最新物理化学课件(天大第五版)动力学例题

合集下载

最新物理化学(天大第五版)动力学例题分析解析

最新物理化学(天大第五版)动力学例题分析解析
例1:二甲醚的气相分解反应是一级反应
CH3OCH3(g)→CH4 (g) +H2 (g) +CO (g) 504℃时把二甲醚充入真空反应球内,测量球内压 力的变化数据如下: t(s) 390 777 488 1587 3155 ∞(完全分解) 624 779 931
pt(mmHg) 408
试计算该反应在504℃时的速率常数k及半衰期t1/2 解: 方法一
解:
Ea 1.080 10 4 1 1 1 ln ( )mol J 4 5.484 10 8.3145 283.15 333.15
Ea 1 k2 1 ln ( ) k1 R T2 T1
Ea=97730J· mol-1
上页 下页
k3 97730 1 1 1 ln ( )mol J 4 5.484 10 8.3145 303.15 333.15
试用稳态法导出生成甲烷的速率方程式和乙醛 的消耗速率方程式。
上页 下页
dt d[CH 3 CHO ] k 1 [CH 3 CHO ] k 2 [CH 3 ][CH 3 CHO ] dt d[CH 3 ] k 1 [CH 3 CHO ] k 2 [CH 3 ][CH 3 CHO ] dt
408
488 624 779
523
433 307 152
4 1
4.39
4.34 4.44 4.46
k 4.41 10 s
t1 2
ln 2 3 s 1.57 10 s 4 4.41 10 k 上页 下页
ln 2
方法二
0 ln k At t p p0 ln kt p pt
(2)计算转化率达到90%,则

天津大学《物理化学》第五版-习题及解答

天津大学《物理化学》第五版-习题及解答

及。
要确定 ,只需对第二步应用绝热状态方程
因此
,对双原子气体
由于理想气体的 U 和 H 只是温度的函数,
整个过程由于第二步为绝热,计算热是方便的。而第一步为恒温可逆
12 / 144
2.24 求证在理想气体 p-V 图上任 一点处,绝热可逆线的斜率的绝对值大于恒温可逆线的绝 对值。
证明:根据理想气体绝热方程,
T
及过程的

解:过程图示如下
显然,在过程中 A 为恒压,而 B 为恒容,因此
11 / 144
同上题,先求功 同样,由于汽缸绝热,根据热力学第一定律
2.23 5 mol 双原子气体从始态 300 K,200 kPa,先恒温可逆膨胀到压力为 50 kPa,在绝热可
逆压缩到末态压力 200 kPa。求末态温度 T 及整个过程的 解:过程图示如下
及。 解:先确定系统的始、末态
对于途径 b,其功为
根据热力学第一定律
2.6 4 mol 的某理想气体,温度升高 20 C°,求 解:根据焓的定义
的值。
2.10 2 mol 某理想气体,
。由始态 100 kPa, 50 dm 3,先恒容加热使压力体积
增大到 150 dm 3,再恒压冷却使体积缩小至 25 dm 3。求整个过程的

假设气体可看作理想气体,
,则
8 / 144
2.16 水煤气发生炉出口的水煤气的温度是
1100 °C,其中 CO(g)和 H2(g)的摩尔分数均为
0.5。若每小时有 300 kg 的水煤气由 1100 °C 冷却到 100 °C,并用所收回的热来加热水,是
水温由 25 °C 升高到 75 °C。求每小时生产热水的质 量。 CO(g)和 H2(g)的摩尔定压热容

物理化学课件(天津大学第五版)--课件:第一章 气体的pVT性质

物理化学课件(天津大学第五版)--课件:第一章 气体的pVT性质
•真实气体只在温度不太低、压力不太高 的情况下近似符合理想气体状态方程。
上一内容 下一内容 回主目录
返回
2020/7/30
摩尔气体常数R的求导
3) 外推至p=0,可得
R
lim (
p0
pVm )T
/T
(2494.2 /
300)J
mol1
K
用于p, V, T, n, m, M, ρ的计算
上一内容 下一内容 回主目录
返回
2020/7/30
§1.1 理想气体的状态方程
例:计算25℃,101325Pa时空气的密度。
(空气的分子量为29)
解:
一定是常数么?
n V
p RT
101325
8.315
273.15
25
mol m3
40.87 mol m3
B
返回
2020/7/30
§1.2 理想气体混合物
• 用质量分数表示:
wB
mB mB mA m
A
wB 1
B
量纲为1
上一内容 下一内容 回主目录
返回
2020/7/30
§1.2 理想气体混合物
• 用体积分数表示:
B
xBVm*, B xAVm*, A
nBVm*, B nAVm*, A
A
A
上一内容 下一内容 回主目录
返回
2020/7/30
§1.1 理想气体的状态方程
理想气体:分子间无相互作用,分子本身无体积
××
×
×
×× ×
×
× ×
×
××
可无限压缩
在任何温度、压 力下均符合理想 气体模型,或服 从理想气体状态 方程的气体为理 想气体

天津大学第五版物理化学课件

天津大学第五版物理化学课件

2020/3/1
6.熵判据——熵增原理
对于绝热系统, Q 0 ,所以Clausius 不等式为
dS …0
> 不可逆 = 可逆
熵增原理可表述为:在绝热条件下,系统发
生不可逆过程,其熵增加。或者说在绝热条件下,
不可能发生熵减少的过程。
如果是一个隔离系统,环境与系统间既无热 的交换,又无功的交换,则熵增加原理可表述为: 一个隔离系统的熵永不减少。
§3.9 克拉佩龙方程 §3./3/1
§3.1 卡诺循环(Carnot cycle)
1824 年,法国工程师 N.L.S.Carnot (1796~1832)设计 了一个循环,以理想气体为 工作物质,从高温 (T1)热源吸 收 Q1 的热量,一部分通过理 想热机用来对外做功W,另一 部分 Q2的热量放给低温 (T2 )热 源。这种循环称为卡诺循环。
• 环境熵变的计算 • 凝聚态物质变温过程熵变的计算 • 气体恒容变温、恒压变温过程熵变的计算 • 理想气体pVT变化过程熵变的计算
2020/3/1
1.环境熵变的计算
环境恒温:
dSamb

Qamb Tamb
环境非恒温:
Samb

Qamb Tamb

Qsys Tamb
Samb
2 Qr
相除得 V2 V3
V1 V4
所以
Q1
Q2

nRT1
ln V2 V1

nRT2
ln V4 V3

nR(T1

T2
)
ln
V2 V1
2020/3/1
§3.1 卡诺循环(Carnot cycle)
整个循环:

《物理化学》(天大第五版)考点精讲教程(第11讲 化学动力学基础)

《物理化学》(天大第五版)考点精讲教程(第11讲  化学动力学基础)

第11讲化学动力学基础
《物理化学》考点精讲教程(天津大学第五版)
主讲人:张彩丽
网学天地
对于恒容均相
(2)反应速率常数
4.反应分子数与反应级数比较
5.用气体组分的分压表示的速率方程
二、速率方程的积分形式
2. 一级反应
3. 二级反应
二级反应。

反应物有两种的情况,如反应:
反应物有两种的情况,如反应:
4. n 级反应
三、速率方程的确定
A,0⎠
在相同的时间间隔测得一系列浓度数据。

2.微分法
3.半衰期法
四温度对反应速率的影响
对于一般化学反应
五、典型复合反应
A B
1.对行反应d c
3.连串反应

k
六、复合反应速率的近似处理法
关键在于提高控制步骤的速率。

2.平衡态近似法
3.稳态近似法
2. 在恒温300K
分离变量积分得:
3. 某反应A
分离变量并积分得:
即有:
4. 已知反应在
,所以:
所以:
,试证明:
,则:
因为,所以:将上式代入
6. 求具有下列机理的某气相反应的速率方程:
证:总反应速率可以用最终产物的生成速率来表示为:
所以总反应速率方程为:即反应表现为一级反应。

物理化学天大五版课件第十一章

物理化学天大五版课件第十一章

第十一章 化学动力学 研究化学变化的方向、能达到的最大限度以及外界条件对平衡的影响。

例如:化学热力学的研究对象和局限性一、化学动力学的任务和目的22322213N H NH (g)221H O H O(l)2+−−→+−−→116.63237.19- - / kJ mol - m r G D 化学热力学能预测反应的可能性,但无法回答反应的速率如何及反应的机理如何等现实性的问题。

化学动力学从动态角度由宏观表象到微观分子水平研究化学反应的速率和反应的机理以及温度、压力、催化剂、溶剂和光照等外界因素对反应速率的影响,把热力学的反应可能性变为现实性。

化学动力学的研究对象22322213N H NH (g)221H O H O(l)2+→+→例如: 动力学认为: 需一定的T ,p 和催化剂 点火 ,加温或催化剂。

若常温、无催化剂需 年。

2510610s -化学动力学定义:⏹在 “反应速率” 、“反应机理(历程)” 两个概念中,“反应速率”比较不难理解(严格的定义后述);⏹而新提出的概念 “反应机理(历程)” 指什么呢?“化学动力学是研究化学反应速率、反应机理(历程)的学科。

”二、反应历程(机理)及其意义反应机理又称为反应历程,即一个化学反应从反应物彻底变为产物所必须经历的全部反应步骤。

对于大多数化学反应,并非一步完成,需分几步来完成:反应历程研究的意义、作用例如:合成氨反应:3 H 2 + N 2 → 2 NH 3(300 atm ,500︒C )热力学计算得知:转化率 ~ 26%(由平衡常数计算得)考虑动力学因素:反应若无催化剂,其反应速率 → 0,完全不能用于生产;若采用适合的催化剂,改变其反应历程,则可加快反应的速度(常用 Fe 催化剂)。

1. 研究反应机理,能为控制反应产物、反应速度提供依据。

2、实践意义⑴增加化工产品的产量;⑵提高产品的质量;⑶提供如何避免危险品的爆炸、材料的腐蚀或产品的老化变质的知识;⑷为科研成果的工业化进行最优设计和最优控制,为现有生产选择最适宜的操作条件。

天大物化第五版第十一章 化学动力学

天大物化第五版第十一章 化学动力学
基元反应按反应分子数分类:
基元反应
ìïïïíïïïî
单分子反应 双分子反应,绝大多数 三分子反应
四个分子同时碰撞在一起的机会极少,所以还没有发现有 大于三个分子的基元反应。
3. 基元反应的速率方程─质量作用定律 对于基元反应 a A + b B + L - ? 产物
其速率方程
v
=
kc
aAc
b B
L
物理化学中的两个基本问题: (1) 化学反应朝哪进行? (2) 到达哪有多快?
前者是平衡的问题,而后者则是到达平衡的速率问题,或 动力学问题。
化学动力学研究: (1) 均相反应,即全部发生在一个相中的反应。 (2) 多相反应,即发生在多相界面上的反应。
内容:
(i) 研究各种因素,包括浓度、温度、催化剂、溶剂、 光照等对反应速率影响的规律;
以反应 aA - ? 产物 为例
设 A 的消耗速率方程为
-
dc A dt
=
k
Ac
n A

-
dp A dt
=
k
p
,A
p
n A
由于 pA = cAR T ,因此
-
dc A R T dt
=
k
p
,Ac
n A
(R
T
)n
kA = k p ,A (R T )n - 1
① dcA dt 和 dpA dt 均可用于表示气相反应的速率。 ② kA 和 kp,A 存在以上关系。当 n = 1时,两者相同。
S + H2O- ? 产物
为二级反应: v = k[H2O][S ],但当蔗糖浓度很小,水的浓
度很大而基本上不变时,有

物理化学下册第五版天津大学出版社第十一章化学动力学习题答案

物理化学下册第五版天津大学出版社第十一章化学动力学习题答案

物理化学下册第五版天津大学出版社第十一章化学动力学习题答案11.1 反应SO2Cl2(g)→SO2Cl(g)+ Cl2(g)为一级气相反应,320 ℃时k=2.2×10-5s-1。

问在320℃加热90 min SO2Cl2(g)的分解分数为若干?解:根据一级反应速率方程的积分式即有:x = 11.20%11.2某一级反应A→B的半衰期为10 min。

求1h后剩余A的分数。

解:根据一级反应的特点又因为:即有:1-x = 1.56%11.3某一级反应,反应进行10 min后,反应物反应掉30%。

问反应掉50%需多少时间?解:根据一级反应速率方程的积分式当t=10min时:当x=50%时:11.4 25℃时,酸催化蔗糖转化反应的动力学数据如下(蔗糖的初始浓度c0为1.0023 mol·dm-3,时刻t的浓度为c)(1)使用作图法证明此反应为一级反应。

求算速率常数及半衰期;(2)问蔗糖转化95%需时若干?解:(1)将上述表格数据转化如下:对作图如下则:k = 3.58×10-3min-1(2)11.5 对于一级反应,使证明转化率达到87.5%所需时间为转化率达到50%所需时间的3倍。

对于二级反应又应为多少?解:对于一级反应而言有:即有:对于二级反应而言有:即有:11.6偶氮甲烷分解反应CH3NNCH3(g)→ C2H6(g)+ N2(g)为一级反应。

在287 ℃时,一密闭容器中CH3NNCH3(g)初始压力为21.332 kPa,1000 s后总压为22.732 kPa,求k及t1/2。

解:设在t时刻CH3NNCH3(g)的分压为p,即有:1000 s后2p0-p=22.732,即p = 19.932kPa。

对于密闭容器中的气相反应的组成可用分压表示:11.7 基乙酸在酸性溶液中的分解反应(NO2)CH2COOH→CH3 NO2(g)+ CO2(g)为一级反应。

25℃,101.3 kPa下,于不同时间测定放出的CO2(g)的体积如下:t/min 2.28 3.92 5.92 8.42 11.92 17.47 ∞V/cm3 4.09 8.05 12.02 16.01 20.02 24.02 28.94反应不是从t=0开始的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dc o 3
A. 2k=3k’
C. 3k=2k’
B. k=k’
D. 3k= -2k’
5.某反应速率常数k=2.31×10-2s-1· L· mol-1,又初 始浓度为1.0mol· L,则其反应的半衰期为( A ) A. 43.29s B. 15s C.30s D.21.65s
t1/2=1/(kcA,0)
408
488 624 779
523
433 307 152
4 1
4.39
4.34 4.44 4.46
k 4.41 10 s
t1 2
ln 2 3 s 1.57 10 s 4 4.41 10 k 上页 下页
ln 2
方法二
0 ln k At t p p0 ln kt p pt
解:
Ea 1.080 10 4 1 1 1 ln ( )mol J 4 5.484 10 8.3145 283.15 333.15
Ea 1 k2 1 ln ( ) k1 R T2 T1
Ea=97730J· mol-1
上页 下页
k3 97730 1 1 1 ln ( )mol J 4 5.484 10 8.3145 303.15 333.15
3pA0
1 p A0 1 p 3 k ln ln t pA t 3p A 0 p t 2 2p 1 k ln t 3p p t 上页
下页
将t,pt数据代入上式可得:
t(s) pt(mmHg) p∞- pt 104k(s-1)
390
777 1587 3155
N 2O
NO2 NO3 NO2 O 2 NO NO NO3 2NO2 d[O 2 ] 用稳态法证明: k[N 2 O 5 ] dt d[O 2 ] 证: k 2 [NO 2 ][ NO 3 ] dt d[NO 3 ] k 1 [N 2 O 5 ] k 1 [NO 2 ][ NO 3 ] dt k 2 [NO 2 ][ NO 3 ] k 3 [NO][ NO 3 ] 0
1 dc A 1 dc B a dt b dt
上页 下页
2.某反应的速率常数k=4.62×10-2 min-1,又初 始浓度为0.1mol· dm-3,则该反应的半衰期t1/2为 (B ) 1 B. 15min A. min
6.93 10 2 (0.1) 2
一级反应:

p A0 ln kt pA
上页 下页
CH3OCH3(g)→CH4 (g) + H2 (g) + CO (g)
总压pt pA0 3pA0-2pA
t=0 pA0 0 0 0 t=t pA pA0-pA pA0-pA pA0pA t=∞ 0 pA0 pA0 pA0 ∵ p∞ =3pA0 ∴ pA0 = 1/3p∞ ∵ pt =3pA0-2pA ∴ pA =(3pA0-pt)/2
k3
K1 5 K 1
NO 2 NO 3
k2
d[NO] k 2 [NO 2 ][ NO 3 ] k 3 [NO][ NO 3 ] 0 上页 下页 dt
d[NO 3 ] k 1 [N 2 O 5 ] k 1 [NO 2 ][ NO 3 ] dt k 2 [NO 2 ][ NO 3 ] k 3 [NO][ NO 3 ] 0 d[NO] k 2 [NO 2 ][ NO 3 ] k 3 [NO][ NO 3 ] 0 dt k 1 [N 2O5 ] k 1 [NO2 ][NO3 ] 2k 2 [NO2 ][NO3 ] 0
∵ p0 =pA0 = 1/3p∞
2p 1 k ln t 3p p t
其余同方法一
上页 下页
例2:已知CO(CH2COOH)2在水溶液中的分解反应 的速率常数在60℃和10℃时分别为5.484×10-4s-1 和1.080 ×10-4s-1. (1)求该反应的活化能, (2)该反应在30℃时进行1000s,问转化率为若干?
试用稳态法导出生成甲烷的速率方程式和乙醛 的消耗速率方程式。
上页 下页
dt d[CH 3 CHO ] k 1 [CH 3 CHO ] k 2 [CH 3 ][CH 3 CHO ] dt d[CH 3 ] k 1 [CH 3 CHO ] k 2 [CH 3 ][CH 3 CHO ] dt
f dc A f dc B C. a dt b dt
1 dc F 1 dc E D. f dt e dt
f dc E dc F e dt dt
7.反应A→B,当实验测得其反应物A的浓度cA 与时间t成线性关系时,该反应为( D ) A.一级反应 B.二级反应 C.分数级反应 D.零级反应
8.基元反应的分子数是个微观的概念,其值 为( B ) A. 0,1,2,3 B. 只能是1,2,3这三个正整数 C. 也可以是小于1的数值 D. 可正,可负,可为零
(k 1 2k 2 )[NO2 ][NO3 ] k 1 [N 2O5 ] k1 [NO2 ][NO3 ] [N 2 O 5 ] k 1 2k 2 d[O 2 ] k 2 [NO 2 ][NO 3 ] dt k1 k2 [N 2 O 5 ] k[N 2 O 5 ] k 1 2k 2
上页 下页
14.下面对于催化剂的特征的描述,哪一点是 不正确的( B ) A.催化剂只能缩短反应达到平衡的时间而不 能改变平衡状态。 B.催化剂在反应前后其化学性质和物理性质 不变。 C.催化剂不能改变平衡常数。 D.加入催化剂不能实现热力学上不可能进行 的反应。
上页 下页
例4:已知乙醛分解的反应机理为: k1 C H3 C HO C H3 C HO k2 C H3 C H3 C HO C H4 C H2 C HO k3 C H2 C HO C H3 C O
k4 C H3 C H3 C2 H 6
上页 下页

6.某化学反应的反应物消耗3/4所需时间是它
消耗掉1/2所需时间的2倍,则反应的级数为
( B)
A.零级
B.一级
C.二级
D.三级
零级: cA,0xA=kt
1 一级: ln kt 1 xA
1 ln t1 1 3 4 ln 4 2 1 t2 ln 2 ln 11 2
上页 下页
12 k1 12 k 1 k 2 [ CH CHO ] [ CH CHO ] 3 3 k 4
上页 下页
一、选择题
1.在恒容条件下,aA+bB=eE+fF的反应速率 可用任何一种反应物或生成物的浓度变化来 表示,则它们之间的关系为( C )
k 3 [CH 2 CHO ] k 4 [CH 3 ] 0
2
证: d[CH 4 ] k 2 [CH 3 ][CH 3 CHO ]
d[CH 2 CHO] k 2 [CH 3 ][CH 3 CHO ] k 3 [CH 2 CHO] 0 dt
k 1 [CH 3 CHO ] k 4 [CH 3 ] 0
上页 下页
13.已知某复杂反应的反应历程为
k 1 A B , k 1 k2 B D J,
则B的浓度随时间的变化率d[B]/dt是( B ) A. k1[A]-k2[B][D] B. k1[A]- k-1[B] -k2[B][D] C. k1[A]- k-1[B] +k2[B][D] D. -k1[A]+ k-1[B] +k2[B][D]
C. 30min
1 D. min 2 4.62 10 0.1
3.发射性Pb201的半衰期为8小时,1克放射性 Pb201 24小时后还剩下( D ) 1 1 1 1 A. 克 B. 克 C. 克 D. 克 2 3 4 8
上页 下页
2 1 kco c 4.反应2O3→3O2,其速率方程式为 3 o2 dt dc o 2 ' 2 1 ,速率常数k和k’的关系是 或者 k c o3 c o2 dt ( C)
例1:二甲醚的气相分解反应是一级反应
CH3OCH3(g)→CH4 (g) +H2 (g) +CO (g) 504℃时把二甲醚充入真空反应球内,测量球内压 力的变化数据如下: t(s) 390 777 488 1587 3155 ∞(完全分解) 624 779 931
pt(mmHg) 408
试计算该反应在504℃时的速率常数k及半衰期t1/2 解: 方法一
上页 下页
9.某物质A能与水起反应,在水溶液中,若 A的起始浓度为1mol· kg-1,1h后其浓度为 0.5mol· kg-1,2h后其浓度为0.25mol· kg-1, 则对A来说,此反应的级数为( B ) A.零级 B.一级 C.二级 D.三级
10.对于温度T时某一级反应A→B,为了使A 的浓度改变1/5,需要时间4s,则反应的半衰 期为( A ) A.12.43s B.15.53 C.4.14 D.6.21 1 ln 2 ln kt t1 2 1 xA k
(2)计算此反应的活化能;
(3)欲使A(g)在10min内转化率达到90%,则
反应温度应控制在多少度.
上页 下页
解: (1)
一级反应
k 9622 ln 1 24.00 T /[T] s
(2)
Ea k ln 1 24.00 s RT
Ea 9622K R
Ea=9622×8.3145J · mol-1 =80.002kJ · mol-1
2
上页 下页
相关文档
最新文档