚有上升趋势时,系统处于相平衡时存在哪 些相?其质量各为多少?
解:相图见图(6.7.2)。(1)温度刚要达到共沸点时系 统中尚无气相存在,
课 后 答 案 网
只存在两个共轭液相。系统代表点为
。
根据杠
杆原理
(2)当温度由共沸点刚有上升趋势时,L2 消失,气相和 L1 共存,因此
何? (2)外压 101.325 kPa 下的共沸点为 66.53 °C。 (3)开始凝结出液体水时,气相中 H2O 的分压为 43.37 °C,因此
(4) 上述气体混合物继续冷却至 70 °C 时,水的饱和蒸气压,即水在气相中 的分压,为 31.16 kPa,CCl4 的分压为 101.325 – 31.36 = 70.165 kPa,没有达 到 CCl4 的饱和蒸气压,CCl4 没有冷凝,故
物理化学第四版课后答案

第一章气体的pVT性质1.1物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.5两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到100 C,另一个球则维持0 C,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.9 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽取前后,H2及N2的摩尔体积是否相同?(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后即在上述条件下混合,系统的压力认为。
(2)混合气体中某组分的摩尔体积怎样定义?(3)根据分体积的定义对于分压1.11 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。
重复三次。
求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。
解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。
设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,。
重复上面的过程,第n次充氮气后,系统的摩尔分数为,因此。
1.13 今有0 C,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals 方程计算其摩尔体积。
实验值为。
解:用理想气体状态方程计算用van der Waals计算,查表得知,对于N2气(附录七),用MatLab fzero函数求得该方程的解为也可以用直接迭代法,,取初值,迭代十次结果1.16 25 C时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为138.7 kPa,于恒定总压下冷却到10 C,使部分水蒸气凝结为水。
物理化学第四版课后答案

第一章气体的pVT性质物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到 100 C,另一个球则维持 0 C,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽取前后,H2及N2的摩尔体积是否相同(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干解:(1)等温混合后即在上述条件下混合,系统的压力认为。
(2)混合气体中某组分的摩尔体积怎样定义(3)根据分体积的定义对于分压室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。
重复三次。
求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。
解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。
设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,。
重复上面的过程,第n次充氮气后,系统的摩尔分数为,因此。
今有0 C, kPa的N2气体,分别用理想气体状态方程及van der Waals方程计算其摩尔体积。
实验值为。
解:用理想气体状态方程计算用van der Waals计算,查表得知,对于N2气(附录七),用MatLab fzero函数求得该方程的解为也可以用直接迭代法,,取初值,迭代十次结果25 C时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为 kPa,于恒定总压下冷却到10 C,使部分水蒸气凝结为水。
物理化学第四版课后答案

第一章气体的pVT性质1.1物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.5两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到100 C,另一个球则维持0 C,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.9 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽取前后,H2及N2的摩尔体积是否相同?(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后即在上述条件下混合,系统的压力认为。
(2)混合气体中某组分的摩尔体积怎样定义?(3)根据分体积的定义对于分压1.11 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。
重复三次。
求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。
解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。
设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,。
重复上面的过程,第n次充氮气后,系统的摩尔分数为,因此。
1.13 今有0 C,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals 方程计算其摩尔体积。
实验值为。
解:用理想气体状态方程计算用van der Waals计算,查表得知,对于N2气(附录七),用MatLab fzero函数求得该方程的解为也可以用直接迭代法,,取初值,迭代十次结果1.16 25 C时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为138.7 kPa,于恒定总压下冷却到10 C,使部分水蒸气凝结为水。
天津大学《物理化学》第四版习题及解答(统计热力学初步)

第九章统计热力学初步
1.按照能量均分定律,每摩尔气体分子在各平动自由度上的平均动能为。
现有1 mol CO气体于0 ºC、101.325 kPa条件下置于立方容器中,试求:
(1)每个CO分子的平动能;
(2)能量与此相当的CO分子的平动量子数平方和
解:(1)CO分子有三个自由度,因此,
(2)由三维势箱中粒子的能级公式
2.某平动能级的,使球该能级的统计权重。
解:根据计算可知,、和只有分别取2,4,5时上式成立。
因此,该能级的统计权重为g = 3! = 6,对应于状态。
3.气体CO分子的转动惯量,试求转动量子数J为4与3两能级
的能量差,并求时的。
解:假设该分子可用刚性转子描述,其能级公式为
4.三维谐振子的能级公式为,式中s为量子数,即。
试证明能级的统计权重为
解:方法1,该问题相当于将s个无区别的球放在x,y,z三个不同盒子中,每个盒子容纳的球数不受限制的放置方式数。
x盒中放置球数0,y, z中的放置数s + 1
x盒中放置球数1,y, z中的放置数s
……………………………………….
x盒中放置球数s,y, z中的放置数1
方法二,用构成一三维空间,为该空间的一个平面,其与三个轴均相交于s。
该平面上为整数的点的总数即为所求问题的解。
这些点为平
面在平面上的交点:
由图可知,
5.某系统由3个一维谐振子组成,分别围绕着
A, B, C三个定点做振动,总能量为。
试
列出该系统各种可能的能级分布方式。
解:由题意可知方程组
的解即为系统可能的分布方式。
方程组化简为,其解为。
物理化学(天津大学第四版)上册答案完整版

一章气体的pVT关系1.1 物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.2 气柜内贮有121.6 kPa,27℃的氯乙烯(C2H3Cl)气体300 m3,若以每小时90 kg的流量输往使用车间,试问贮存的气体能用多少小时?解:假设气柜内所贮存的气体可全部送往使用车间。
1.3 0℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度?解:将甲烷(M w=16g/mol)看成理想气体: PV=nRT , PV =mRT/ M w甲烷在标准状况下的密度为=m/V= PM w/RT=101.32516/8.314273.15(kg/m3)=0.714 kg/m31.4 一抽成真空的球形容器,质量为25.0000g充以4℃水之后,总质量为125.0000g。
若改充以25℃,13.33 kPa的某碳氢化合物气体,则总质量为 25.0163g。
试估算该气体的摩尔质量。
水的密度1g·cm3计算。
解:球形容器的体积为V=(125-25)g/1 g.cm-3=100 cm3将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ M wM w= mRT/ PV=(25.0163-25.0000)8.314300.15/(1333010010-6)M w =30.51(g/mol)1.5 两个容积均为V 的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到 100℃,另一个球则维持 0℃,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.6 0℃时氯甲烷(CH 3Cl )气体的密度ρ随压力的变化如下。
试作p p-ρ图,用外推法求氯甲烷的相对分子质量。
1.7 今有20℃的乙烷-丁烷混合气体,充入一抽成真空的200 cm3容器中,直至压力达101.325 kPa,测得容器中混合气体的质量为0.3897 g。
《物理化学》课后习题答案(天津大学第四版)

因此,由标准摩尔生成焓
由标准摩尔燃烧焓
2.37 已知25 °C甲酸甲脂(HCOOCH3, l)的标准摩尔燃烧焓 为 ,甲酸(HCOOH, l)、甲醇(CH3OH, l)、水 (H2O, l)及二氧化碳(CO2, g)的标准摩尔生成焓 分别 为 、 、 及 应用这些数据求25 °C时下列反应的标准摩尔反应焓。 解:显然要求出甲酸甲脂(HCOOCH3, l)的标准摩尔生成焓
2.14 容积为27 m3的绝热容器中有一小加热器件,器壁上有一小孔与 100 kPa的大气相通,以维持容器内空气的压力恒定。今利用加热器 件使器内的空气由0 °C加热至20 °C,问需供给容器内的空气多少 热量。已知空气的 假设空气为理想气体,加热过程中容器内空气的温度均匀。 解:在该问题中,容器内的空气的压力恒定,但物质量随温度 而改变
-46.11
NO2(g) 33.18
90.25
HNO3(l) -174.10
-241.818
Fe2O3(s) -824.2
-285.830 CO(g) -110.525
(1) (2) (3)
2.35 应用附录中有关物资的热化学数据,计算 25 °C时反应 的标准摩尔反应焓,要求: (1) 应用25 °C的标准摩尔生成焓数据; (2) 应用25 °C的标准摩尔燃烧焓数据。 解:查表知
可由
表出(Kirchhoff公式)
设甲烷的物质量为1 mol,则 最后得到
,
,
,
第三章 热力学第二定律
3.1 卡诺热机在 的高温热源和 的低温热源间工作。 求(1) 热机效率 ; (2) 当向环境作功 时,系统从高温热源吸收的热 及 向低温热源放出的热 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一章气体的pVT关系1.1 物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.2 气柜内贮有121.6 kPa,27℃的氯乙烯(C2H3Cl)气体300 m3,若以每小时90 kg的流量输往使用车间,试问贮存的气体能用多少小时?解:假设气柜内所贮存的气体可全部送往使用车间。
1.3 0℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度?解:将甲烷(M w=16g/mol)看成理想气体: PV=nRT , PV =mRT/ M w甲烷在标准状况下的密度为=m/V= PM w/RT=101.32516/8.314273.15(kg/m3)=0.714 kg/m31.4 一抽成真空的球形容器,质量为25.0000g充以4℃水之后,总质量为125.0000g。
若改充以25℃,13.33 kPa的某碳氢化合物气体,则总质量为 25.0163g。
试估算该气体的摩尔质量。
水的密度1g·cm3计算。
解:球形容器的体积为V=(125-25)g/1 g.cm-3=100 cm3将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ M wM w= mRT/ PV=(25.0163-25.0000)8.314300.15/(1333010010-6)M w =30.51(g/mol)1.5 两个容积均为V 的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到 100℃,另一个球则维持 0℃,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.6 0℃时氯甲烷(CH 3Cl )气体的密度ρ随压力的变化如下。
试作p p-ρ图,用外推法求氯甲烷的相对分子质量。
1.7 今有20℃的乙烷-丁烷混合气体,充入一抽成真空的200 cm3容器中,直至压力达101.325 kPa,测得容器中混合气体的质量为0.3897 g。
试求该混合气体中两种组分的摩尔分数及分压力。
解:将乙烷(M w=30g/mol,y1),丁烷(M w=58g/mol,y2)看成是理想气体:PV=nRT n=PV/RT=8.314710-3mol(y130+(1-y1) 58)8.314710-3=0.3897y1=0.401 P1=40.63kPay2=0.599 P2=60.69kPa1.8 试证明理想混合气体中任一组分B的分压力p B与该组分单独存在于混合气体的温度、体积条件下的压力相等。
解:根据道尔顿定律分压力对于理想气体混合物,所以1.9 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽取前后,H2及N2的摩尔体积是否相同?(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后即在上述条件下混合,系统的压力认为。
(2)相同(3)根据分体积的定义对于分压1.11 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。
重复三次。
求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。
解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。
设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,重复上面的过程,第n次充氮气后,系统的摩尔分数为因此1.12 CO2气体在40℃时的摩尔体积为0.381 dm3·mol-1。
设CO2为范德华气体,试求其压力,并比较与实验值 5066.3 kPa的相对误差。
1.13 今有0℃,40.530 kPa的N2气体,分别用理想气体状态方程及范德华方程计算其摩尔体积。
实验值为。
1.16 25℃时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为138.7 kPa,于恒定总压下冷却到10℃,使部分水蒸气凝结为水。
试求每摩尔干乙炔气在该冷却过程中凝结出水的物质的量。
已知25℃及10℃时水的饱和蒸气压分别为3.17 kPa及1.23 kPa。
解:该过程图示如下设系统为理想气体混合物,则1.17 一密闭刚性容器中充满了空气,并有少量的水。
当容器于300K条件下达平衡时,容器内压力为101.325kPa。
若把该容器移至373.15K的沸水中,试求容器中达到新平衡时应有的压力。
设容器中始终有水存在,且可忽略水的任何体积变化。
300K时水的饱和蒸气压为3.567kPa。
解:300K空气的分压力为:101.325kPa-3.567kPa=97.758kPa373.15K该气体的分压力为:97.758kPa×373.15K/300K=121.58kPa373.15K水的饱和蒸气压为101.325kPa,故分压力为101.325kPa容器中达到新平衡时应有的压力为:101.325kPa+121.58kPa=222.92kPa1.18 把25℃的氧气充入 40dm3的氧气钢瓶中,压力达 202 7×102kPa。
试用普遍化压缩因子图求钢瓶中氧气的质量。
氧气的T C=-118.57℃,P C=5.043MPa氧气的T r=298.15/(273.15-118.57)=1.93, P r=20.27/5.043=4.02Z=0.95PV=ZnRTn=PV/ZRT=202.7×105×40×10-3/(8.314×298.15)/0.95=344.3(mol) 氧气的质量m=344.3×32/1000=11(kg)第二章 热力学第一定律2.1 1mol 理想气体在恒定压力下温度升高1℃,求过程中系统与环境交换的功。
解:理想气体n = 1mol对于理想气体恒压过程,应用式(2.2.3)W =-p amb ΔV =-p(V 2-V 1) =-(nRT 2-nRT 1) =-8.314J2.2 1mol 水蒸气(H 2O,g)在100℃,101.325kPa 下全部凝结成液态水。
求过程的功。
假设:相对于水蒸气的体积,液态水的体积可以忽略不计。
解: n = 1mol恒温恒压相变过程,水蒸气可看作理想气体, 应用式(2.2.3)W =-p amb ΔV =-p(V l -V g ) ≈ pVg = nRT = 3.102kJ2.3 在25℃及恒定压力下,电解1mol 水(H 2O,l),求过程的体积功。
H 2O(l) = H 2(g) + 1/2O 2(g) 解: n = 1mol恒温恒压化学变化过程, 应用式(2.2.3)W=-p amb ΔV =-(p 2V 2-p 1V 1)≈-p 2V 2 =-n 2RT=-3.718kJ2.4 系统由相同的始态经过不同途径达到相同的末态。
若途径a 的Q a =2.078kJ,Wa=-4.157kJ ;而途径b 的Q b =-0.692kJ 。
求W b .解: 热力学能变只与始末态有关,与具体途径无关,故 ΔU a = ΔU b由热力学第一定律可得 Qa + Wa = Q b + W b ∴ W b = Q a + W a -Q b = -1.387kJ2.5 始态为25℃,200 kPa 的5 mol 某理想气体,经途径a ,b 两不同途径到达相同的末态。
途经a 先经绝热膨胀到 -28.47℃,100 kPa ,步骤的功;再恒容加热到压力200 kPa 的末态,步骤的热。
途径b 为恒压加热过程。
求途径b 的及。
解:先确定系统的始、末态3111061902000001529831485m ...P nRT V =××==32101601000005824431485m ...P nRT V V =××=== kJ .kJ )..(Q W U Δa a 85194225575=+=+=-对于途径b ,其功为kJ .J ..V Δp W b 932706190101602000001-)-(--===根据热力学第一定律2.6 4mol 某理想气体,温度升高20℃, 求ΔH -ΔU 的值。
解:根据焓的定义2.7 已知水在25℃的密度ρ=997.04kg·m-3。
求1mol水(H2O,l)在25℃下:(1)压力从100kPa增加至200kPa时的ΔH;(2)压力从100kPa增加至1Mpa时的ΔH。
假设水的密度不随压力改变,在此压力范围内水的摩尔热力学能近似认为与压力无关。
解: 已知ρ= 997.04kg·m-3 M H2O = 18.015 × 10-3 kg·mol-1凝聚相物质恒温变压过程, 水的密度不随压力改变,1molH2O(l)的体积在此压力范围可认为不变, 则V H2O = m /ρ= M/ρΔH -ΔU = Δ(pV) = V(p2 -p1 )摩尔热力学能变与压力无关, ΔU = 0∴ΔH = Δ(pV) = V(p2 -p1 )1) ΔH -ΔU = Δ(pV) = V(p2 -p1 ) = 1.8J2) ΔH -ΔU = Δ(pV) = V(p2 -p1 ) = 16.2J2.8 某理想气体C v,m=3/2R。
今有该气体5mol在恒容下温度升高50℃。
求过程的W,Q,ΔH和ΔU。
解: 理想气体恒容升温过程 n = 5mol C V,m = 3/2RQ V =ΔU = n C V,mΔT = 5×1.5R×50 = 3.118kJW = 0ΔH = ΔU + nRΔT = n C p,mΔT= n (C V,m+ R)ΔT = 5×2.5R×50 = 5.196kJ2.9 某理想气体C v,m=5/2R。
今有该气体5mol在恒压下温度降低50℃。
求过程的W,Q,ΔU和ΔH。
解: 理想气体恒压降温过程 n = 5molC V,m = 5/2R C p,m = 7/2RQ p =ΔH = n C p,mΔT = 5×3.5R×(-50) = -7.275kJW =-p ambΔV =-p(V2-V1) =-(nRT2-nRT1) = 2.078kJΔU =ΔH-nRΔT = nC V,mΔT = 5×2.5R×(-50) = -5.196kJ2.10 2mol某理想气体,C p,m=7/2R。