概率与数理统计纲要
概率论与数理统计(数学专业)大纲

《概率论与数理统计》课程教学大纲一、基本信息英文课名:Probability Theory and Mathematical Statistics A课程代码:课程类别:(理论课:核心必修)学时:96学分:6适用专业:数学与应用数学二、教学目标与要求:(课程任务和基本要求)教学目标:概率论与数理统计是数学与应用数学、信息与计算科学专业的一门专业必修课程,是大学数学课程的重要组成部分,它是在开设数学分析、高等代数等专业基础课之后的一门重要专业课,以微积分和代数理论为基础,学习概率统计的基本理论和方法,研究和揭示随机现象中统计规律,为后继课程的学习和实际应用打下必需的基础。
教学要求:通过本课程的学习,使学生掌握研究随机现象的基本思想与理论方法,初步具备分析解决具有随机因素的实际问题的能力,学会在随机性数据中找出统计规律,为从事中学教学、数学应用,或者继续学习和研究该方向的理论及应用打下基础。
三、教学内容及学时数分配:(一)教学内容第一章随机事件与概率内容:1、随机试验,样本空间,随机事件等基本概念2、古典概型3、概率的公理化定义及概率的性质4、条件概率、全概率公式和贝叶斯公式5、独立性6、贝努利概型第二章随机变量及其分布内容:1、随机变量及其分布2、数学期望的定义和性质3、方差的定义和性质4、随机变量函数的分布列5、常用分布第三章多维随机变量及其分布内容:1、多维随机变量及联合分布2、边际分布与随机变量的独立性3、多维随机变量函数的分布4、多维随机变量的数字特征5、条件分布与条件期望、回归与第二类回归第四章大数定律与中心极限定理内容:1、特征函数2、大数定律3、中心极限定理第五章统计量及其分布内容:1、总体与样本2、统计量及其分布3、三大抽样分布4、充分统计量第六章参数估计内容:1、点估计2、点估计的评价标准3、最小方差无偏估计4、区间估计第七章假设检验内容:1、假设检验的基本思想和概念2、正态总体参数假设检验3、其他分布参数的假设检验4、分布拟合检验第八章方差分析与回归分析内容:1、方差分析2、多重比较3、方差齐性检验4、一元线性回归5、一元非线性回归(二)学时分配四、相关说明(一)、考核方式及成绩评定办法:(考试/考查,成绩评定方式,有实验的要注明实验成绩占课程成绩比例及实验成绩评定方式):本课程属考试课程,考试方式:笔试,闭卷,成绩评定:平时成绩30%+期末考试70%。
《概率论与数理统计》(46学时)课程教学大纲1

《概率论与数理统计》(46学时)课程教学大纲一、课程的基本情况课程中文名称:概率论与数理统计课程英文名称:Probability Theory and Mathematical Statistics课程编码:0702003课程类别:学科基础课课程性质:必修总学时:46 讲课学时:46 实验学时:0学分:2.5授课对象:本科相关专业前导课程:《高等数学》《线性代数》二、教学目的概率论与数理统计是研究随机现象统计规律性的数学学科,是理工科各专业的一门重要的学科基础课。
通过本课程的学习,使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。
同时,也为一些后续课程的学习提供必要的基础。
三、教学基本要求第一章概率论的基本概念1.1 随机试验1.2 样本空间、随机事件1.3 频率与概率1.4 等可能概型(古典概型)1.5 条件概率1.6 独立性基本要求:1. 理解随机试验、样本空间、随机事件的概念并掌握事件的关系与运算2. 掌握概率的定义与基本性质3. 理解古典概型的概念,掌握古典概率的计算方法4. 理解条件概率的定义,熟练掌握乘法定理、全概率公式与贝叶斯公式并会灵活应用5. 理解事件独立性的概念,熟练掌握相互独立事件的性质及有关概率的计算重点与难点:1. 重点:随机事件;概率的基本性质及其应用;乘法定理、全概率公式与贝叶斯公式事件的独立性2. 难点:概率的公理化定义、条件概率概念的建立、全概率公式与贝叶斯公式的应用第二章随机变量及其分布2.1 随机变量2.2 离散型随机变量及其分布律2.3 随机变量的分布函数2.4 连续型随机变量及其概率密度2.5 随机变量的函数的分布 基本要求:1. 理解随机变量的概念;掌握离散型随机变量和连续型随机变量的描述方法2. 掌握分布律、分布函数、概率密度函数的概念及性质;掌握由概率分布计算相关事件的概率的方法3. 熟练掌握二项分布、泊松(Poisson )分布、正态分布、指数分布和均匀分布,特别是正态分布的性质并能灵活运用;熟练掌握伯努利概型概率的计算方法4. 熟练掌握一些简单的随机变量函数的概率分布的求法 重点与难点:1. 重点:随机变量、分布律、密度函数和分布函数的概念;二项分布、均匀分布的概念和性质2. 难点:二项分布的推导及应用;随机变量函数的概率分布第三章 多维随机变量及其分布 3.1 二维随机变量 3.2 边缘分布 3.3 条件分布3.4 相互独立的随机变量3.5 两个随机变量的函数的分布 基本要求:1. 正确理解二维随机变量的定义,掌握二维随机变量的联合分布律、联合分布函数、联合概率密度函数及条件分布的概念2. 熟练掌握由联合分布求事件的概率,求边缘分布及条件分布的基本方法3. 理解随机变量独立性的概念,掌握随机变量独立性的判别方法4. 了解求二维随机变量函数分布的基本思路,会求,max{,},min{,}X Y X Y X Y 的分布 重点与难点:1. 重点:由联合分布求概率,求边缘分布及条件分布的方法2. 难点:求离散型随机变量联合分布律的方法,条件密度的导出,随机变量函数的分布第四章 随机变量的数字特征 4.1 数学期望 4.2 方差4.3 协方差及相关系数 4.4 矩、协方差矩阵 基本要求:1. 掌握随机变量及随机变量函数的数学期望的计算公式,熟悉数学期望的性质并能灵活运用2. 掌握方差的概念和性质;熟悉二项分布、泊松分布、正态分布、指数分布和均匀分布的数学期望和方差;了解切比雪夫(Chebyshev )不等式3. 掌握协方差和相关系数的定义和性质,并会灵活应用4. 掌握矩、协方差矩阵的定义 重点与难点:1. 重点:数学期望、方差、相关系数与协方差的计算公式及性质2. 难点:随机变量函数的数学期望的计算,利用数学期望的性质计算数学期望,相关系数的含义第五章大数定律及中心极限定理5.1 大数定律5.2 中心极限定理基本要求:1. 掌握依概率收敛的概念及贝努利大数定律和契比雪夫大数定律2. 掌握独立同分布的中心极限定理和德莫佛-拉普拉斯(De Moivre-Laplace)极限定理3. 掌握应用中心极限定理计算有关事件的概率近似值的方法重点与难点:1. 重点:用中心极限定理计算概率的近似值的方法2. 难点:依概率收敛的概念第六章样本及抽样分布6.1 随机样本6.2 抽样分布基本要求:1. 理解总体、个体、样本容量、简单随机样本以及样本观察值的概念2. 理解统计量的概念;熟悉数理统计中最常用的统计量(如样本均值、样本方差)的计算方法及其分布χ-分布,t-分布,F-分布的定义并会查表计算3. 掌握24. 熟悉正态总体的某些常用统计量的分布并能运用这些统计量进行计算重点与难点:χ-分布, t-分布, F-分布的定义与分位点的查表;正态总体常用统计量的分布1. 重点:2χ-分布, t-分布, F-分布的定义与分位点的查表2. 难点:2第七章参数估计7.1 点估计7.3 估计量的评选标准7.4 区间估计7.5 正态总体均值与方差的区间估计7.7 单侧置信区间基本要求:1. 理解参数的点估计(矩估计、最大似然估计)的计算方法2. 掌握参数点估计的评选标准:无偏性,有效性和相合性3. 理解参数的区间估计的概念,熟悉对单个正态总体和两个正态总体的均值与方差进行区间估计的方法及步骤重点与难点:1. 重点:点估计的矩法、最大似然估计法;正态总体参数的区间估计2. 难点:最大似然估计法,两个正态总体的参数的区间估计四、课程内容与学时分配五、教材参考书教材:盛骤谢式千潘承毅《概率论与数理统计》(第三版)高等教育出版社2001. 参考书:[1] 茆诗松《概率论与数理统计教程》(第一版)高教出版社2004.[2] 王展青李寿贵《概率论与数理统计》(第一版)科学出版社2000.六、教学方式和考核方式1.教学方式:以课堂讲授为主,辅以答疑、课后作业。
《概率论与数理统计》教学大纲

《概率论与数理统计》教学大纲第一章随机事件及其概率一、基本内容随机事件的概念及运算。
概率的统计定义、古典定义及公理化定义。
概率的基本性质、加法公式、条件概率与乘法公式、全概率公式、贝叶斯公式。
事件的独立性,独立随机试验、伯努利公式。
二、基本要求1、了解样本空间的概念,理解随机事件的概念,掌握事件间的关系及运算。
2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率;掌握概率的加法、乘法公式以及全概率公式、贝叶斯公式。
3、理解事件独立的概念,掌握用事件的独立性计算概率;理解重复独立试验的概念,掌握伯努利概型概率的计算。
三、建议课时安排本章讲课6学时,习题课2学时。
具体安排如下:1、随机事件及其运算,概率的定义和性质 2学时2、条件概率与乘法公式,全概率公式与贝叶斯公式 3学时3、事件的独立性,伯努利公式 1学时4、习题课 2学时第二章随机变量及其分布一、基本内容一元随机变量及其概率分布的概念。
随机变量的分布函数及其性质。
离散型随机变量的概率分布、连续型随机变量的概率密度以及它们的性质。
几种常见的离散型分布和连续型分布。
二元随机变量及其联合分布的概念。
二元随机变量的分布函数及其性质。
离散型随机变量的联合分布、边缘分布及条件分布,连续型随机变量的联合密度、边缘密度及条件密度,以及它们的性质。
随机变量的相互独立性。
随机变量函数的分布,两个连续型随机变量之和的分布。
二、基本要求1、理解随机变量及其分布的概念。
理解分布函数的概念。
会求与随机变量有关的事件的概率。
2、掌握概率分布、概率密度与分布函数之间的关系,会灵活运用它们的性质。
3、掌握0-1分布、二项分布、泊松分布和超几何分布。
掌握二项分布的近似计算(用泊松分布)。
掌握均匀分布、指数分布和正态分布。
4、理解二元随机变量、联合分布、边缘分布、条件分布的概念。
会求离散型随机变量的联合分布律。
已知联合分布,会求边缘分布和条件分布。
会利用二元分布求简单事件的概率。
概率论与数理统计复习资料要点总结

《概率论与数理统计》复习资料一、复习纲要注:以下是考试的参照内容,不作为实质考试范围,仅作为复习参照之用。
考试内容以教课纲领和实行计划为准;注明“认识”的内容一般不考。
1、能很好地掌握写样本空间与事件方法,会事件关系的运算,认识概率的古典定义2、能较娴熟地求解古典概率;认识概率的公义化定义3、掌握概率的基天性质和应用这些性质进行概率计算;理解条件概率的观点;掌握加法公式与乘法公式4、能正确地选择和运用全概率公式与贝叶斯公式解题;掌握事件独立性的观点及性质。
5、理解随机变量的观点,认识(0 —1) 散布、二项散布、泊松散布的散布律。
6、理解散布函数的观点及性质,理解连续型随机变量的概率密度及性质。
7、掌握指数散布 ( 参数) 、平均散布、正态散布,特别是正态散布概率计算8、会求一维随机变量函数散布的一般方法,求一维随机变量的散布律或概率密度。
9、会求散布中的待定参数。
10、会求边沿散布函数、边沿散布律、条件散布律、边沿密度函数、条件密度函数,会鉴别随机变量的独立性。
11、掌握连续型随机变量的条件概率密度的观点及计算。
12、理解二维随机变量的观点,理解二维随机变量的结合散布函数及其性质,理解二维失散型随机变量的结合散布律及其性质,理解二维连续型随机变量的结合概率密度及其性质,并会用它们计算有关事件的概率。
13、认识求二维随机变量函数的散布的一般方法。
14、会娴熟地求随机变量及其函数的数学希望和方差。
会娴熟地默写出几种重要随机变量的数学希望及方差。
15、较娴熟地求协方差与有关系数.16、认识矩与协方差矩阵观点。
会用独立正态随机变量线性组合性质解题。
17、认识大数定理结论,会用中心极限制理解题。
18、掌握整体、样本、简单随机样本、统计量及抽样散布观点,掌握样本均值与样本方差及样本矩观点,掌握2散布 ( 及性质 ) 、t 散布、F散布及其分位点观点。
19、理解正态整体样本均值与样本方差的抽样散布定理;会用矩预计方法来预计未知参数。
概率论与数理统计复习提纲

概率论与数理统计复习提纲概率论与数理统计总复习第⼀讲随机事件及其概率⼀随机事件,事件间的关系及运算 1.样本空间和随机事件 2.事件关系,运算和运算律⑴事件的关系和运算⑶运算律:交换律,结合律,分配律;对偶律: B A B A ?=?,B A B A ?=?;⼆概率的定义和性质 1.公理化定义(P7)2.概率的性质(P8.五个) ⑴)(1)(A P A P -=;⑵)()()()(AB P B P A P B A P -+=?;3.古典概型和⼏何概型4.条件概率 )()()|(A P AB P A B P =三常⽤的计算概率的公式1.乘法公式 )()()()()(B A P B P A B P A P AB P ==2.全概率公式和贝叶斯公式(P17-20.) 四事件的独⽴性1.定义:A 和B 相互独⽴ )()(B P A B P =或)()()(B P A P AB P ?=,2.贝努利试验在n 重贝努利试验中,事件=k A {A 恰好发⽣k 次})0(n k ≤≤的概率为:k n nk n k p p C A P --=)1()(第⼆讲随机变量及其概率分布⼀随机变量及其分布函数1.随机变量及其分布函数 )()(x X P x F ≤=)(+∞<<-∞x2.分布函数的性质(P35.四个)⑴0)(lim =-∞→x F x ;1)(lim =+∞→x F x ;(常⽤来确定分布函数中的未知参数)⑵)()()(a F b F b X a P -=≤<(常⽤来求概率) ⼆离散型随机变量及其分布律1.分布律2.常⽤的离散型分布三连续型随机变量 1.密度函数 ?∞-=xdt t f x F )()(2.密度函数的性质(P39.七个) ⑴1)(=?+∞∞-dx x f ;(常⽤来确定密度函数中的参数)⑵?=≤adx x f b X a P )()(;(计算概率的重要公式)⑶对R x ∈?,有0)(==c X P (换⾔之,概率为0的事件不⼀定是不可能事件). 3.常⽤连续型分布重点:正态分布:)0,(21)(22)(>=--σσµσπσµ都是常数,x ex f标准正态分布)1,0(N :2221)(x ex -=π四随机变量函数的分布1.离散情形设X 的分布律为则)(X g Y =的分布律为2.连续情形设X 的密度函数为)(x f X ,若求)(X g Y =的密度函数,先求Y 的分布函数,再通过对其求导,得到Y 的密度函数。
概率论与数理统计考试大纲

最新整理
概率论与数理统计考试大纲
一、基本概念:
1.运用加法公式,乘法公式以及事件的独立性计算随机事件的概
率;
2.掌握全概率公式,贝叶斯公式;
3.掌握几种常见分布(离散型:二项分布等;连续型:均匀分布;
正态分布等)的分布律和概率密度,以及相关的数字特征计算。
二、一维随机变量分布
1.掌握离散型分布律的性质;
2.掌握连续型密度的性质以及概率密度与分布函数的关系;;
3.会求一维连续型随机变量的函数的分布;
三、二维随机变量分布
1. 掌握离散型联合分布律的性质;已知联合分布律会求边缘分布
律;
2.掌握连续型联合密度的性质;已知联合密度会求边缘密度;
3. 会求简单的二维离散型随机变量的函数的分布
4. 随机变量的数字特征
四、随机变量数字特征
1. 掌握数学期望;方差以及协方差的性质以及计算方法;
五、参数估计和假设检验
1.掌握矩估计法和极大似然估计法;
2.掌握单个正态总体的假设检验。
基本题型:
填空(7x4分)+计算(72分)
计算题:
(1)全概率公式考察,贝叶斯公式。
(2)一维随机变量计算区间上的概率;计算变量函数的分布。
(3)二维随机变量计算边缘分布;相关性;协方差等。
(4)求参数的点估计和极大似然估计
(5)计算单个正态总体参数数学期望的假设检验
.。
概率论与数理统计 主要内容概要

概率论与数理统计主要内容概要概率论与数理统计是数学的两个重要分支,它们在现代科学和工程技术中扮演着重要的角色。
概率论研究的是随机现象的规律性,而数理统计则研究的是如何通过对样本数据的分析和推断来得出总体的特征和规律。
概率论主要关注的是随机试验的结果及其发生的可能性。
随机试验是指在相同的条件下可以重复进行的试验,其结果是不确定的。
例如,掷骰子、抽卡片、抛硬币等都属于随机试验。
在概率论中,我们首先定义了事件和样本空间的概念。
事件是指随机试验的某个结果或一组结果的集合,而样本空间是指随机试验的所有可能结果的集合。
概率则是描述事件发生可能性的数值,它介于0和1之间,且满足概率的加法规则和乘法规则。
概率论的基本概念包括条件概率、独立性、贝叶斯定理等,这些概念在实际问题中有着广泛的应用。
数理统计是利用样本数据对总体进行推断的数学方法。
总体是指我们研究的对象的全体,而样本则是从总体中抽取的一部分数据。
通过对样本数据的统计分析,可以推断总体的特征和规律。
数理统计的主要内容包括描述统计和推断统计。
描述统计是通过对样本数据的整理、汇总和分析,来描述总体的特征和规律。
常用的描述统计方法包括平均数、中位数、众数、标准差等。
推断统计是利用样本数据对总体的未知参数进行估计和假设检验。
参数估计是根据样本数据推断总体参数的值,常用的方法有点估计和区间估计。
假设检验是根据样本数据对总体参数的某个假设进行推断,判断假设是否成立。
常用的假设检验方法有显著性水平、拒绝域、P值等。
概率论与数理统计在现代科学和工程技术中有着广泛的应用。
在自然科学中,概率论与数理统计可以用来描述和解释随机现象的规律,例如天气预报、地震预测等。
在社会科学中,概率论与数理统计可以用来分析和解释社会现象的规律,例如人口统计、经济预测等。
在工程技术中,概率论与数理统计可以用来设计和优化系统,例如通信系统、控制系统等。
此外,概率论与数理统计还广泛应用于金融、医学、生物学等领域。
《概率论与数理统计》课程教学大纲

《概率论与数理统计》课程教学大纲【课程编码】181****0008【课程类别】专业必修课【学时学分】54学时,3学分【适用专业】物流管理一、课程性质和目标课程性质:《概率论与数理统计》是为国际经济与贸易、市场营销、人力资源管理、财务管理、物流管理、电子商务等专业本科生开设的一门必修课。
本课程由概率论与数理统计两部分组成。
概率论部分侧重于理论探讨,介绍概率论的基本概念,建立一系列定理和公式,寻求解决统计和随机过程问题的方法。
其中包括随机事件和概率、随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理等内容;数理统计部分则是以概率论作为理论基础,研究如何对试验结果进行统计推断。
包括数理统计的基本概念、参数统计、假设检验等。
通过本课程的教学,应使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机事件的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。
课程目标:通过本课程的学习,要求学生能够理解随机事件、样本空间与随机变量的基本概念,掌握概率的运算公式,常见的各种随机变量(如0-1分布、二项分布、泊松(POiSSon)分布、均匀分布、正态分布、指数分布等)的表述、性质、数字特征及其应用,一维随机变量函数的分布。
理解数学期望、方差、协方差与相关系数的本质涵义,掌握数学期望、方差、协方差与相关系数的性质,熟练运用各种计算公式。
了解大数定律和中心极限定量的内容及应用,熟悉数据处理、参数估计、假设检验的一些基本方法,能用所掌握的方法具体解决所遇到的经济与管理问题,为建设社会主义现代化国家贡献力量。
二、教学内容、要求和学时分配(一)概率论的基本概念学时(6学时)教学内容:1随机试验、随机事件与样本空间;2.事件的关系与运算、完全事件组;3.概率的概念、概率的基本性质、概率的基本公式;4.等可能概型(古典概型)、几何型概率;5.条件概率、全概率公式、贝叶斯公式;6.事件的独立性、独立重复试验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重要分布 基本 概念 基本 定理
正态分布
3σ法则
指数分布具有无记忆性: P(ξ>s+t|ξ>s)=P(ξ>t)
区间估计
指数分布
原假设 备择假设 双侧检验 单侧检验 接收区域 拒绝区域 第一类错误-弃真 第二类错误-纳伪
显著性水平为α,那么如果接受原假设,观察值落 在|u|>u(α/2)区域的可能性为α,换句话说,若 观察值恰好在此区域,则有α可能性认为原假设为真
概率论与数理统计纲要
二项分布 查表 上侧分位点 泊松分布
二项分布的最大值定理:k=ent (n +1)p,或两个
服从二项分布,但(n→∞)lim np=λ
随 机 变 量 服 t分布的极限分布为 标准正态分布 从 正 态 分 布
统计量的分 布
χ分布
重要分布
超几何分布 几何分布 第k次首次“成功” k次伯努利试验中第r次“成功”
商的分布
n(∞)个随机变量存 在期望和有界方差
随机变量独立且有 相同分布 不要求存在方差
频率估计概率的理 论依据
试验次数n很大 (∞)时,可以将二 项分布近似为正 态分布
n(∞)个相互独立随 机变量具有相同分 布,则他们的和服 从正态分布
卷积 独立随机变量的 线性函数仍服从 正态分布
t分布
抽样分布
F分布
定义在样本上的 不含未知参数的 函数 样本均值 样本方差 样本k阶(中心)距 保证样本方差的 期望与总体方差 一致,存在自由 度问题,因为样 本均值已知,则 只需n-1个
退化分布:P(α=常 数)=1 n次只有两种可能的 独立重复试验
负二项分布
分布列 退化分布 n重伯努利实验 基本概念
似然函数的重要性不是它的具体取值,而是当参数变化时函 数到底变小还是变大 “似然性”与“或然性”或“概率”意 思相近,都是指某种事件发生的可能性
试验设计
数理统计概率论随机变量矩法 最大似然估计点估计
参数估计 事件是样本空间,是 基本事件(所有可能 值)的集合 概率接近于零的事件 认为实际不可能发生
均匀分布
边缘分布 条件分布
二维正态随机变量(ξ,η)的边缘分布 以及条件分布仍为正态分布
卡方分布拟合检验
总体分布假设
随机变量的独立性
P(ξ≤x,η≤y)=P(ξ≤x)P(η≤y) f(x,y)=fξ(x)fη(y)
数学期望
E(ξ+η)=E(ξ)+E(η) E(ξη)=E(ξ)E(η)+Cov(ξ,η) D(ξ+η)=D(ξ)+D(η)+2Cov(ξ,η)
大数定律
大量随机现象 的平均水平稳 定性
极限定理
二维随机变量函数的 概率分布
数字特征
方差 协方差 相关系数
r²=Cov(ξ,η)/[√D(ξ)· √D(η)]≤1
切比雪夫大数定律
辛钦大数定律
伯努利大数定律
棣莫弗-拉普拉斯 定理
列维-林德伯格定 理
独立随机变量比不相关,而不相关的随机变量不一定独立
和的分布
统计推断 概 率 论 的 公 理 化 体 系
ξn依概率 收敛
缩减的样本空间
多维
联合概率分布列 联合分布函数 联合概率密度
参数假设
事件与随机事件 事件运算 概率的性质 实际推断原理
加法定理 乘法定理 条件概率 独立事件
假设检验
古典概型 几何概型
全概率公式
贝叶斯公式
执果索因
贝 叶 斯 决 策
A是∑Bκ的子集
离散型
数学期望
统计量
数字特征
方差或标准差
切比雪夫不等式
中心距和原点矩
随机变量是定义在样 本空间Ω上的函数
总体 样本(容量) 随机样本 经验分布函数
连续型 分布函数 密度函数
分布函数单调不减与右连续 密度函数非负但不一定小于1
P(θ=b|xi)=∏﹛[P(xi|θ=b)· P(θ=b)]/P(xi)﹜=∏P(xi|θ=b) P(θ=b)和P(xi)为已发生事 件,概率为 1