两角和与差的正弦余弦正切公式
三角恒等变换两角和与差的正弦余弦正切公式

三角恒等式
两角和与差的正弦公式
sin(x+y)=sinxcosy+cosxsiny,sin(x-y)=sinxcosy-cosxsiny
两角和与差的正切公式
tan(x+y)=(tanx+tany)/(1-tanxtany),tan(x-y)=(tanx-tany)/(1+tanxtany)
倍角公式
《三角恒等变换两角和与 差的正弦余弦正切公式》
xx年xx月xx日
目录
• 三角恒等变换 • 两角和与差的正弦余弦正切公式 • 应用举例 • 相关知识点链接
01
三角恒等变换
定义和性质
定义
三角恒等变换是利用三角函数的性质及公式,对不同的角进 行恒等变换的方法。
性质
三角恒等变换的实质是角的变换,通过已知角表达未知角, 常用公式包括和差角公式、倍角公式、半角公式等。
两角和与差的正弦
01
了解并熟悉$\sin(x+y)$和$\sin(x-y)$的计算公式。
两角和与差的正切
02
了解并熟悉$\tan(x+y)$和$\tan(x-y)$的计算公式。
特殊角的正弦余弦正切值
03
熟悉0度到90度之间的一些特殊角的正弦、余弦和正切值。
THANKS
谢谢您的观看
两角差的正切公式
总结词
两角差的正切公式是三角恒等变换中的基础公式之一, 用于求解或化简三角函数值。
详细描述
设角度$\alpha$和$\beta$的差为$\varphi$,则两角 差的正切公式为$\tan\varphi = \frac{\sin\varphi}{\cos\varphi} = \frac{\sin\alpha\cos\beta \cos\alpha\sin\beta}{\cos\alpha\cos\beta + \sin\alpha\sin\beta}$
两角和与差的正弦、余弦和正切公式

[典例] (2012· 广东高>0,x∈R)的最小正周期为 10π. 6
(1)求 ω 的值; π 5π 6 0, ,f5α+ =- ,f (2)设 α,β∈ 3 2 5
5β-5π=16,求 cos(α+β). 6 17
典题导入
Go the distance
sin α+cos α [例 3] (1)(2012· 温州模拟)若 =3,tan(α-β)=2,则 tan(β-2α)=________. sin α-cos α π 4 π (2)(2012· 江苏高考)设 α 为锐角,若 cos α+6=5,则 sin2α+12的值为________. sin α+cos α tan α+1 [自主解答] (1)由条件知 = =3, sin α-cos α tan α-1 则 tan α=2. 故 tan(β-2α)=tan [(β-α)-α] = tanβ-α-tan α -2-2 4 = = . 1+tanβ-αtan α 1+-2×2 3
Go the distance
的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统 一角和角与角转换的目的. 以题试法 π 3 1.(1)已知 sin α= ,α∈ 2,π,则 5 cos 2α π 2sin α+4 =________.
(2)(2012· 济南模拟)已知 α 为锐角,cos α= A.-3 4 C.- 3 cos 2α 1 B.- 7 D.-7
三角函数公式的应用
典题导入 1 π [例 1] (2011· 广东高考)已知函数 f(x)=2sin 3x-6,x∈R. 5π (1)求 f 4 的值; π π 10 6 (2)设 α,β∈ 0,2,f3α+2=13,f(3β+2π)=5,求 cos(α+β)的值. 1 π [自主解答] (1)∵f(x)=2sin 3x-6, 5π π 5π π ∴f 4 =2sin12-6=2sin4= 2. π π 10 6 (2)∵α,β∈ 0,2,f3α+2=13,f(3β+2π)=5, π 6 10 β+ = . ∴2sin α= ,2sin 2 5 13 5 3 即 sin α= ,cos β= . 13 5 12 4 ∴cos α= ,sin β= . 13 5 ∴cos(α+β)=cos αcos β-sin αsin β = 12 3 5 4 16 × - × = . 13 5 13 5 65 由题悟法 两角和与差的三角函数公式可看作是诱导公式的推广,可用 α、β 的三角函数表示 α± β
第3讲 两角和与差的正弦、余弦和正切公式

第3讲 两角和与差的正弦、余弦和正切公式1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin αcos β±cos αsin β; cos(α∓β)=cos αcos β±sin αsin β;tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α±β,α,β均不为k π+π2,k ∈Z . 2.二倍角的正弦、余弦、正切公式 sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan α⎝⎛⎭⎫α,2α均不为k π+π2,k ∈Z . 3.三角公式的关系判断正误(正确的打“√”,错误的打“×”)(1)存在实数α,β使等式sin(α+β)=sin α+sin β成立.( )(2)在锐角△ABC 中,sin A sin B 和cos A cos B 的大小关系不确定.( ) (3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( )(4)存在实数α,使tan 2α=2tan α.( )(5)两角和与差的正弦、余弦公式中的角α,β是任意的.( ) 答案:(1)√ (2)× (3)× (4)√ (5)√(教材习题改编)化简cos 18°cos 42°-cos 72°sin 42°的值为( ) A .32B .12C .-12D .-32解析:选B .法一:原式=cos 18°cos 42°-sin 18°sin 42°=cos(18°+42°)=cos 60°=12.法二:原式=sin 72°cos 42°-cos 72°sin 42°=sin(72°-42°)=sin 30°=12.(教材习题改编)已知sin(α-k π)=35(k ∈Z ),则cos 2α的值为( )A .725B .-725C .1625D .-1625解析:选A .由sin(α-k π)=35(k ∈Z )得sin α=±35.所以cos 2α=1-2sin 2α=1-2×(±35)2=1-1825=725.故选A .(教材习题改编)已知cos α=-35,α是第三象限角,则cos(π4+α)的值为( )A .210B .-210C .7210D .-7210解析:选A .因为cos α=-35,α是第三象限的角,所以sin α=-1-cos 2α=-1-(-35)2=-45,所以cos(π4+α)=cos π4cos α-sin π4sin α=22×(-35)-22×(-45)=210.(2017·高考江苏卷)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:75(教材习题改编)11-tan 15°-11+tan 15°=________.解析:原式=2tan 15°(1-tan 15°)(1+tan 15°)=2tan 15°1-tan 215°=tan 30°=33.答案:33三角函数公式的直接应用[典例引领](1)已知sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α,则tan α=( ) A .-1 B .0 C .12D .1(2)(2017·高考全国卷Ⅰ)已知α∈⎝⎛⎭⎫0,π2,tan α=2,则cos ⎝⎛⎭⎫α-π4=__________. 【解析】 (1)因为sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α, 所以12cos α-32sin α=32cos α-12sin α.所以1-32cos α=3-12sin α.所以tan α=sin αcos α=-1,故选A .(2)因为α∈⎝⎛⎭⎫0,π2,tan α=2, 所以sin α=255,cos α=55,所以cos ⎝⎛⎭⎫α-π4=cos αcos π4+sin αsin π4=22×⎝⎛⎭⎫255+55=31010. 【答案】 (1)A (2)31010三角函数公式的应用策略(1)使用两角和与差的三角函数公式,首先要记住公式的结构特征. (2)使用公式求值,应先求出相关角的函数值,再代入公式求值.[注意] 三角函数公式对使公式有意义的任意角都成立.使用中要注意观察角之间的和、差、倍、互补、互余等关系.[通关练习]1.已知sin α=35,α∈⎝⎛⎭⎫π2,π,则cos 2α2sin ⎝⎛⎭⎫α+π4=________.解析:因为sin α=35,α∈⎝⎛⎭⎫π2,π,所以cos α=-45. 所以cos 2α2sin ⎝⎛⎭⎫α+π4=cos 2α-sin 2α2⎝⎛⎭⎫22sin α+22cos α=cos α-sin α=-75.答案:-752.设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________. 解析:因为sin 2α=2sin αcos α=-sin α, 所以cos α=-12.又α∈⎝⎛⎭⎫π2,π,所以sin α=32, 所以tan α=- 3.所以tan 2α=2tan α1-tan 2α=-231-(-3)2= 3.答案: 3三角函数公式的逆用与变形应用[典例引领](1)计算sin 110°sin 20°cos 2155°-sin 2155°的值为( )A .-12B .12C .32D .-32(2)已知θ∈⎝⎛⎭⎫0,π4,且sin θ-cos θ=-144,则2cos 2θ-1cos ⎝⎛⎭⎫π4+θ=( )A .23B .43C .34D .32【解析】 (1)sin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310°=cos 20°sin 20°cos 50°=12sin 40°sin 40°=12.(2)由sin θ-cos θ=-144得sin ⎝⎛⎭⎫π4-θ=74, 因为θ∈⎝⎛⎭⎫0,π4,所以0<π4-θ<π4, 所以cos ⎝⎛⎭⎫π4-θ=34.2cos 2θ-1cos ⎝⎛⎭⎫π4+θ=cos 2θsin ⎝⎛⎭⎫π4-θ=sin ⎝⎛⎭⎫π2-2θsin ⎝⎛⎭⎫π4-θ=sin ⎣⎡⎦⎤2⎝⎛⎭⎫π4-θsin ⎝⎛⎭⎫π4-θ =2cos ⎝⎛⎭⎫π4-θ=32. 【答案】(1)B (2)D(1)三角函数公式活用技巧①逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式.②tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,注意公式的正用、逆用和变形使用.(2)三角函数公式逆用和变形使用应注意的问题①公式逆用时一定要注意公式成立的条件和角之间的关系.②注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[通关练习]1.在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C 的值为( ) A .-22B .22C .12D .-12解析:选B .由tan A tan B =tan A +tan B +1,可得tan A +tan B1-tan A tan B =-1,即tan(A +B )=-1,又A +B ∈(0,π),所以A +B =3π4,则C =π4,cos C =22.2.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+7π6的值是( ) A .-235B .235C .45D .-45解析:选D.由cos ⎝⎛⎭⎫α-π6+sin α=435,可得32cos α+12sin α+sin α=435,即32sin α+32cos α=435,所以3sin ⎝⎛⎭⎫α+π6=435,sin ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫α+π6=-45.角的变换[典例引领](1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A .2525B .255C .2525或255D .55或525(2)对于锐角α,若sin ⎝⎛⎭⎫α-π12=35,则cos ⎝⎛⎭⎫2α+π3=________. 【解析】 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45.又α,β均为锐角,所以0<α<α+β<π, cos α>cos(α+β).因为45>55>-45,所以cos(α+β)=-45.于是cos β=cos[(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525.(2)由于α为锐角,且sin ⎝⎛⎭⎫α-π12=35,可得cos ⎝⎛⎭⎫α-π12=45,那么cos ⎝⎛⎭⎫α+π6=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-π12+π4=cos ⎝⎛⎭⎫α-π12cos π4-sin ⎝⎛⎭⎫α-π12sin π4=210,于是cos ⎝⎛⎭⎫2α+π3=2cos 2⎝⎛⎭⎫α+π6-1=2×⎝⎛⎭⎫2102-1=-2425.【答案】 (1)A (2)-2425利用角的变换求三角函数值的策略(1)当“已知角”有两个时:一般把“所求角”表示为两个“已知角”的和或差的形式; (2)当“已知角”有一个时:此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.[注意] 常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝⎛⎭⎫α+β2-⎝⎛⎭⎫α2+β等. [通关练习]1.已知tan(α+β)=1,tan ⎝⎛⎭⎫α-π3=13,则tan ⎝⎛⎭⎫β+π3的值为( ) A .23B .12C .34D .45解析:选B .tan ⎝⎛⎭⎫β+π3=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫α-π3=tan(α+β)-tan ⎝⎛⎭⎫α-π31+tan(α+β)tan ⎝⎛⎭⎫α-π3=1-131+1×13=12. 2.若sin ⎝⎛⎭⎫π3-α=14,则cos ⎝⎛⎭⎫π3+2α=( ) A .-78B .-14C .14D .78解析:选A .cos ⎝⎛⎭⎫π3+2α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫2π3-2α =-cos ⎝⎛⎭⎫2π3-2α=-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫π3-α=-78.两角和、差及倍角公式的逆用和变用(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)和差角公式变形:sin αsin β+cos(α+β)=cos αcos β, cos αsin β+sin(α-β)=sin αcos β, tan α±tan β=tan(α±β)·(1∓tan α·tan β),(3)倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2.三角恒等变换的变“角”与变“名”问题的解题思路(1)角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,⎝⎛⎭⎫π4+α+⎝⎛⎭⎫π4-α=π2,α2=2×α4等. (2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.1.cos 15°+sin 15°cos 15°-sin 15°的值为( )A .33 B . 3 C .-33D .- 3解析:选B .原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.2.(1+tan 18°)·(1+tan 27°)的值是( ) A . 3 B .1+ 2C .2D .2(tan 18°+tan 27°)解析:选C .原式=1+tan 18°+tan 27°+tan 18°tan 27°=1+tan 18°tan 27°+tan 45°(1-tan 18°tan 27°)=2,故选C .3.已知sin α+cos α=13,则sin 2(π4-α)=( )A .118B .1718C .89D .29解析:选B .由sin α+cos α=13两边平方得1+sin 2α=19,解得sin 2α=-89,所以sin 2(π4-α)=1-cos(π2-2α)2=1-sin 2α2=1+892=1718.4.已知sin ⎝⎛⎭⎫α-π4=7210,cos 2α=725,则sin α=( ) A .45B .-45C .35D .-35解析:选C .由sin ⎝⎛⎭⎫α-π4=7210得 sin α-cos α=75,①由cos 2α=725得cos 2α-sin 2α=725,所以(cos α-sin α)·(cos α+sin α)=725,② 由①②可得cos α+sin α=-15,③由①③可得sin α=35.5.已知cos(π3-2x )=-78,则sin(x +π3)的值为( )A .14B .78C .±14D .±78解析:选C .因为cos [π-(π3-2x )]=cos(2x +2π3)=78,所以有sin 2(x +π3)=12(1-78)=116,从而求得sin(x +π3)的值为±14,故选C .6.已知cos θ=-513,θ∈⎝⎛⎭⎫π,3π2,则sin ⎝⎛⎭⎫θ-π6的值为________. 解析:由cos θ=-513,θ∈⎝⎛⎭⎫π,3π2得sin θ=-1-cos 2θ=-1213,故sin ⎝⎛⎭⎫θ-π6=sin θcos π6-cos θsin π6=-1213×32-⎝⎛⎭⎫-513×12=5-12326.答案:5-123267.已知cos ⎝⎛⎭⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎫x -π3=________. 解析:cos x +cos ⎝⎛⎭⎫x -π3=cos x +12cos x +32sin x =32cos x +32sin x =3cos ⎝⎛⎭⎫x -π6 =3×⎝⎛⎭⎫-33=-1. 答案:-18.计算sin 250°1+sin 10°=________.解析:sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos(90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12.答案:129.已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R . (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ=45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12=sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2,所以sin θ=35. 所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2 θ-sin 2θ=725,所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝⎛⎭⎫2425-725=17250. 10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解:(1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-1-sin 2α=-32. (2)因为π2<α<π,π2<β<π, 所以-π2<α-β<π2. 又由sin(α-β)=-35, 得cos(α-β)=45. 所以cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35=-43+310.1.3cos 10°-1sin 170°=( ) A .4 B .2C .-2D .-4 解析:选D.3cos 10°-1sin 170°=3cos 10°-1sin 10°=3sin 10°-cos 10°sin 10°cos 10°=2sin(10°-30°)12sin 20°=-2sin 20°12sin 20°=-4,故选D. 2.若α,β都是锐角,且cos α=55,sin(α-β)=1010, 则cos β=( )A .22 B .210 C .22或-210 D .22或210解析:选A .因为α,β都是锐角,且cos α=55,sin(α-β)=1010,所以sin α=255,cos(α-β)=31010,从而cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=22,故选A . 3.3tan 12°-3sin 12°(4cos 212°-2)=________. 解析:原式=3×sin 12°cos 12°-3sin 12°(4cos 212°-2)=3sin 12°-3cos 12°2sin 12°cos 12°(2cos 212°-1)=23⎝⎛⎭⎫12sin 12°-32cos 12°sin 24°cos 24° =23sin(12°-60°)12sin 48°=-4 3. 答案:-4 34.设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. 解析:因为α为锐角,cos ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+π6=35,sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6=2425,cos ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6=725, 所以sin ⎝⎛⎭⎫2α+π12=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6-π4 =2425×22-725×22=17250. 答案:172505.若sin ⎝⎛⎭⎫34π+α=513,cos ⎝⎛⎭⎫π4-β=35,且0<α<π4<β<34π,求cos(α+β)的值. 解:因为0<α<π4<β<34π. 所以34π<34π+α<π,-π2<π4-β<0. 又sin ⎝⎛⎭⎫34π+α=513,cos ⎝⎛⎭⎫π4-β=35,所以cos ⎝⎛⎭⎫34π+α=-1213,sin ⎝⎛⎭⎫π4-β=-45, 所以cos(α+β)=sin ⎣⎡⎦⎤π2+(α+β)=sin ⎣⎡⎦⎤⎝⎛⎭⎫34π+α-⎝⎛⎭⎫π4-β =sin ⎝⎛⎭⎫34π+αcos ⎝⎛⎭⎫π4-β-cos ⎝⎛⎭⎫34π+αsin ⎝⎛⎭⎫π4-β=-3365. 6.已知cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值;(2)求tan α-1tan α的值. 解:(1)因为cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α=cos ⎝⎛⎭⎫π6+αsin ⎝⎛⎭⎫π6+α =12sin ⎝⎛⎭⎫2α+π3=-14, 所以sin ⎝⎛⎭⎫2α+π3=-12. 因为α∈⎝⎛⎭⎫π3,π2,所以2α+π3∈⎝⎛⎭⎫π,4π3, 所以cos ⎝⎛⎭⎫2α+π3=-32, 所以sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3 =sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3=12. (2)因为α∈⎝⎛⎭⎫π3,π2,所以2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,所以cos 2α=-32. 所以tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.。
两角和与差的正弦余弦正切公式

两角和与差的正弦余弦正切公式首先,让我们从两角和的正弦公式开始推导。
假设有两个角A和B,那么它们的和角可以表示为A+B。
根据三角函数的定义,正弦函数的定义式为:sin(x) = 对边 / 斜边我们可以将角A和B的对边和斜边代入这个公式中,得到:sin(A + B) = (sin(A) * 斜边A + sin(B) * 斜边B) / 总斜边这个公式告诉我们,两个角的正弦之和等于各自正弦的乘积与对应斜边的和再除以总斜边。
另外,如果我们将斜边A和斜边B相等,那么这个公式可以进一步简化为:sin(A + B) = 2 * sin((A + B) / 2) * cos((A - B) / 2)接下来,让我们推导两角和的余弦公式。
余弦函数的定义式为:cos(x) = 临边 / 斜边同样地,根据这个定义式,我们可以得出两角和的余弦公式:cos(A + B) = (cos(A) * 斜边A + cos(B) * 斜边B) / 总斜边这个公式告诉我们,两个角的余弦之和等于各自余弦的乘积与对应斜边的和再除以总斜边。
同样地,如果我们将斜边A和斜边B相等,那么这个公式可以进一步简化为:cos(A + B) = 2 * cos((A + B) / 2) * cos((A - B) / 2)最后,让我们推导两角和的正切公式。
正切函数的定义式为:tan(x) = 对边 / 临边我们可以将角A和B的对边和临边代入这个公式中,得到:tan(A + B) = (tan(A) + tan(B)) / (1 - tan(A) * tan(B))这个公式告诉我们,两个角的正切之和等于各自正切的和再除以1减去各自正切的乘积。
总结一下,两角和与差的正弦、余弦、正切公式如下:sin(A + B) = sin(A) * cos(B) + cos(A) * sin(B)cos(A + B) = cos(A) * cos(B) - sin(A) * sin(B)tan(A + B) = (tan(A) + tan(B)) / (1 - tan(A) * tan(B))这些公式在解决三角函数运算、证明恒等式和简化复杂的三角函数表达式等方面都非常有用。
两角和与差的正弦余弦和正切公式

=-89.
第1课时 两角和与差的正弦、余弦和正切公式
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
(2)sin 40°·tan 10°-
3
=sin 40°·csoin
40°·sin
10°- cos
3cos 10°
10°
=sin
40°·221sin
10°- 23cos cos 10°
α,故
tan
α=-
3,所以
tan(α
+
β)
=
tan α+tan β 1-tan αtan β
=
- 1+
3+ 3×
333=-223 3
3 =-
3 3 .]
第1课时 两角和与差的正弦、余弦和正切公式
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
3.已知
α∈π2,π,sin
α=
5 5.
(1)求 sinπ4+α的值;
第1课时 两角和与差的正弦、余弦和正切公式
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
2.三角函数公式逆用和变形使用应注意的问题 (1)公式逆用时一定要注意公式成立的条件和角之间的关系; (2)注意特殊角的应用,当式子中出现12,1, 23, 3等这些数值 时,一定要考虑引入特殊角,把“值变角”以便构造适合公式的形式.
5π 6 cos
2α+sin
5π 6
sin
2α=-
23×35+12×-45=-4+130
3 .
第1课时 两角和与差的正弦、余弦和正切公式
1
2
3
两角和与差的正弦余弦正切公式

两角和与差的正弦余弦正切公式在三角函数中,我们经常需要计算两个角的和或差的正弦、余弦或正切值。
这些公式被广泛应用于数学、物理、工程等领域的问题求解中。
本文将详细介绍两角和与差的正弦、余弦和正切公式。
一、两角和与差的正弦公式首先,我们来讨论两个角的和的正弦公式。
设有两个角A和B,那么它们的和角记为(A+B)。
根据三角函数的定义,我们知道正弦的定义为一个角的对边与斜边之比,可以表示为sin(x)=opposite/hypotenuse。
根据这个定义,我们可以得到如下的两角和的正弦公式:sin(A+B) = sinA*cosB + cosA*sinB这个公式很重要,可以帮助我们计算两个角的和的正弦值。
在实际应用中,我们经常需要计算两个角的和的正弦,而不是两个角分别的正弦。
所以这个公式非常有用。
接下来,我们来讨论两个角的差的正弦公式。
设有两个角A和B,那么它们的差角记为(A-B)。
根据三角函数的定义,我们可以得到如下的两角差的正弦公式:sin(A-B) = sinA*cosB - cosA*sinB这个公式与两角和的正弦公式类似,也非常有用。
二、两角和与差的余弦公式类似于正弦公式,我们也可以推导出两角和与差的余弦公式。
设有两个角A和B,那么它们的和角记为(A+B)。
根据三角函数的定义,我们知道余弦的定义为一个角的邻边与斜边之比,可以表示为cos(x)=adjacent/hypotenuse。
根据这个定义,我们可以得到如下的两角和的余弦公式:cos(A+B) = cosA*cosB - sinA*sinB同样地,我们也可以得到两角差的余弦公式:cos(A-B) = cosA*cosB + sinA*sinB这两个公式和两角和与差的正弦公式一样重要,经常被应用于实际问题中。
三、两角和与差的正切公式最后,我们来讨论两角和与差的正切公式。
设有两个角A和B,那么它们的和角记为(A+B)。
根据三角函数的定义,我们知道正切的定义为一个角的对边与邻边之比,可以表示为tan(x)=opposite/adjacent。
两角和与差的正弦、余弦和正切公式-1.两角差的余弦公式-2.两角和与差的正弦、余弦、正切公式
cos 17∘
1
= .
2
(2)tan 12∘ + tan 33∘ + tan 12∘ tan 33∘ ;
【解析】原式= tan 12∘ + 33∘ 1 − tan 12∘ tan 33∘ (两角和正切公式的变形式)
+tan 12∘ tan 33∘
= 1 − tan 12∘ tan 33∘ + tan 12∘ tan 33∘
= 1.
(3) tan
10∘
−
【解析】原式=
=
=
=
sin 10∘ − 3cos 10∘
sin 50∘
2sin 10∘ −60∘
sin 50∘
−2sin 50∘
sin 50∘
= −2.
cos 10∘
3 ⋅
;
sin 50∘
sin 10∘
− 3
cos 10∘
⋅
cos 10∘
sin 50∘
(4) 1 + tan 21∘ 1 + tan 22∘ 1 + tan 23∘ 1 + tan 24∘ .
π
2
π
4
π
4
提示▸ 由− < < π 知− < −
2
π
2
π
4
2
< ,即角 − 的终边可以在第四、一象限,同
π
π
样难以确定sin − 的符号,怎么办?同样要想办法缩小角 − 的范围,此时由
4
2
4
2
π
3
π
cos −
= > 0已无法缩小角 − 的范围了,因为当角的终边在第四、一象限
两角和与差的正弦.余弦.正切公式
探究:你能根据正切函数与正弦,余弦函数的关系,
从C ( ) , S( )出发,推导出用任意角,的
sin (这里有什么要求?) 提示:sin( ) tan tan( ) cos( cos ) k ( k Z ) 2
2 3 2 1 2 2 2 2 6 2 4
sin15 sin(60 45 )
知识归纳:
对于任意的角 ,
同名积,符号反
cos(-)= coscos+sinsin cos(+)= coscos-sinsin sin(+)= sincos+cossin sin(-)=sincos-cossin
sin cos( ) 2
sin cos cos sin
两角和的正弦公式:
sin( ) sin cos cos sin (S(+))
( )] sin( ) cos[ 2 ) ] cos[(
1 tan15 tan 45 tan15 tan 45 15 tan 60 3 1 tan15 1 tan 45 tan15
小结
对于任意角, 都有
同名积,符 号反
cos( ) cos cos sin sin cos( ) cos cos sin sin
sin cos cos sin cos cos cos cos sin cos cos sin cos cos cos cos tan tan 1 tan tan
两角和差的正弦余弦正切公式
两角和差的正弦余弦正切公式两角和差的正弦、余弦、正切公式是解决三角函数的运算中的常用工具。
它们可以通过已知两个角的三角函数值来求解它们的和或差的三角函数值。
这些公式在数学、物理、工程等领域中都有广泛的应用。
下面将详细介绍这些公式,以及它们的推导和应用。
1.两角和差的正弦公式sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)其中A和B为任意两个角。
为了推导这个公式,我们可以使用三角函数的和差角公式:sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)通过观察可以发现,两角和差的正弦公式可以通过将cos(A ± B)公式正负号变化得到。
2.两角和差的余弦公式cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)其中A和B为任意两个角。
可以看到,这个公式可以通过将sin(A ± B)的公式正负号变化得到。
3.两角和差的正切公式tan(A ± B) = (tan(A) ± tan(B))/(1 ∓ tan(A)tan(B))其中A和B为任意两个角。
这个公式可以通过两角和差的正弦公式和余弦公式相除得到。
使用公式sin(A)/cos(A) = tan(A)和cos(A)cos(B) -sin(A)sin(B)=cos(A+B)得到。
这些公式在解决三角函数运算中有着广泛的应用。
例如,我们可以将它们用于证明或求解三角恒等式。
以下是一些常见的应用示例:1.求两个特定角的正弦、余弦或正切值的和或差的问题。
例如,已知sin(A) = 0.6,cos(B) = 0.8,求sin(A+B)的值。
根据两角和差的正弦公式,我们可以有:sin(A+B) = sin(A)cos(B) + cos(A)sin(B)= 0.6*0.8 + cos(A)*sin(B)如果我们已经知道了cos(A)和sin(B)的值,就可以计算出sin(A+B)的值。
两角和与差的正弦余弦和正切公式
第六页,共43页。
3.(2013·课标全国卷Ⅱ)已知 sin 2α=23,是 cos2α+π4=
()
1
1
1
2
A.6
B.3
C.2
D.3
【解析】
∵sin
2α=23,∴cos2α+π4=1+cos22α+π2
=
1-sin 2
2α=1-2 23=16.
【答案】 A
第七页,共43页。
4.(2014·南昌质检)若ssiinn
θ 2cos
θ2+2cos2θ2)(sin
θ2-cos
θ 2)
=2cos θ2(sin2θ2-cos2θ2)=-2cos θ2cos θ.
-2cos 故原式=
θ
2cos θ
θ =-cos
θ.
2cos 2
第十二页,共43页。
规律方法 1 1.注意到第(2)题中有开方运算,联想二倍角 公式的特征进行升幂,化为完全平方式.
第十四页,共43页。
考向 2 三角函数的求值问题 【例 2】 (2013·广东高考)已知函数 f(x)= 2cosx-1π2, x∈R. (1)求 f-π6的值; (2)若 cos θ=35,θ∈32π,2π,求 f2θ+π3.
第十五页,共43页。
【思路点拨】 (1)把 x=-π6代入函数解析式,借助特殊 角的三角函数值和诱导公式求 f-π6.(2)由 cos θ 求出 sin θ, 利用两角和的余弦公式和二倍角公式求 f2θ+π3.
定,(4)错. 【答案】 (1)√ (2)× (3)× (4)×
第五页,共43页。
2.(人教 A 版教材习题改编)sin 34°sin 26°-cos 34°cos 26°
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-精品- 两角和与差的正弦余弦正切公式 教学目标 1.能根据两角差的余弦公式推导出两角和与差的正弦、余弦公式,并灵活运用.(重点) 2.能利用两角和与差的正弦、余弦公式推导出两角和与差的正切公式.(难点) 3.掌握两角和与差的正切公式及变形应用.(难点、易错点) [基础·初探] 教材整理1 两角和与差的余弦公式 阅读教材P128“思考”以下至“探究”以上内容,完成下列问题. 名称 简记符号 公式 使用条件
两角差的余弦公式 C(α-β) cos(α-β)=cos αcos β+sin αsin β α,β∈R
两角和的余弦公式 C(α+β) cos(α+β)=cos αcos β-sin αsin β α,β∈R cos 75°cos 15°-sin 75°sin 15°的值等于________. 【解析】 逆用两角和的余弦公式可得 cos 75°cos 15°-sin 75°sin 15°=cos(75°+15°)=cos 90°=0. -精品-
【答案】 0 教材整理2 两角和与差的正弦公式 阅读教材P128“探究”以下内容,完成下列问题. 1.公式 名称 简记符号 公式 使用条件
两角和的正弦 S(α+β) sin(α+β)=sin αcos β+cos αsin β α、β∈R
两角差的正弦 S(α-β) sin(α-β)=sin αcos β-cos αsin β α、β∈R 2.重要结论-辅助角公式 y=asin x+bcos x=a2+b2sin(x+θ)(a,b不同时为0),其中cos θ
=aa2+b2,sin θ=ba2+b2. 判断(正确的打“√”,错误的打“×”) (1)两角和与差的正弦、余弦公式中的角α,β是任意的.( ) (2)存在α,β∈R,使得sin(α-β)=sin α-sin β成立.( ) (3)对于任意α,β∈R,sin(α+β)=sin α+sin β都不成立.( ) (4)sin 54°cos 24°-sin 36°sin 24°=sin 30°.( ) 解:(1)√.根据公式的推导过程可得. (2)√.当α=45°,β=0°时,sin(α-β)=sin α-sin β. (3)×.当α=30°,β=-30°时,sin(α+β)=sin α+sin β成立. (4)√.因为sin 54°cos 24°-sin 36°sin 24° -精品-
=sin 54°cos 24°-cos 54°sin 24°=sin(54°-24°)=sin 30°,故原式正确. 【答案】 (1)√ (2)√ (3)× (4)√ 教材整理3 两角和与差的正切公式 阅读教材P129“探究”以下至“例3”以上内容,完成下列问题. 名称 简记符号 公式 使用条件
两角和的正切 T(α+β)
tan(α+β)=
tan α+tan β1-tan αtan β
α,β,α+β≠kπ+
π
2
(k∈Z) 且tan α·tan β≠1
两角差的正切 T(α-β)
tan(α-β)=
tan α-tan β1+tan αtan β
α,β,α-β≠kπ+
π
2
(k∈Z) 且tan α·tan β≠-1
判断(正确的打“√”,错误的打“×”) (1)存在α,β∈R,使tan(α+β)=tan α+tan β成立.( )
(2)对任意α,β∈R,tan(α+β)=tan α+tan β1-tan αtan β都成立.( ) (3)tan(α+β)=tan α+tan β1-tan αtan β等价于tan α+tan β=tan(α+β)·(1-tan αtan β).( ) 解:(1)√.当α=0,β=π3时,tan(α+β)=tan0+π3=tan 0+tan π3, -精品-
但一般情况下不成立. (2)×.两角和的正切公式的适用范围是α,β,α+β≠kπ+π2(k∈Z). (3)√.当α≠kπ+π2(k∈Z),β≠kπ+π2(k∈Z),α+β≠kπ+π2(k∈Z)时,由前一个式子两边同乘以1-tan αtan β可得后一个式子. 【答案】 (1)√ (2)× (3)√ [小组合作型] 灵活应用和、差角公式化简三角函数式 (1)(2016·济宁高一检测) sin 47°-sin 17°cos 30°cos 17°=( )
A.-32 B.-12
C.12 D.32
(2)化简求值:
①1+tan 75°1-tan 75°; ②sin(θ+75°)+cos(θ+45°)-3cos(θ+15°); ③(2016·遵义四中期末)tan 20°+tan 40°+3tan 20°·tan 40°.
(1)化简求值应注意公式的逆用. (2)对于非特殊角的三角函数式化简应转化为特殊角的三角函数 -精品-
值. 解:(1)sin 47°-sin 17°cos 30°cos 17°
=sin(17°+30°)-sin 17°cos 30°cos 17°
=sin 17°cos 30°+cos 17°sin 30°-sin 17°cos 30°cos 17°
=cos 17°sin 30°cos 17°=sin 30°=12. 【答案】 C (2)①原式=tan 45°+tan 75°1-tan 45°tan 75°
=tan(45°+75°)=tan 120°=-3. ∴原式=-3. ②设α=θ+15°, 则原式=sin(α+60°)+cos(α+30°)-3cos α
=12sin α+32cos α+32cos α-12sin α-3cos α=0. ∴原式=0. ③原式=tan 60°(1-tan 20°tan 40°)+3tan 20°·tan 40°=3. ∴原式=3.
1.公式T(α+β),T(α-β)是变形较多的两个公式,公式中有tan α·tan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β)).三者知二 -精品-
可表示出或求出第三个. 2.化简过程中注意“1”与“tan π4”、“3”与“tan π3”、“12”与“cos π3”等特殊数与特殊角的函数值之间的转化. [再练一题] 1.化简求值: (1)cos 61°cos 16°+sin 61°sin 16°; (2)sin 13°cos 17°+cos 13°sin 17°;
(3)1+tan 12°tan 72°tan 12°-tan 72°. 解:(1)原式=cos(61°-16°)=cos 45°=22. (2)原式=sin(13°+17°)=sin 30°=12. (3)原式=1+tan 12°tan 72°tan 12°-tan 72°=-1tan(72°-12°)=-33. 给值求值 (2016·普宁高一检测)已知π4-35,sin34π+β=513,求sin(α+β)的值. 【导学号:00680069】 可先考虑拆角,π+α+β=34π+β+π4+α,然后再利用sin(α+β)=-sin(π+α+β)求值. 解:因为π4-精品-
所以sinπ4+α=1-cos2π4+α=45. 又因为0所以cos34π+β=-1-sin234π+β=-1213, 所以sin(α+β)=-sin(π+α+β) =-sinπ4+α+3π4+β= -sinπ4+αcos34π+β+cosπ4+αsin3π4+β =-
45×-1213+-3
5×5
13
=6365. 1.本题属于给值求值问题,求解时,关键是从已知角间的关系入手,分析出已知角和待求角的关系.如本题中巧用β=(α+β)-α这一关系. 2.常见角的变换为 (1)2α+β=(α+β)+α,2α-β=(α-β)+α;
(2)α+β2=α-β2-α2-β, α-β2=α+β2-α2+β;
(3)π4+α+π4+β=π2+(α+β);