(整理)《两角和与差的余弦公式》教学设计.
《两角和与差的正弦余弦正切公式》教学设计

《两角和与差的正弦、余弦、正切公式》教学设计一、教学分析1.两角和与差的正弦、余弦、正切公式是在研究了两角差的余弦公式的基础上,进一步研究具有“两角和差”关系的正弦、余弦、正切公式的.在这些公式的推导中,教科书都把对照、比较有关的三角函数式,认清其区别,寻找其联系和联系的途径作为思维的起点,如比较cos(α-β)与cos(α+β),它们都是角的余弦只是角形式不同,但不同角的形式从运算或换元的角度看都有内在联系,即α+β=α-(-β)的关系,从而由公式C(α-β)推得公式C(α+β),又如比较sin(α-β)与cos(α-β),它们包含的角相同但函数名称不同,这就要求进行函数名的互化,利用诱导公式(5)(6)即可推得公式S(α-β)、S(α+β)等.2.通过对“两角和与差的正弦、余弦、正切公式”的推导,揭示了两角和、差的三角函数与这两角的三角函数的运算规律,还使学生加深了数学公式的推导、证明方法的理解.因此本节内容也是培养学生运算能力和逻辑思维能力的重要内容,对培养学生的探索精神和创新能力,发现问题和解决问题的能力都有着十分重要的意义.3.本节的几个公式是相互联系的,其推导过程也充分说明了它们之间的内在联系,让学生深刻领会它们的这种联系,从而加深对公式的理解和记忆.本节几个例子主要目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯,教学中应当有意识地对学生的思维习惯进行引导,例如在面对问题时,要注意先认真分析条件,明确要求,再思考应该联系什么公式,使用公式时要具备什么条件等.另外,还要重视思维过程的表述,不能只看最后结果而不顾过程表述的正确性、简捷性等,这些都是培养学生三角恒等变换能力所不能忽视的.二、三维目标1.知识与技能:在学习两角差的余弦公式的基础上,通过让学生探索、发现并推导两角和与差的正弦、余弦、正切公式,了解它们之间的内在联系,并通过强化题目的训练,加深对公式的理解,培养学生的运算能力及逻辑推理能力,从而提高解决问题的能力.2.过程与方法:通过两角和与差的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明,使学生深刻体会联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题解决问题的能力.3.情感态度与价值观:通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识,提高学生的数学素质.三、教学重、难点教学重点:两角和与差的正弦、余弦、正切公式及其推导.教学难点:灵活运用所学公式进行求值、化简、证明.四、教学用具三角板,彩色粉笔,幻灯片五、教学方法教法:引导探究,归纳总结学法:合作讨论,自主学习六、教学过程1.导入新课(问题导入)教师出示问题,先让学生计算以下几个题目,既可以复习回顾上节所学公式,又为本节新课作准备.若sinα=,α∈(0,),cosβ=,β∈(0,),求cos(α-β),cos(α+β)的值.学生利用公式C(α-β)很容易求得cos(α-β),但是如果求cos(α+β)的值就得想法转化为公式C(α-β)的形式来求,此时思路受阻,从而引出新课题,并由此展开联想探究其他公式.2.推进新课提出问题①还记得两角差的余弦公式吗?请一位同学到黑板上默写出来.②在公式C(α-β)中,角β是任意角,请学生思考角α-β中β换成角-β是否可以?此时观察角α+β与α-(-β)之间的联系,如何利用公式C(α-β)来推导cos(α+β)=?③分析观察C(α+β)的结构有何特征?④在公式C(α-β)、C(α+β)的基础上能否推导sin(α+β)=?sin(α-β)=?⑤公式S(α-β)、S(α+β)的结构特征如何?⑥对比分析公式C(α-β)、C(α+β)、S(α-β)、S(α+β),能否推导出tan(α-β)=? tan(α+β)=?⑦分析观察公式T(α-β)、T(α+β)的结构特征如何?⑧思考如何灵活运用公式解题?[-((-=cos(-+sin(-sin=_____.)=)=,据角)=)=都不能等于+k过程,从而得出以下逻辑联系图.可让学生自己画出这六个框图.通过逻辑联系图,深刻理解它们之间的内在联系,借以理解并灵活运用这些公式.同时教师应提醒学生注意:不仅要掌握这些公式的正用,还要注意它们的逆用及变形用.如两角和与差的正切公式的变形式tanα+tanβ=tan(α+β)(1-tanαtanβ),tanα-tanβ=tan(α-β)(1+tanαtan β),在化简求值中就经常应用到,使解题过程大大简化,也体现了数学的简洁美.对于两角和与差的正切公式,当tanα,tanβ或tan(α±β)的值不存在时,不能使用T(α±β)处理某些有关问题,但可改用诱导公式或其他方法,例如:化简tan(-β),因为tan的值不存在,所以改用诱导公式tan(-β)=来处理等.应用示例例1 已知sinα=,α是第四象限角,求sin(-α),cos(+α),tan(-α)的值.活动:教师引导学生分析题目中角的关系,在面对问题时要注意认真分析条件,明确要求.再思考应该联系什么公式,使用公式时要有什么准备,准备工作怎么进行等.例如本题中,要先求出cosα,tanα的值,才能利用公式得解,本题是直接应用公式解题,目的是为了让学生初步熟悉公式的应用,教师可以完全让学生自己独立完成.解:由sinα=,α是第四象限角,得cosα=.∴tanα==.于是有sin(-α)=sin cosα-cos sinα=cos(+α)=cos cosα-sin sinα=tan(α-)===.点评:本例是运用和差角公式的基础题,安排这个例题的目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯.变式训练11.不查表求cos75°,tan105°的值.解:cos75°=cos(45°+30°)=cos45°cos30°-sin45°sin30°=,tan105°=tan(60°+45°)= =-(2+).2.设α∈(0,),若sinα=,则2sin(α+)等于( )A. B. C.D.4答案:A例2 已知sinα=,α∈(,π),cosβ=,β∈(π,),求sin(α-β),cos(α+β),tan(α+β).活动:教师可先让学生自己探究解决,对探究困难的学生教师给以适当的点拨,指导学生认真分析题目中已知条件和所求值的内在联系.根据公式S(α-β)、C(α+β)、T(α+β)应先求出cosα、sinβ、tanα、tanβ的值,然后利用公式求值,但要注意解题中三角函数值的符号.解:由sinα=,α∈(,π),得cosα==-=,∴tanα=.又由cosβ=,β∈(π,).sinβ==,∴tanβ=.∴sin(α-β)=sinαcosβ-cosαsinβ=×()-(.∴cos(α+β)=cosαcosβ-sinαsinβ=()×()-×()=∴tan(α+β)==.点评:本题仍是直接利用公式计算求值的基础题,其目的还是让学生熟练掌握公式的应用,训练学生的运算能力.变式训练2引导学生看章头图,利用本节所学公式解答课本章头题,加强学生的应用意识.解:设电视发射塔高CD=x米,∠CAB=α,则sinα=,在Rt△ABD中,tan(45°+α)=tanα.于是x=,又∵sinα=,α∈(0,),∴cosα≈,tanα≈.tan(45°+α)==3,∴x=-30=150(米).答:这座电视发射塔的高度约为150米.例3 在△ABC中,sinA=(0°<A<45°),cosB=(45°<B<90°),求sinC与cosC的值.活动:本题是解三角形问题,在必修5中还作专门的探究,这里用到的仅是与三角函数诱导公式与和差公式有关的问题,难度不大,但应是学生必须熟练掌握的.同时也能加强学生的应用意识,提高学生分析问题和解决问题的能力.教师可让学生自己阅读、探究、讨论解决,对有困难的学生教师引导学生分析题意和找清三角形各角之间的内在联系,从而找出解决问题的路子.教师要提醒学生注意角的范围这一暗含条件.解:∵在△ABC中,A+B+C=180°,∴C=180°-(A+B).又∵sinA=且0°<A<45°,∴cosA=.又∵cosB=且45°<B<90°,∴sinB=.∴sinC=sin[180°-(A+B)]=sin(A+B)=sinAcosB+cosAsinB=×+×=,cosC=cos[180°-(A+B)]=-cos(A+B)=sinAsinB-cosAcosB=×-×=.<,<<,cos(-)=,sin(+)=,。
(整理)《两角和与差的余弦公式》教学设计.

《两角和与差的余弦公式》教学设计一、教材地位和作用分析:两角和与差的正弦、余弦、正切是本章的重要内容,是正弦线、余弦线和诱导公式等知识的延伸,是后继内容二倍角公式、和差化积、积化和差公式的知识基础,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有重要的支撑作用。
本课时主要讲授平面内两点间距离公式、两角和与差的余弦公式以及诱导公式。
二、教学目标:1、知识目标:①、使学生了解平面内两点间距离公式的推导并熟记公式;②、使学生理解两角和与差的余弦公式和诱导公式的推导;③、使学生能够从正反两个方向运用公式解决简单应用问题。
2、能力目标:①、培养学生逆向思维的意识和习惯;②、培养学生的代数意识,特殊值法的应用意识;③、培养学生的观察能力,逻辑推理能力和合作学习能力。
3、情感目标:①、通过观察、对比体会公式的线形美,对称美;②、培养学生不怕困难,勇于探索的求知精神。
三、教学重点和难点:教学重点:两角和与差的余弦公式的推导及运用。
教学难点:两角和与差的余弦公式的灵活运用。
四、教学方法:创设情境有利于问题自然、流畅地提出,提出问题是为了引发思考,思考的表现形式是探索尝试,探索尝试是思维活动中最有意义的部分,激发学生积极主动的思维活动是我们每节课都应追求的目标。
给学生的思维以适当的引导并不一定会降低学生思维的层次,反而能够提高思维的有效性。
从而体现教师主导作用和学生主体作用的和谐统一。
由此我决定采用以下的教学方法:创设情境----提出问题----探索尝试----启发引导----解决问题。
学法指导:1、要求学生做好正弦线、余弦线、同一坐标轴上两点间距离公式,特别是用角的余弦和正弦表示终边上特殊点的坐标这些必要的知识准备。
(体现学习过程中循序渐进,温故知新的认知规律。
)2、让学生注意观察、对比两角和与差的余弦公式中正弦、余弦的顺序;角的顺序关系,培养学生的观察能力,并通过观察体会公式的对称美。
五、教学过程cos(2-sin(2-六、板书设计。
新两角和与差的余弦公式教案

一、学习目标1.知识目标: 理解两角和与差的余弦公式的推导过程,熟记两角和与差的余弦公式,运用两角和与差的余弦公式,解决相关数学问题。
2.能力目标 :通过让学生猜想、探索、发现并推导)(βα-C ,并能用赋值法求出)(βα+C ;初步学会运用公式进行简单的求值、化简。
培养学生严密而准确的数学表达能力;培养学生逆向思维和发散思维能力;培养学生的观察能力,逻辑推理能力和合作学习能力。
3.。
情感目标: 通过观察、对比体会数学的对称美和谐美,培养学生良好的数学表达和思考的能力,学会从已有知识出发主动探索未知世界的意识及对待新知识的良好情感态度。
二、教学重点:两角和与差的余弦公式的应用 三、教学难点:两角和与差的余弦公式的推导。
四、教学过程(一) 新课引入通过非特殊角不能求,产生对公式的需求,让学生先求讨论“cos (450-300)=cos450-cos300是否成立?”。
(学生可能通过计算器、量余弦线的长度、特殊角三角函数值等途径解决问题)。
得出cos (450-300)≠cos450 -cos300。
进而得出cos (α-β)≠cos α-cos β这个结论。
此时提出那么cos (α-β)又等于什么呢?这正是我们今天要研究的内容。
揭示课题:两角和与差的余弦。
(二) 两角差的余弦公式推导通过观察分析表格中特殊角的三角函数值之间的关系,利用类比猜想对任意的cos()αβαβαβ-,,如何用,的三角函数来表示?cos()cos cos sin sin αβαβαβ-=+猜想是否成立?引入数学史,激发学生的探索精神。
sin30° sin30° cos30° cos30° cos (30°-sin30° sin120° cos30° cos120° cos (120°-30°)问题二: 生:利用向量的数量积转化为求两向量的夹角的余弦值。
教学设计(两角和与差的余弦函数)

案例名称两角差的余弦公式科目数学教学对象高二年级学生提供者课时1课时学号一、教材内容分析(1)内容:两角差的余弦公式是用两角的三角函数值来表示两角差的余弦值。
这一内容是任意角三角函数知识的延伸,是后继内容两角和与差的正弦、余弦、正切,以及二倍角公式的知识基础。
(2)内容解析:两角差的余弦公式是《三角恒等变换》这一章的基础和出发点,是在学生掌握了任意角的三角函数的概念、向量的坐标表示以及向量数量积的坐标表示的基础上,进一步研究用单角的三角函数表示两角差的三角函数。
教材采用了一种学生易于接受的推导方法,即先用数形结合的思想,借助于单位圆中的三角函数,推出α,β,α-β均为锐角时公式成立。
对于α,β为任意角时的情况,教材运用向量的知识进行了探究,使得公式的得出成为一个纯粹的代数运算过程,学生易于理解和掌握,同时也有利于提高学生运用向量解决相关问题的意识和能力。
基于这些分析,两角差的余弦公式的探索将是本节的重点。
二、教学目标(知识,技能,情感态度、价值观)1、知识与技能:通过两角差的余弦公式的探究,让学生在初步理解公式的结构及其功能的基础上记忆公式,并用之解决简单的数学问题,为后面推导其他和(差)角公式打好基础。
2、过程与方法:通过利用同角三角函数变换及向量推导两角差的余弦公式,让学生体会利用联系的观点来分析问题,解决问题,提高学生逻辑推理能力和合作学习能力3、情感、态度与价值:使学生经历数学知识的发现、创造的过程,体验成功探索新知的乐趣,获得对数学应用价值的认识,激发学生提出问题的意识以及努力分析问题、解决问题的激情。
三、学习者特征分析本课时面对的学生是高二年级的学生,数学表达能力和逻辑推理能力正处于高度发展的时期,学生对探索未知世界有主动意识,对新知识充满探求的渴望。
在学习本节课之前,学生已经学习了任意角三角函数的概念、平面向量的坐标表示以及向量数量积的坐标表示,这为他们探究两角差的余弦公式建立了良好的知识基础。
最新两角和与差的余弦公式优质公开课精品教案

两角和与差的余弦公式一、教材地位和作用分析:两角和与差的正弦、余弦、正切是本章的重要内容,是正弦线、余弦线和诱导公式等知识的延伸,是后继内容二倍角公式、和差化积、积化和差公式的知识基础,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有重要的支撑作用。
本课时主要讲授两角和与差的余弦公式的推导以及应用。
二、学情分析:本课时面对的学生是高一年级的学生,数学表达能力和逻辑推理能力正处于高度发展的时期,学生对探索未知世界有主动意识,对新知识充满探求的渴望。
他们经过一个学期的高中生活,储备了一定的数学知识,掌握了一些高中数学的学习方法,这为本节课的学习建立了良好的知识基础。
三、教学目标:1、理解两角和与差的余弦公式的推导过程,熟记两角和与差的余弦公式。
2、使学生能够从正反两个方向运用公式解决简单应用问题。
四、教学重点和难点:教学重点:两角和与差的余弦公式的推导及应用教学难点:两角和与差的余弦公式的推导。
五、教学工具:多媒体六、教学方法:讲授法,探究法七、教学过程:cos(120—60)。
cos120° cos60° si n120* sin 60°1 1 1灵22222猜想: cos (:; 『■) =cos :. ・cos ,;' 1 sin :・sin : ?通过探究我们猜想得出cos (:. 一 :)的公式,从猜想到结论还需要严格的证明。
提问:前面我们已经学习过任意角的三角比,那么该如何 研究:.一 ■:的三角比呢?设〉、1是两个任意角,把它们的顶点都置于平面直角坐标系的原点,始边都与x 轴的正方向重合,如图 1它们的终 边0A 、OB 分别与单位圆相交于A 、B 两点。
Q2 AOB 角度能用〉、1表示吗?Q3我们要研究• AOB 的三角比,必须要把• AOB 位置放在什 么地方?怎样达到目的?答:始边旋转到与x 轴的正方向重合。
通过旋转达到目的。
《两角和与差的正弦、余弦、正切公式》教学设计

《两角和与差的正弦、余弦、正切公式》教学设计一、教学分析1.两角和与差的正弦、余弦、正切公式是在研究了两角差的余弦公式的基础上,进一步研究具有“两角和差”关系的正弦、余弦、正切公式的。
在这些公式的推导中,教科书都把对照、比较有关的三角函数式,认清其区别,寻找其联系和联系的途径作为思维的起点,如比较cos(α—β)与cos(α+β),它们都是角的余弦只是角形式不同,但不同角的形式从运算或换元的角度看都有内在联系,即α+β=α—(—β)的关系,从而由公式C(α—β)推得公式C(α+β),又如比较sin(α-β)与cos(α—β),它们包含的角相同但函数名称不同,这就要求进行函数名的互化,利用诱导公式(5)(6)即可推得公式S(α-β)、S(α+β)等。
2。
通过对“两角和与差的正弦、余弦、正切公式”的推导,揭示了两角和、差的三角函数与这两角的三角函数的运算规律,还使学生加深了数学公式的推导、证明方法的理解.因此本节内容也是培养学生运算能力和逻辑思维能力的重要内容,对培养学生的探索精神和创新能力,发现问题和解决问题的能力都有着十分重要的意义。
3.本节的几个公式是相互联系的,其推导过程也充分说明了它们之间的内在联系,让学生深刻领会它们的这种联系,从而加深对公式的理解和记忆.本节几个例子主要目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯,教学中应当有意识地对学生的思维习惯进行引导,例如在面对问题时,要注意先认真分析条件,明确要求,再思考应该联系什么公式,使用公式时要具备什么条件等.另外,还要重视思维过程的表述,不能只看最后结果而不顾过程表述的正确性、简捷性等,这些都是培养学生三角恒等变换能力所不能忽视的。
二、三维目标1.知识与技能:在学习两角差的余弦公式的基础上,通过让学生探索、发现并推导两角和与差的正弦、余弦、正切公式,了解它们之间的内在联系,并通过强化题目的训练,加深对公式的理解,培养学生的运算能力及逻辑推理能力,从而提高解决问题的能力。
数学 3.1.1两角和与差的余弦公式教学设计 新人教B版必修4 教案

两角和与差的余弦公式教学设计【教学三维目标】1.知识与技能目标:理解两角和与差的余弦公式的推导过程,熟记两角和与差的余弦公式,运用两角和与差的余弦公式,解决相关数学问题;培养学生严密而准确的数学表达能力;培养学生逆向思维和发散思维能力;2过程与方法目标:通过对公式的推导提高学生研究问题、分析问题、解决问题能力;体会公式探求中从特殊到一般的数学思想,同时渗透如上所说的多种数学思想。
3.情感、态度、价值观目标:通过观察、对比体会数学的对称美和谐美,培养学生良好的数学表达和思考的能力,学会从已有知识出发主动探索未知世界的意识及对待新知识的良好情感态度。
【高考等级要求】C级【教学重点】两角和与差的余弦公式的理解与灵活运用。
【教学难点】两角和与差的余弦公式的推导过程,特别是一般性的推广。
【突破措施】先由特殊情形引入再向一般性过渡,充分挖掘学生的思考和探究能力,以达到对公式的深入理解和灵活运用。
【教材分析】这节内容是教材必修4的第三章《三角恒等变换》第一节,是高考的重点考点,历年高考必考内容,一般在填空或解答题第15题出现。
教材在学生掌握了任意角的三角函数的概念、向量的坐标表示以及向量数量积的坐标表示的基础上,进一步研究用单角的三角函数表示的两角和与差的三角函数.“两角差的余弦公式”在教科书中采用了一种易于教学的推导方法,即先借助于单位圆中的三角函数线,推出α,β,α-β均为锐角时成立.对于α,β为任意角的情况,教材运用向量的知识进行了探究.同时,补充了用向量的方法推导过程中的不严谨之处,这样,两角差的余弦公式便具有了一般性。
【学情分析】本课时面对的学生是高一年级的学生,数学表达能力和逻辑推理能力正处于高度发展的时期,学生对探索未知世界有主动意识,对新知识充满探求的渴望。
他们经过半个多学期的高中生活,储备了一定的数学知识,掌握了一些高中数学的学习方法,这为本节课的学习建立了良好的知识基础。
【学具准备】小黑板圆规【学法设计】独立思考,生生交流探究,小组合作【知识链接】诱导公式平面向量的数量积一、产生对公式的需求引入新课(1分钟)首先让学生通过具体实例消除对“cos(α-β)=cosα-cosβ”的误解,说明两角和(差)的三角函数不能按分配律展开。
《两角和与差的余弦公式及其应用》 学历案

《两角和与差的余弦公式及其应用》学历案一、学习目标1、理解两角和与差的余弦公式的推导过程。
2、掌握两角和与差的余弦公式,并能熟练运用公式进行三角函数的化简、求值和证明。
3、通过公式的应用,培养学生的逻辑推理能力和数学运算能力。
二、学习重难点1、重点(1)两角和与差的余弦公式的推导和记忆。
(2)运用两角和与差的余弦公式进行三角函数的化简、求值和证明。
2、难点(1)两角和与差的余弦公式的推导思路。
(2)公式的灵活运用,尤其是角的变换。
三、知识回顾1、任意角的三角函数定义在平面直角坐标系中,设角α的终边上任意一点 P 的坐标为(x, y),点 P 到原点的距离为 r,则有:sinα = y/r ,cosα = x/r ,tanα = y/x (x≠0)2、诱导公式(1)cos(α) =cosα(2)cos(π α) =cosα四、新课导入在实际生活和数学问题中,我们常常会遇到需要计算两个角的和或差的余弦值的情况。
例如,在三角形中,如果已知两个角的大小,要求第三个角的余弦值,就需要用到两角和与差的余弦公式。
那么,如何推导两角和与差的余弦公式呢?五、公式推导1、单位圆法在单位圆中,设角α的终边与单位圆交于点A(cosα, sinα),角β的终边与单位圆交于点B(cosβ, sinβ)。
则向量 OA =(cosα, sinα),向量 OB =(cosβ, sinβ)。
因为向量的数量积等于向量的模乘以它们夹角的余弦值,所以有:OA·OB =|OA|·|OB|·cos(α β)而 OA·OB =cosα·cosβ +sinα·sinβ ,|OA| =|OB| = 1所以cos(α β) =cosα·cosβ +sinα·sinβ同理,可推导得cos(α +β) =cosα·cosβ sinα·sinβ2、余弦定理法在三角形 ABC 中,角 A、B、C 所对的边分别为 a、b、c。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《两角和与差的余弦公式》教学设计
一、教材地位和作用分析:
两角和与差的正弦、余弦、正切是本章的重要内容,是正弦线、余弦线和诱导公式等知识的延伸,是后继内容二倍角公式、和差化积、积化和差公式的知识基础,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有重要的支撑作用。
本课时主要讲授平面内两点间距离公式、两角和与差的余弦公式以及诱导公式。
二、教学目标:
1、知识目标:
①、使学生了解平面内两点间距离公式的推导并熟记公式;
②、使学生理解两角和与差的余弦公式和诱导公式的推导;
③、使学生能够从正反两个方向运用公式解决简单应用问题。
2、能力目标:
①、培养学生逆向思维的意识和习惯;
②、培养学生的代数意识,特殊值法的应用意识;
③、培养学生的观察能力,逻辑推理能力和合作学习能力。
3、情感目标:
①、通过观察、对比体会公式的线形美,对称美;
②、培养学生不怕困难,勇于探索的求知精神。
三、教学重点和难点:
教学重点:两角和与差的余弦公式的推导及运用。
教学难点:两角和与差的余弦公式的灵活运用。
四、教学方法:
创设情境有利于问题自然、流畅地提出,提出问题是为了引发思考,思考的表现形式是探索尝试,探索尝试是思维活动中最有意义的部分,激发学生积极主动的思维活动是我们每节课都应追求的目标。
给学生的思维以适当的引导并不一定会降低学生思维的层次,反而能够提高思维的有效性。
从而体现教师主导作用和学生主体作用的
和谐统一。
由此我决定采用以下的教学方法:创设情境----提出问题----探索尝试----启发引导----解决问题。
学法指导:
1、要求学生做好正弦线、余弦线、同一坐标轴上两点间距离公式,特别是用角的余弦和正弦表示终边上特殊点的坐标这些必要的知识准备。
(体现学习过程中循序渐进,温故知新的认知规律。
)
2、让学生注意观察、对比两角和与差的余弦公式中正弦、余弦的顺序;角的顺序关系,培养学生的观察能力,并通过观察体会公式的对称美。
五、教学过程
=,=-
(
,且
-
六、板书设计。