两角和差正余弦公式的证明

合集下载

三角函数两角和差公式证明过程

三角函数两角和差公式证明过程

三角函数两角和差公式证明过程一、两角和的余弦公式cos(A + B)=cos Acos B-sin Asin B的证明。

1. 利用单位圆证明(几何法)- 在单位圆x^2+y^2 = 1上,设角A、B的终边分别与单位圆交于点P_1(cos A,sin A)和P_2(cos B,sin B)。

- 则→OP_1=(cos A,sin A),→OP_2=(cos B,sin B)。

- 角A + B的终边与单位圆交于点P。

- 根据向量的数量积定义,→OP_1·→OP_2=|→OP_1||→OP_2|cos(A - B),因为|→OP_1|=|→OP_2| = 1,所以→OP_1·→OP_2=cos(A - B)。

- 又因为→OP_1·→OP_2=cos Acos B+sin Asin B,所以cos(A - B)=cos AcosB+sin Asin B。

- 令B=-B,则cos(A + B)=cos Acos(-B)+sin Asin(-B)。

- 由于cos(-B)=cos B,sin(-B)=-sin B,所以cos(A + B)=cos Acos B-sin Asin B。

2. 利用复数证明(代数法)- 设z_1=cos A + isin A,z_2=cos B + isin B。

- 根据复数乘法法则z_1z_2=(cos A + isin A)(cos B + isin B)- 展开得z_1z_2=cos Acos B-sin Asin B+i(sin Acos B+cos Asin B)。

- 另一方面,根据复数的三角形式乘法z_1z_2=cos(A + B)+isin(A + B)。

- 比较实部可得cos(A + B)=cos Acos B-sin Asin B。

二、两角和的正弦公式sin(A + B)=sin Acos B+cos Asin B的证明。

1. 利用两角和的余弦公式推导。

两角和与差的余弦公式的五种推导方法之对比

两角和与差的余弦公式的五种推导方法之对比

两⾓和与差的余弦公式的五种推导⽅法之对⽐两⾓和与差的余弦公式是三⾓函数恒等变换的基础,其他三⾓函数公式都是在此公式基础上变形得到的,因此两⾓和与差的余弦公式的推导作为本章要推导的第⼀个公式,往往得到了⼴⼤教师的关注. 对于不同版本的教材采⽤的⽅法往往不同,认真体会各种不同的两⾓和与差的余弦公式的推导⽅法,对于提⾼学⽣的分析问题、提出问题、研究问题、解决问题的能⼒有很⼤的作⽤.下⾯将两⾓和与差的余弦公式的五种常见推导⽅法归纳如下:⽅法⼀:应⽤三⾓函数线推导差⾓公式的⽅法设⾓α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β.过点P作PM⊥x轴,垂⾜为M,那么OM即为α-β⾓的余弦线,这⾥要⽤表⽰α,β的正弦、余弦的线段来表⽰OM.过点P作PA⊥OP1,垂⾜为A,过点A作AB⊥x轴,垂⾜为B,再过点P作PC⊥AB,垂⾜为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB+CP=OA cosα+AP sinα=cosβcosα+sinβsinα.综上所述,.说明:应⽤三⾓函数线推导差⾓公式这⼀⽅法简单明了,构思巧妙,容易理解. 但这种推导⽅法对于如何能够得到解题思路,存在⼀定的困难. 此种证明⽅法的另⼀个问题是公式是在均为锐⾓的情况下进⾏的证明,因此还要考虑的⾓度从锐⾓向任意⾓的推⼴问题.⽅法⼆:应⽤三⾓形全等、两点间的距离公式推导差⾓公式的⽅法设P1(x1,y1),P2(x2,y2),则有|P1P2 |= .在直⾓坐标系内做单位圆,并做出任意⾓α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、.∵,且,∴,∴,∴,∴,∴,.说明:该推导⽅法巧妙的将三⾓形全等和两点间的距离结合在⼀起,利⽤单位圆上与⾓有关的四个点,建⽴起等式关系,通过将等式的化简、变形就可以得到符合要求的和⾓与差⾓的三⾓公式. 在此种推导⽅法中,推导思路的产⽣是⼀个难点,另外对于三点在⼀条直线和三点在⼀条直线上时这⼀特殊情况,还需要加以解释、说明.⽅法三:应⽤余弦定理、两点间的距离公式推导差⾓公式的⽅法设,则.在△OPQ中,∵,∴,∴.说明:此题的解题思路和构想都是容易实现的. 因为要求两⾓和与差的三⾓函数,所以构造出和⾓和差⾓是必须实现的. 构造出的和⾓或差⾓的余弦函数⼜需要和这两个⾓的三⾓函数建⽴起等式关系,因此借助于余弦定理、两点间的距离公式建⽴起等式关系容易出现,因此此种⽅法是推导两⾓和与差的余弦的⽐较容易理解的⼀种⽅法. 但此种⽅法必须是在学习完余弦定理的前提下才能使⽤,因此此种⽅法在必修四中⼜⽆法使⽤. 另外也同样需要考虑三点在⼀条直线上的情况.⽅法四:应⽤三⾓形⾯积公式推导推导差⾓公式的⽅法设α、β是两个任意⾓,把α、β两个⾓的⼀条边拼在⼀起,顶点为O,过B点作OB的垂线,交α另⼀边于A,交β另⼀边于C,则有S△OAC=S△OAB+S△OBC..根据三⾓形⾯积公式,有,∴.∵,,,∴,∵,∴sin(α+β)=sinαcosβ+sinβcosα.根据此式和诱导公式,可继续证出其它和⾓公式及差⾓公式.(1)sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosα;(2)cos(α+β)=sin[90-(α+β)]=sin[(90-α)-β]=sin(90-α)cosβ-sinβcos(90-α)=cosαcosβ-sinαsinβ;(3)cos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβ.说明:此种推导⽅法通过三⾓形的⾯积的和巧妙的将两⾓和的三⾓函数与各个⾓的三⾓函数和联系在⼀起,体现了数形结合的特点. 缺点是公式还是在两个⾓为锐⾓的情况下进⾏的证明,因此同样需要将⾓的范围进⾏拓展.(五)应⽤数量积推导余弦的差⾓公式在平⾯直⾓坐标系xOy内,作单位圆O,以Ox为始边作⾓α,β,它们的终边与单位圆的交点为A,B,则=(cosα,sinα),=(cosβ,sinβ).由向量数量积的概念,有.由向量的数量积的坐标表⽰,有.于是,有.说明:应⽤数量积推导余弦的差⾓公式⽆论是构造两个⾓的差,还是得到每个⾓的三⾓函数值都是容易实现的,⽽且从向量的数量积的定义和坐标运算两种形式求向量的数量积将⼆者之间结合起来,充分体现了向量在数学中的桥梁作⽤.综上所述,从五种不同的推导两⾓和与差的余弦公式的过程可以看出,不同的推导⽅法体现出不同的数学特点,不同的巧妙构思,相同的结果,也进⼀步体验了数学的博⼤精深.。

两角和与差的余弦公式的五种推导方式之对照

两角和与差的余弦公式的五种推导方式之对照

两角和与差的余弦公式的五种推导方式之对照第一种推导方式:我们知道余弦函数的定义为:cosθ = adj/hyp其中,adj表示邻边的长度,hyp表示斜边的长度。

现在考虑两个角度的和,即θ1+θ2、根据余弦函数的定义,我们可以得到:cos(θ1 + θ2) = adj1/hyp1现在我们将θ1和θ2分别表示为它们的余弦函数:cosθ1 = adj1/hyp1cosθ2 = adj2/hyp2将这两个式子相加,得到:cosθ1 + cosθ2 = (adj1 + adj2) / (hyp1 + hyp2)这就是两角和的余弦公式。

第二种推导方式:我们知道余弦函数的定义为:cosθ = adj/hyp我们还知道余弦函数的复合角公式,即:cos(θ1 + θ2) = cosθ1⋅cosθ2 - sinθ1⋅sinθ2现在我们将θ1和θ2表示为它们的余弦函数和正弦函数:cosθ1 = adj1/hyp1cosθ2 = adj2/hyp2sinθ1 = opp1/hyp1sinθ2 = opp2/hyp2将这些式子代入复合角公式中,得到:cos(θ1 + θ2) = (adj1/hyp1)⋅(adj2/hyp2) -(opp1/hyp1)⋅(opp2/hyp2)= (adj1⋅adj2 - opp1⋅opp2) / (hyp1⋅hyp2)这就是第二种推导方式。

第三种推导方式:我们知道余弦函数的定义为:cosθ = adj/hyp我们还知道正弦函数的平方与余弦函数的平方之和等于1,即:sin²θ + cos²θ = 1现在我们考虑θ1和θ2的和,即(θ1+θ2)。

我们可以得到:cos(θ1 + θ2) = adj1+2/hyp1+2现在我们将θ1+2表示为(θ1+θ2)的余弦函数和正弦函数:cos(θ1 + θ2) = adj1+2/hyp1+2= (adj1⋅cosθ2 - opp1⋅sinθ2) / (hyp1⋅cosθ2 + hyp2⋅sinθ2) = (adj1⋅adj2 - opp1⋅opp2) / (hyp1⋅ hyp2)这就是第三种推导方式。

两角和与差的余弦公式的五种推导方法之对比

两角和与差的余弦公式的五种推导方法之对比

两角和与差的余弦公式的五种推导方法之对比两角和与差的余弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往往得到了广大教师的关注. 对于不同版本的教材采用的方法往往不同,认真体会各种不同的两角和与差的余弦公式的推导方法,对于提高学生的分析问题、提出问题、研究问题、解决问题的能力有很大的作用.下面将两角和与差的余弦公式的五种常见推导方法归纳如下:方法一:应用三角函数线推导差角公式的方法设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β.过点P作PM⊥x轴,垂足为M,那么OM即为α-β角的余弦线,这里要用表示α,β的正弦、余弦的线段来表示OM.过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB+CP=OA cosα+AP sinα=cosβcosα+sinβsinα.综上所述,.说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解. 但这种推导方法对于如何能够得到解题思路,存在一定的困难. 此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推广问题.方法二:应用三角形全等、两点间的距离公式推导差角公式的方法设P1(x1,y1),P2(x2,y2),则有|P1P2 |= .在直角坐标系内做单位圆,并做出任意角α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、.∵,且,∴,∴,∴,∴,∴,.说明:该推导方法巧妙的将三角形全等和两点间的距离结合在一起,利用单位圆上与角有关的四个点,建立起等式关系,通过将等式的化简、变形就可以得到符合要求的和角与差角的三角公式. 在此种推导方法中,推导思路的产生是一个难点,另外对于三点在一条直线和三点在一条直线上时这一特殊情况,还需要加以解释、说明.方法三:应用余弦定理、两点间的距离公式推导差角公式的方法设,则.在△OPQ中,∵,∴,∴.说明:此题的解题思路和构想都是容易实现的. 因为要求两角和与差的三角函数,所以构造出和角和差角是必须实现的. 构造出的和角或差角的余弦函数又需要和这两个角的三角函数建立起等式关系,因此借助于余弦定理、两点间的距离公式建立起等式关系容易出现,因此此种方法是推导两角和与差的余弦的比较容易理解的一种方法. 但此种方法必须是在学习完余弦定理的前提下才能使用,因此此种方法在必修四中又无法使用. 另外也同样需要考虑三点在一条直线上的情况.方法四:应用三角形面积公式推导推导差角公式的方法设α、β是两个任意角,把α、β两个角的一条边拼在一起,顶点为O,过B点作OB的垂线,交α另一边于A,交β另一边于C,则有S△OAC=S△OAB+S△OBC..根据三角形面积公式,有,∴.∵,,,∴,∵,∴sin(α+β)=sinαcosβ+sinβcosα.根据此式和诱导公式,可继续证出其它和角公式及差角公式.(1)sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosα;(2)cos(α+β)=sin[90-(α+β)]=sin[(90-α)-β]=sin(90-α)cosβ-sinβcos(90-α)=cosαcosβ-sinαsinβ;(3)cos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβ.说明:此种推导方法通过三角形的面积的和巧妙的将两角和的三角函数与各个角的三角函数和联系在一起,体现了数形结合的特点. 缺点是公式还是在两个角为锐角的情况下进行的证明,因此同样需要将角的范围进行拓展.(五)应用数量积推导余弦的差角公式在平面直角坐标系xOy内,作单位圆O,以Ox为始边作角α,β,它们的终边与单位圆的交点为A,B,则=(cosα,sinα),=(cosβ,sinβ).由向量数量积的概念,有.由向量的数量积的坐标表示,有.于是,有.说明:应用数量积推导余弦的差角公式无论是构造两个角的差,还是得到每个角的三角函数值都是容易实现的,而且从向量的数量积的定义和坐标运算两种形式求向量的数量积将二者之间结合起来,充分体现了向量在数学中的桥梁作用.综上所述,从五种不同的推导两角和与差的余弦公式的过程可以看出,不同的推导方法体现出不同的数学特点,不同的巧妙构思,相同的结果.。

两角和与差的正弦余弦和正切公式推导过程

两角和与差的正弦余弦和正切公式推导过程

两角和与差的正弦余弦和正切公式推导过程首先,我们假设有两个角α和β,它们的和为α+β,差为α-β。

我们将利用这两个和与差来推导公式。

1.两角和的正弦公式的推导:首先,根据三角恒等式sin(α+β) = sinαcosβ+cosαsinβ,我们可以将α+β的正弦表示为两个正弦的和的形式。

然后,利用三角恒等式可以写出cos(-β)=cosβ,sin(-β)= -sinβ,我们可以将α+(-β)的正弦再次表示为两个正弦的和的形式。

即,sin(α+β) = sinαcosβ+ cosαsinβ = sinαcos(-β) + cosαsin(-β)。

这样,我们可以得到:sin(α+β) = sinαcosβ + cosαsinβ = sinαcos(-β) +cosαsin(-β)。

2.两角和的余弦公式的推导:首先,根据三角恒等式cos(α+β) = cosαcosβ - sinαsinβ,我们可以将α+β的余弦表示为两个余弦的和的形式。

然后,利用三角恒等式可以写出cos(-β)=cosβ,sin(-β)= -sinβ,我们可以将α+(-β)的余弦再次表示为两个余弦的和的形式。

即,cos(α+β) = cosαcosβ- sinαsinβ = cosαcos(-β) - sinαsin(-β)。

这样,我们可以得到:cos(α+β) = cosαcosβ - sinαsinβ = cosαcos(-β) -sinαsin(-β)。

3.两角差的正弦公式的推导:首先,根据三角恒等式sin(α-β) = sinαcos(-β) - cosαsin(-β),我们可以将α-β的正弦表示为两个正弦的差的形式。

然后,利用三角恒等式可以写出cos(-β)=cosβ,sin(-β)= -sinβ,我们可以将α-(-β)的正弦再次表示为两个正弦的差的形式。

即,sin(α-β) = sinαcos(-β) - cosαsin(-β) = sinαcosβ + cosαsinβ。

两角和与差的三角函数公式知识点

两角和与差的三角函数公式知识点

两角和与差的三角函数公式知识点两角和与差的三角函数公式属于高中数学的重要内容,主要通过利用三角函数的性质,研究两个角的和与差的三角函数值之间的关系。

在解决三角方程、证明恒等式等问题时,这些公式的应用非常广泛。

本文将从公式的定义、推导及应用方面进行详细解析。

一、两角和的三角函数公式1.余弦和公式:cos(A+B) = cosAcosB - sinAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A+B。

我们知道,其对应的三条直角边分别是x、x'、x"和y、y'、y",根据三角函数的定义,我们可以得到如下关系:x = cosA,y = sinAx' = cosB,y' = sinBx" = cos(A+B),y" = sin(A+B)那么,点P、Q和R的连线所对应的三角形的三个内角之和应该等于180°,即有:∠POR+∠POQ+∠QOR=180°∠A+∠B+∠(A+B)=180°2A+B=180°将以上结果代入三角函数的定义中,我们可以得到:cos(A+B) = x" = x'x - y'y = cosAcosB - sinAsinB2.正弦和公式:sin(A+B) = sinAcosB + cosAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A+B。

同样,根据三角函数的定义,我们可以得到如下关系:x = cosA,y = sinAx' = cosB,y' = sinBx" = cos(A+B),y" = sin(A+B)那么,点P、Q和R的连线所对应的三角形的三个边长之和应该等于2,即有:PR+PQ+QR=2∠POR+∠POQ+∠QOR=360°∠A+∠B+∠(A+B)=360°2A+B=360°将以上结果代入三角函数的定义中,我们可以得到:sin(A+B) = y" = xy' + yx' = sinAcosB + cosAsinB二、两角差的三角函数公式1.余弦差公式:cos(A-B) = cosAcosB + sinAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A-B。

两角和与差的正弦余弦正切公式

两角和与差的正弦余弦正切公式

两角和与差的正弦余弦正切公式在三角函数中,我们经常需要计算两个角的和或差的正弦、余弦或正切值。

这些公式被广泛应用于数学、物理、工程等领域的问题求解中。

本文将详细介绍两角和与差的正弦、余弦和正切公式。

一、两角和与差的正弦公式首先,我们来讨论两个角的和的正弦公式。

设有两个角A和B,那么它们的和角记为(A+B)。

根据三角函数的定义,我们知道正弦的定义为一个角的对边与斜边之比,可以表示为sin(x)=opposite/hypotenuse。

根据这个定义,我们可以得到如下的两角和的正弦公式:sin(A+B) = sinA*cosB + cosA*sinB这个公式很重要,可以帮助我们计算两个角的和的正弦值。

在实际应用中,我们经常需要计算两个角的和的正弦,而不是两个角分别的正弦。

所以这个公式非常有用。

接下来,我们来讨论两个角的差的正弦公式。

设有两个角A和B,那么它们的差角记为(A-B)。

根据三角函数的定义,我们可以得到如下的两角差的正弦公式:sin(A-B) = sinA*cosB - cosA*sinB这个公式与两角和的正弦公式类似,也非常有用。

二、两角和与差的余弦公式类似于正弦公式,我们也可以推导出两角和与差的余弦公式。

设有两个角A和B,那么它们的和角记为(A+B)。

根据三角函数的定义,我们知道余弦的定义为一个角的邻边与斜边之比,可以表示为cos(x)=adjacent/hypotenuse。

根据这个定义,我们可以得到如下的两角和的余弦公式:cos(A+B) = cosA*cosB - sinA*sinB同样地,我们也可以得到两角差的余弦公式:cos(A-B) = cosA*cosB + sinA*sinB这两个公式和两角和与差的正弦公式一样重要,经常被应用于实际问题中。

三、两角和与差的正切公式最后,我们来讨论两角和与差的正切公式。

设有两个角A和B,那么它们的和角记为(A+B)。

根据三角函数的定义,我们知道正切的定义为一个角的对边与邻边之比,可以表示为tan(x)=opposite/adjacent。

两角和与差的余弦公式的六种推导方法

两角和与差的余弦公式的六种推导方法

两角和与差的余弦公式的六种推导方法沈阳市教育研究院王恩宾两角和与差的余弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往往得到了广大教师的关注. 对于不同版本的教材采用的方法往往不同,认真体会各种不同的两角和与差的余弦公式的推导方法,对于提高学生的分析问题、提出问题、研究问题、解决问题的能力有很大的作用.下面将两角和与差的余弦公式的五种常见推导方法归纳如下:方法一:应用三角函数线推导差角公式的方法设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β.过点P作PM⊥x轴,垂足为M,那么OM即为α-β角的余弦线,这里要用表示α,β的正弦、余弦的线段来表示OM.过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB+CP =OA cosα+AP sinα=cosβcosα+sinβsinα.综上所述,.说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解.但这种推导方法对于如何能够得到解题思路,存在一定的困难.此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推广问题.方法二:应用三角形全等、两点间的距离公式推导差角公式的方法设P1(x1,y1),P2(x2,y2),则有|P1P2 |= .在直角坐标系内做单位圆,并做出任意角α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、.∵,且,∴,∴,∴,∴,∴,.说明:该推导方法巧妙的将三角形全等和两点间的距离结合在一起,利用单位圆上与角有关的四个点,建立起等式关系,通过将等式的化简、变形就可以得到符合要求的和角与差角的三角公式.在此种推导方法中,推导思路的产生是一个难点,另外对于三点在一条直线和三点在一条直线上时这一特殊情况,还需要加以解释、说明.方法三:应用余弦定理、两点间的距离公式推导差角公式的方法设,则.在△OPQ中,∵,∴,∴.说明:此题的解题思路和构想都是容易实现的. 因为要求两角和与差的三角函数,所以构造出和角和差角是必须实现的. 构造出的和角或差角的余弦函数又需要和这两个角的三角函数建立起等式关系,因此借助于余弦定理、两点间的距离公式建立起等式关系容易出现,因此此种方法是推导两角和与差的余弦的比较容易理解的一种方法. 但此种方法必须是在学习完余弦定理的前提下才能使用,因此此种方法在必修四中又无法使用. 另外也同样需要考虑三点在一条直线上的情况.方法四:应用三角形面积公式推导推导差角公式的方法设α、β是两个任意角,把α、β两个角的一条边拼在一起,顶点为O,过B点作OB 的垂线,交α另一边于A,交β另一边于C,则有S△OAC=S△OAB+S△OBC..根据三角形面积公式,有,∴.∵,,,∴,∵,∴sin(α+β)=sinαcosβ+sinβcosα.根据此式和诱导公式,可继续证出其它和角公式及差角公式.(1)sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosα;(2)cos(α+β)=sin[90-(α+β)]=sin[(90-α)-β]=sin(90-α)cosβ-sinβcos(90-α)=cosαcosβ-sinαsinβ;(3)cos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβ.说明:此种推导方法通过三角形的面积的和巧妙的将两角和的三角函数与各个角的三角函数和联系在一起,体现了数形结合的特点. 缺点是公式还是在两个角为锐角的情况下进行的证明,因此同样需要将角的范围进行拓展.(五)应用数量积推导余弦的差角公式在平面直角坐标系xOy内,作单位圆O,以Ox为始边作角α,β,它们的终边与单位圆的交点为A,B,则=(cosα,sinα),=(cosβ,sinβ).由向量数量积的概念,有.由向量的数量积的坐标表示,有.于是,有.说明:应用数量积推导余弦的差角公式无论是构造两个角的差,还是得到每个角的三角函数值都是容易实现的,而且从向量的数量积的定义和坐标运算两种形式求向量的数量积将二者之间结合起来,充分体现了向量在数学中的桥梁作用.附方法六:等积法推导余弦的差角公式广东佛山袁锦前如图:在△ABC中,AD⊥BC于D,BE⊥AC于E,设∠DAC=α,∠ABD=β,求:cos(α-β)解:在△ABD中,BD=c·cosβ,AD=b·cosα在△ACD中,CD= b c·sinα,AD= c·sinβ11cos cos sin sin 22ABD ACDSSbc bc αβαβ∴+=+ ()1cos cos sin sin 2bc αβαβ=+ …………………………..○1 又∵2BAD πβ∠=-()c sin =c sin 22BE ππβααβ⎡⎤⎛⎫⎡⎤∴=⋅-+⋅--⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦()c cos αβ=⋅-()11cos 22ABCSAC BE bc αβ∴=⋅=- …………………………………………○2 由○1○2可得: ()cos =cos cos sin sin αβαβαβ-+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档