2012-2013年下学期盐城市高二数学调研试卷(文)及答案

合集下载

江苏省盐城市2012-2013学年高二数学下学期期末考试试题 文(含解析)苏教版

江苏省盐城市2012-2013学年高二数学下学期期末考试试题 文(含解析)苏教版

2012-2013学年某某省某某市高二(下)期末数学试卷(文科)参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)命题p“∀x∈R,sinx≤1”的否定是∃x∈R,sinx>1 .考点:命题的否定.专题:综合题.分析:直接把语句进行否定即可,注意否定时∀对应∃,≤对应>.解答:解:根据题意我们直接对语句进行否定命题p“∀x∈R,sinx≤1”的否定是:∃x∈R,sinx>1.故答案为:∃x∈R,sinx>1.点评:本题考查了命题的否定,注意一些否定符号和词语的对应.2.(5分)已知复数z满足z=i(2﹣i)(其中i为虚数单位),则|z|=.考点:复数代数形式的乘除运算;复数求模.专题:计算题.分析:先由复数的乘法运算对z进行化简,再代入公式求出复数的模.解答:解:由题意得z=i(2﹣i)=2i﹣i2=1+2i,则|z|==,故答案为:.点评:本题考查了复数的乘法运算,以及复数模的公式,属于基础题.3.(5分)某校对全校1000名男女学生进行课外阅读情况调查,采用分层抽样法抽取一个容量为200的样本,已知女生抽了80人,则该校的男生数为600 .考点:分层抽样方法.专题:概率与统计.分析:先求出样本中的男生数目,然后利用样本容量和全校学生的人数比确定该校的男生数.解答:解:在样本中,由于女生抽了80人,所以男生为120,所以男生在样本中的比例为,所以该校的男生数为人.故答案为:600.点评:本题的考点是分层抽样的应用.4.(5分)集合A={3,log2a},B={a,b},若A∩B={1},则A∪B={1,2,3} .考点:交集及其运算.专题:计算题.分析:由题意A∩B={1},得,集合A,B中必定含有元素1,即log2a=1,可求得a=2,最后求并集即可.解答:解:∵由题意A∩B={1},∴得集合A和B中必定含有元素1,即log2a=1,∴a=2,∴A={3,1},B={1,2},∴则A∪B={1,2,3}.故答案为:{1,2,3,}.点评:本题考查了集合的确定性、互异性、无序性、交集和并集运算,属于基础题.5.(5分)有4件产品,其中有2件次品,从中任选2件,恰有1件次品的概率为.考点:古典概型及其概率计算公式.专题:概率与统计.分析:所有的选法有种,恰有一件次品的取法有2×2种,由此求得恰有1件次品的概率.解答:解:所有的选法有=6种,恰有一件次品的取法有2×2=4种,由此求得恰有1件次品的概率为=,故答案为.点评:本题考查古典概型及其概率计算公式的应用,属于基础题.6.(5分)甲、乙两种水稻试验品种连续4年的单位面积平均产量如下:品种第1年第2年第3年第4年甲9.8 9.9 10.2 10.1乙9.7 10 10 10.3其中产量比较稳定的水稻品种是甲.考点:极差、方差与标准差.专题:计算题.分析:首先做出两个品种的平均产量,结果平均数相同,再分别求出两个品种的产量的方差,得到甲的方差小于乙的方差,得到结论.解答:解:甲的平均数是=10乙的平均数是=10,两个品种的平均数相同,甲的方差是乙的方差是=0.045∴甲的方差小于乙的方差,即甲的产量比较稳定.故答案为:甲点评:本题考查方差和平均数,对于两组数据通常考查这两组数据的平均数和方差,以观察两组数据的性质特点.7.(5分)若双曲线=1(a>0,b>0)的一个焦点到一条渐近线的距离等于a,则该双曲线的离心率为.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由已知中双曲线的焦点到其渐近线的距离等于实轴长,通过渐近线、离心率等几何元素,沟通a,b,c的关系,即可求出该双曲线的离心率.解答:解:∵焦点到渐近线的距离等于半实轴长,∴∴b=a,∴e=.故答案为:.点评:本题考查的知识点是双曲线的简单性质,双曲线的渐近线与离心率存在对应关系,通过a,b,c的比例关系可以求离心率,也可以求渐近线方程.8.(5分)(2013•黄埔区一模)执行如图的程序框图,若p=15,则输出的n= 5 .考点:程序框图.专题:计算题.分析:由已知可得循环变量n的初值为1,循环结束时S≥p,循环步长为1,由此模拟循环执行过程,即可得到答案.解答:解:当n=1时,S=2,n=2;当n=2时,S=6,n=3;当n=3时,S=14,n=4;当n=4时,S=30,n=5;故最后输出的n值为5故答案为:5点评:本题考查的知识点是程序框图,处理本类问题最常用的办法是模拟程序的运行,其中分析循环过程中各变量在循环中的值是关键.9.(5分)(2008•某某二模)观察下列不等式:1>,1++>1,1+++…+>,1+++…+>2,1+++…+>,…,由此猜测第n个不等式为1+++…+>(n∈N*).考点:归纳推理.专题:规律型;探究型.分析:根据所给的五个式子,看出不等式的左边是一系列数字的倒数的和,观察最后一项的特点,3=22﹣1,7=23﹣1,15=24﹣1,和右边数字的特点,得到第n格不等式的形式.解答:解:∵3=22﹣1,7=23﹣1,15=24﹣1,∴可猜测:1+++…+>(n∈N*).故答案为:1+++…+>点评:本题考查归纳推理,是由某类事物的部分对象所具有的某些特征,推出该类事物的全部对象都具有这些特征的推理,它的特点是有个别到一般的推理,本题是一个不完全归纳.10.(5分)若关于x的方程x2+4=ax有正实根,则实数a的取值X围是a≥4.考点:函数的零点.专题:函数的性质及应用.分析:将方程x2+4=ax转化为函数f(x)=x2﹣ax+4,利用函数求解X围.解答:解:由x2+4=ax得x2﹣ax+4=0,设函数f(x)=x2﹣ax+4,所以要使方程x2+4=ax有正实根,则函数f(x)=x2﹣ax+4与x轴的正半轴有交点.因为f(0)=4>0,所以要使函数f(x)=x2﹣ax+4与x轴的正半轴有交点,则必有,即.所以a≥4.故答案为:a≥4.点评:本题考查函数与方程的关系以及二次函数的图象和性质.将方程转化为函数,是解决本题的关键.11.(5分)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,a=2,,则b的值为.考点:余弦定理;正弦定理.专题:计算题;转化思想.分析:题设条件中只给出,a=2,,欲求b的值,可由这些条件建立关于b的方程,根据所得方程进行研究,判断出解出其值的方法解答:解:∵∴bcsinA=,即bc×=,∴bc=3 ①又,a=2,锐角△ABC,可得cosA=由余弦定理得4=b2+c2﹣2bccosA=b2+c2﹣2×3×,解得b2+c2=6 ②由①②解得b=c,代入①得b=c=故答案为点评:本题考查余弦定理,解题的关键是熟练掌握余弦定理与三角形的面积公式,解题过程中对所得出的数据进行分析也很重要,通过对解出的数据进行分析判明转化的方向,本题考查了分析判断的能力,是一道能力型题,探究型题12.(5分)若函数f(x)=ln(ae x﹣x﹣3)的定义域为R,则实数a的取值X围是(e2,+∞).考点:函数的定义域及其求法.专题:函数的性质及应用.分析:f(x)=ln(ae x﹣x﹣3)的定义域为R等价于ae x﹣x﹣3>0的解集是R,由此能求出实数a的X围.解答:解:∵f(x)=ln(ae x﹣x﹣3)的定义域为R,∴ae x﹣x﹣3>0的解集是R,即a>恒成立.设g(x)=,则g'(x)=,当x<﹣2时g'(x)>0,当x>﹣2时g'(x)<0,故g(x)在(﹣∞,﹣2)是增函数,在(﹣2,+∞)上是减函数,故当x=﹣2时,g(x)取得最大值g(﹣2)=e2,∴a>e2.故答案为:(e2,+∞).点评:本题考查对数函数的定义域,是基础题.解题时要认真审题,仔细解答.13.(5分)已知Rt△AB C的三个顶点都在抛物线y2=2px(p>0)上,且斜边AB∥y轴,则斜边上的高等于2p .考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:由斜边AB∥y轴及抛物线的对称性可知△ABC为等腰直角三角形,高CD为AB一半,求出点A坐标即可.解答:解:由题意,斜边平行y轴,即垂直对称轴x轴,所以Rt△ABC是等腰直角三角形,所以斜边上的高CD是AB的一半,假设斜边是x=a,则有A(,),代入y2=2px得a=4p,所以CD==2p,故答案为:2p.点评:本题的考点是抛物线的应用,主要考查直线与圆锥曲线的综合问题,考查抛物线的标准方程等基础知识,考查运算求解能力、化归与转化思想.属于中档题.14.(5分)已知曲线C:f(x)=x+(a>0),直线l:y=x,在曲线C上有一个动点P,过点P分别作直线l和y轴的垂线,垂足分别为A,B.再过点P作曲线C的切线,分别与直线l和y轴相交于点M,N,O 是坐标原点.则△OMN与△ABP的面积之比为8 .考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:由题意易得B的坐标,写出垂线的方程联立y=x可得A坐标,进而可得△ABP的面积,然后可写出切线的方程,进而可得M、N的坐标,可表示出△OMN的面积,从而求出△OMN与△ABP的面积之比.解答:解:由题意设点P(x0,x0+),则B(0,x0+),又与直线l垂直的直线向斜率为﹣1,故方程为y﹣(x0+)=﹣(x﹣x0)和方程y=x联立可得x=y=x0+,故点A(x0+,x0+),故△ABP的面积S=|x0||x0+﹣(x0+)|=|x0|||=a,解得a=2,又因为f(x)=x+,所以f′(x)=1﹣,故切线率为k=1﹣,故切线的方程为y﹣(x0+)=(1﹣)(x﹣x0),令x=0,可得y=,故点N(0,),联立方程y=x可解得x=y=2x0,即点M(2x0,2x0),故△OMN的面积为•|||2x0|=2a,则△OMN与△ABP的面积之比为 8.故答案为:8.点评:本题考查利用导数研究曲线的切线方程,涉及三角形的面积和方程组的求解,属中档题.二、解答题:本大题共8小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)记关于x的不等式(x﹣a)(x+1)≤0的解集为P,不等式|x﹣1|≤1的解集为Q.(1)若a=3,求集合P;(2)若Q⊆P,求正数a的取值X围.考点:绝对值不等式的解法;一元二次不等式的解法.专题:不等式的解法及应用.分析:(1)当a=3时,不等式即(x﹣3)(x+1)≤0,求得此不等式的解集P.(2)先求得Q={x|0≤x≤2},经过检验,当a=﹣1,或a<﹣1时,分别求得P,都不满足Q⊆P.当a>﹣1时,求出P,由Q⊆P可得a≥2,即得所求a的X围.解答:解:(1)当a=3时,不等式即(x﹣3)(x+1)≤0,解得﹣1≤x≤3,故此不等式的解集P={x|﹣1≤x≤3}.(2)解不不等式|x﹣1|≤1可得﹣1≤x﹣1≤1,即0≤x≤2,故Q={x|0≤x≤2}.由不等式(x﹣a)(x+1)≤0,可得当a=﹣1时,P=∅,不满足Q⊆P;当a<﹣1时,求得P={x|a≤x≤﹣1},由Q={x|0≤x≤2},可得不满足Q⊆P;当a>﹣1时,P={x|a≥x≥﹣1},由Q⊆P,可得a≥2,故a的X围是[2,+∞).点评:本题主要考查一元二次不等式、绝对值不等式的解法,集合间的包含关系,体现了分类讨论的数学思想,属于中档题.16.(14分)已知函数.(1)求函数f(x)的最小正周期;(2)若,且,求sin2α的值.考点:二倍角的余弦;两角和与差的正弦函数;二倍角的正弦;三角函数的周期性及其求法;正弦函数的定义域和值域.专题:三角函数的图像与性质.分析:(1)利用二倍角、辅助角公式,化简函数,即可求函数f(x)的最小正周期;(2)整体思维,结合角的变换,可求sin2α的值.解答:解:(1).所以函数f(x)的最小正周期.…(6分)(2)由题,得,因为,则,则,…(9分)所以.…(14分)点评:本题考查三角函数的化简,考查角的变换,考查学生分析解决问题的能力,属于中档题.17.(14分)已知函数(其中a>0).求证:(1)用反证法证明函数f(x)不能为偶函数;(2)函数f(x)为奇函数的充要条件是a=1.考点:反证法与放缩法;必要条件、充分条件与充要条件的判断.专题:函数的性质及应用.分析:(1)假设函数f(x)为偶函数,则f(﹣x)=f(x),代入利用对数的性质,可得矛盾,即可得证;(2)分充分性、必要性进行论证,即可得到结论.解答:证明:(1)假设函数f(x)为偶函数,则f(﹣x)=f(x),∴=,即=,化简得:,∴a=0,与条件a>0矛盾,∴函数f(x)不能为偶函数.…(7分)(2)充分性:由a=1,函数=,∵>0,∴﹣1<x<1,又f(x)+f(﹣x)=+=lg1=0,∴当a=1时,函数f(x)为奇函数.…(10分)必要性:由函数f(x)为奇函数,即f(x)+f(﹣x)=0,∴f(x)+f(﹣x)=+=0,化简得(2a﹣1)2=1,∵a>0,∴a=1,∴当函数f(x)为奇函数时,a=1.…(14分)(注:必要性的证明也可由定义域的对称性得到a=1)点评:本题考查反证法,考查充要性的证明,考查学生分析解决问题的能力,属于中档题.18.(16分)为改善行人过马路难的问题,市政府决定在如图所示的矩形区域ABCD(AB=60米,AD=104米)内修建一座过街天桥,天桥的高GM与HN均为米,,AE,EG,HF,FC的造价均为每米1万元,GH的造价为每米2万元,设MN与AB所成的角为α(α∈[0,]),天桥的总造价(由AE,EG,GH,HF,FC五段构成,GM与HN忽略不计)为W万元.(1)试用α表示GH的长;(2)求W关于α的函数关系式;(3)求W的最小值及相应的角α.考点:利用导数求闭区间上函数的最值;函数解析式的求解及常用方法.专题:导数的综合应用.分析:(1)先确定MP的值,再在Rt△NMT中,即可用α表示GH的长;(2)利用AE,EG,HF,FC的造价均为每米1万元,GH的造价为每米2万元,即可求出W关于α的函数关系式;(3)求导函数,确定函数的单调性,即可求出W的最小值及相应的角α.解答:解:(1)由题意可知∠MNP=α,故有MP=60tanα,所以在Rt△NMT中,…(6分)(2)==.…(11分)(3)设(其中,则.令f'(α)=0得1﹣2sinα=0,即,得.列表αf'(α)+ 0 ﹣f(α)单调递增极大值单调递减所以当时有,此时有.答:排管的最小费用为万元,相应的角.…(16分)点评:本题考查函数模型的构建,考查导数知识的运用,考查函数的最值,考查学生的计算能力,属于中档题.19.(16分)已知椭圆E:=1(a>b>0)上任意一点到两焦点距离之和为,离心率为,左、右焦点分别为F1,F2,点P是右准线上任意一点,过F2作直线PF2的垂线F2Q交椭圆于Q点.(1)求椭圆E的标准方程;(2)证明:直线PQ与直线OQ的斜率之积是定值;(3)点P的纵坐标为3,过P作动直线l与椭圆交于两个不同点M、N,在线段MN上取点H,满足,试证明点H恒在一定直线上.考点:直线与圆锥曲线的关系;直线的斜率;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)由题意可得,解出即可;(2)由(1)可知:椭圆的右准线方程为,设P(3,y0),Q(x1,y1),由PF2⊥F2Q,可得,利用斜率计算公式可得k PQ•k OQ及代入化简得直线PQ与直线OQ的斜率之积是定值.(3)设过P(3,3)的直线l与椭圆交于两个不同点M(x1,y1),N(x2,y2),点H(x,y),由点M,N在椭圆上可得,.设,则,可得(3﹣x1,3﹣y1)=﹣λ(x2﹣3,y2﹣3),(x﹣x1,y﹣y1)=λ(x2﹣x,y2﹣y),即可证明6x+9y为定值.解答:解:(1)由题意可得,解得,c=1,所以椭圆E:.(2)由(1)可知:椭圆的右准线方程为,设P(3,y0),Q(x1,y1),因为PF2⊥F2Q,所以,所以﹣y1y0=2(x1﹣1)又因为且代入化简得.即直线PQ与直线OQ的斜率之积是定值.(3)设过P(3,3)的直线l与椭圆交于两个不同点M(x1,y1),N(x2,y2),点H(x,y),则,.设,则,∴(3﹣x1,3﹣y1)=﹣λ(x2﹣3,y2﹣3),(x﹣x1,y﹣y1)=λ(x2﹣x,y2﹣y)整理得,,∴从而,由于,,∴我们知道与的系数之比为2:3,与的系数之比为2:3.∴,所以点H恒在直线2x+3y﹣2=0上.点评:本题综合考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、向量运算、斜率计算公式等基础知识与基本技能,考查了分析问题和解决问题的能力、推理能力和计算能力.20.已知椭圆E:=1(a>b>0)上任意一点到两焦点距离之和为,离心率为,左、右焦点分别为F1,F2,点P是右准线上任意一点,过F2作直线PF2的垂线F2Q交椭圆于Q点.(1)求椭圆E的标准方程;(2)证明:直线PQ与直线OQ的斜率之积是定值;(3)证明:直线PQ与椭圆E只有一个公共点.考点:直线与圆锥曲线的关系;直线的斜率;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)由题意可得,解出即可;(2)由(1)可知:椭圆的右准线方程为,设P(3,y0),Q(x1,y1),由PF2⊥F2Q,可得,利用斜率计算公式可得k PQ•k OQ及代入化简得直线PQ与直线OQ的斜率之积是定值.(3)由(2)知,直线PQ的方程为,即,与椭圆的方程联立,消去一个未知数得到关于x的一元二次方程,只要证明△=0即可.解答:解::(1)由题意可得,解得,c=1,所以椭圆E:.(2)由(1)可知:椭圆的右准线方程为,设P(3,y0),Q(x1,y1),因为PF2⊥F2Q,所以,所以﹣y1y0=2(x1﹣1)又因为且代入化简得.即直线PQ与直线OQ的斜率之积是定值.(3)由(2)知,,,∴.∴直线PQ的方程为,即,联立得,∵,.∴化简得:,又△=0,解得x=x1,所以直线PQ与椭圆C相切,只有一个交点.点评:本题综合考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、斜率计算公式等基础知识与基本技能,考查了分析问题和解决问题的能力、推理能力和计算能力.21.(16分)设函数f(x)=alnx,.(1)记h(x)=f(x)﹣g(x),若a=4,求h(x)的单调递增区间;(2)记g'(x)为g(x)的导函数,若不等式f(x)+2g'(x)≤(a+3)x﹣g(x)在x∈[1,e]上有解,某某数a的取值X围;(3)若在[1,e]上存在一点x0,使得成立,求a的取值X围.考点:导数在最大值、最小值问题中的应用;函数的零点;利用导数研究函数的单调性.专题:计算题;导数的综合应用.分析:(1)当a=4时,可得,利用导数公式算出,再解关于x的不等式并结合函数h(x)的定义域,即可得到函数h(x)的单调递增区间;(2)通过移项合并同类项,化简不等式f(x)+2g'(x)≤(a+3)x﹣g(x)得,再进行变量分离得,由此设并讨论其单调性得到,结合原不等式有解即可算出实数a的取值X围;(3)原不等式等价于,整理得,设右边对应的函数为m(x),求得它的导数m'(x)=,然后分a≤0、0<a≤e﹣1和a>e﹣1三种情况加以讨论,分别解关于a的不等式得到a的取值,最后综上所述可得实数a的取值X围是(﹣∞,﹣2)∪(,+∞).解答:解:(1)当a=4时,可得f(x)=4lnx,此时,由得﹣2<x<2,结合x>0,可得0<x<2.所以h(x)的单调递增区间为(0,2).…(4分)(2)不等式f(x)+2g′(x)≤(a+3)x﹣g(x),即为,化简得:,由x∈[1,e]知x﹣lnx>0,因而,设,由=,∵当x∈(1,e)时x﹣1>0,,∴y′>0在x∈[1,e]时成立.由不等式有解,可得知,即实数a的取值X围是[﹣,+∞)…(10分)(3)不等式等价于,整理得,设,则由题意可知只需在[1,e]上存在一点x0,使得m(x0)<0.对m(x)求导数,得,因为x>0,所以x+1>0,令x﹣1﹣a=0,得x=1+a.…(12分)①若1+a≤1,即a≤0时,令m(1)=2+a<0,解得a<﹣2.②若1<1+a≤e,即0<a≤e﹣1时,m(x)在1+a处取得最小值,令m(1+a)=1+a﹣aln(1+a)+1<0,即1+a+1<aln(1+a),可得考察式子,因为1<t≤e,可得左端大于1,而右端小于1,所以不等式不能成立③当1+a>e,即a>e﹣1时,m(x)在[1,e]上单调递减,只需m(e)<0,得,又因为,所以.综上所述,实数a的取值X围是(﹣∞,﹣2)∪(,+∞).…(16分)点评:本题给出含有分式和对数符号的函数,求函数的单调区间并讨论关于x的不等式解集非空的问题,着重考查了导数的公式和运算法则、利用导数研究函数的单调性和导数在最大最小值问题中的应用等知识,属于中档题.22.设函数f(x)=alnx,g(x)=x2.(1)记h(x)=f(x)﹣g(x),若a=4,求h(x)的单调递增区间;(2)记g'(x)为g(x)的导函数,若不等式f(x)+2g'(x)≤(a+3)x﹣g(x)在x∈[1,e]上有解,某某数a的取值X围;(3)若a=1,对任意的x1>x2>0,不等式m[g(x1)﹣g(x2)]>x1f(x1)﹣x2f(x2)恒成立.求m(m∈Z,m≤1)的值.考点:利用导数研究函数的单调性;函数的零点;导数在最大值、最小值问题中的应用.专题:计算题;导数的综合应用.分析:(1)当a=4时,可得,利用导数公式算出,再解关于x的不等式并结合函数h(x)的定义域,即可得到函数h(x)的单调递增区间;(2)通过移项合并同类项,化简不等式f(x)+2g'(x)≤(a+3)x﹣g(x)得,再进行变量分离得,由此设并讨论其单调性得到,结合原不等式有解即可算出实数a的取值X围;(3)当a=1时原不等式恒成立,即mg(x1)﹣x1f(x1)>mg(x2)﹣x2f(x2)恒成立,因此设,结合题意当x∈(0,+∞)时t(x)为增函数,得t′(x)≥0恒成立,解出恒成立.再研究不等式右边对应函数h(x)的单调性得到h(x)max=1,从而得到m≥1,结合已知条件可得m=1.解答:解:(1)当a=4时,可得f(x)=4lnx,此时,由得﹣2<x<2,结合x>0,可得0<x<2.所以h(x)的单调递增区间为(0,2).…(4分)(2)不等式f(x)+2g′(x)≤(a+3)x﹣g(x),即为,化简得:,由x∈[1,e]知x﹣lnx>0,因而,设,由=,∵当x∈(1,e)时x﹣1>0,,∴y′>0在x∈[1,e]时成立.由不等式有解,可得知,即实数a的取值X围是[﹣,+∞)…(10分)(3)当a=1,f(x)=lnx.由m[g(x1)﹣g(x2)]>x1f(x1)﹣x2f(x2)恒成立,得mg(x1)﹣x1f(x1)>mg(x2)﹣x2f(x2)恒成立,设.由题意知x1>x2>0,故当x∈(0,+∞)时函数t(x)单调递增,∴t′(x)=mx﹣lnx﹣1≥0恒成立,即恒成立,因此,记,得,∵函数在(0,1)上单调递增,在(1,+∞)上单调递减,∴函数h(x)在x=1时取得极大值,并且这个极大值就是函数h(x)的最大值.由此可得h(x)max=h(1)=1,故m≥1,结合已知条件m∈Z,m≤1,可得m=1.…(16分)点评:本题给出含有分式和对数符号的函数,求函数的单调区间并讨论关于x的不等式解集非空的问题,着重考查了导数的公式和运算法则、利用导数研究函数的单调性和导数在最大最小值问题中的应用等知识,属于中档题.。

盐城数学二调试卷

盐城数学二调试卷

盐城市2013年单招第二次调研考试数学试卷姓名一、选择题:(本大题共12小题,每小题4分,共48分)1.设全集}4,3,2,1{=U ,}3,2{=A ,}1{=B ,则A ∩B C U =( )A . {2}B .{3}C . φD .{2,3} 2.若复数)(213R a iia z ∈++=是纯虚数,则的值为( ) A .-6 B .-2 C .4 D .6 3.a >1是a a >2的( )A .充分不必要条件B . 必要不充分条件C .充要条件D . 既不充分也不必要条件4.已知α是第四象限角,且53)sin(=+απ,则)2cos(πα-=( ) A . 54B . 54-C .54± D .535.幂函数ax y =经过点(4 , 2 ) ,则函数|log |x y a =在),0(+∞上是( )A .增函数B .减函数C .先增后减D .先减后增 6.若x )4,1(∈,则函数245y x x =-++的值域为( )A .[]5,9B .(5,9]C . []5,8D .[]8,97.已知函数()y f x =的定义域为(,0]-∞,且2()1f x x =-,则1(2)f -=( )A .3BC .D . 8.下列函数中,在其定义域内最大值为1的函数是( )A .x x y cos sin ⋅=B .x x y cos sin +=C .x y tan =D .2sin 2cos22x x y -= 9.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是( ) A .5 B ..4 C .3 D .2 10.过点(4,1)且截距相等的直线方程为( ) A .x y 50+-=B .y 4x =C .x y 50+-=或y 4x =D .x 4y =或x y 50+-=11.设双曲线22221x y a b-=(0,0)a b >>的实轴长、虚轴长、焦距成等差数列,那么这个双曲线的离心率e 等于 ( )A .43 B .53C .2D . 3 12.已知偶函数)(x f 在[)+∞,0上单调增加,且0)1(=f ,则0)(<∙x f x 的解集为( )A .()11,- B .()()∞+⋃-∞-,,11 C .()()101,,⋃-∞- D .()()∞+⋃-,,101二、填空题:(本大题共6小题,每小题4分,共24分)13.已知a =(1,k ),b =(-1,k -2),若a ∥b ,则k =________. 14.已知不等式b a x <+||的解集为(-2,3),则b a += .15.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,2b =,sin cos B B += 角A 的大小为 . 16.251()x x-展开式中x 4的系数是________(用数字作答). 17. 用1、2、3、4、5作成无重复数字的五位数,这些数能被2整除的概率为 .18.以椭圆114416922=+y x 的右焦点为圆心,且与双曲线116922=-y x 的渐近线相切的圆的方程 为______________________.三、解答题:(本大题共7题,共78分) 19.(本题满分6分)解不等式:22531649x x --⎛⎫<⎪⎝⎭20.(本题满分10分)已知向量)1,1cos 21(2+=x a ,)cos sin 23,1(x x b ⋅= . (1)若b a y ⋅=,求y 的周期;(2)若⎥⎦⎤⎢⎣⎡-∈4,6ππx ,求y 的最值,并求出y 取得最值时x 的值.21.(12分)已知函数)1,0(log )(≠>+=a a b x x f a ,对定义域内的任意y x ,都满足)()()(y f x f yxf -=.(1)求)1(f ;(2)若3)8(=f ,求)(x f ;(3)当]4,22[∈x 时,求函数)(x f 的值域.22.(本题满分12分)已知函数()2f x ax bx c =++的图像经过点(1,0),且()f 22=,()f 36=,数列的前n 项和()n S f n =. (1)求()f x 的表达式;(2)求数列{}n a 的通项公式; (3)若n an b 2=,求数列{}n b 的前n 项和n T .23.(本题满分12分)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为16.甲、乙、丙三位同学每人购买了一瓶该饮料。

盐城市2012—2013学年度高二数学文科调研测试

盐城市2012—2013学年度高二数学文科调研测试

盐城市2012—2013学年度高二调研测试 数学试题(文科) 2013.6注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 4.第19、20题,请四星高中学生选做(A ),三星高中与普通高中学生选做(B ),否则不给分.参考公式:样本数据1x ,2x , ,n x 的方差])()()[(1222212x x x x x x ns n -++-+-=(x 为样本平均数)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上. 1.x R ∀∈,sin 1x ≤的否定是 ▲ .2.已知复数z 满足i(2i)z =-(其中i 为虚数单位) 3.某校对全校1000200的样本,已知女生抽了80人,则该校的男生数为 ▲ . 4.集合}{23,log A a =,}{,B a b =,若}{1A B = ,则A B = ▲ . 5.有4件产品,其中有2件次品,从中任选2件,恰有1件次品的概率为 ▲ . 6其中产量比较稳定的水稻品种是 ▲ .7.若双曲线22221(0,0)x y a b a b-=>>的一个焦点到一条渐近线的距离等于a ,则该双曲线的离心率为 ▲ .8.执行右边的程序框图,若15p =,则输出的n = ▲ .9.观察下列不等式:11111131111,11,1,1222323722315>++>++++>++++> ,11151,,23312++++> 由此猜想第n 个不等式为 ▲ .10.若关于x 的方程24x ax +=有正实根,则实数a 的取值范围是▲ .11.在锐角ABC △中,角AB C ,,所对的边分别为a b c ,,,已知sin A =,2a =,ABC S =△,则b 的值为 ▲ .12.若函数()()ln 3x f x ae x =--的定义域为R ,则实数a 的取值范围是 ▲ .13.已知Rt ABC ∆的三个顶点都在抛物线22(0)y px p =>上,且斜边AB ∥y 轴,则斜边上的高等于 ▲ .14.已知曲线C :()(0)af x x a x=>+,直线:y x =,在曲线C 上有一个动点P ,过点P 分别作直线和y 轴的垂线,垂足分别为,A B .再过点P 作曲线C 的切线,分别与直线和y 轴相交于点,M N ,O 是坐标原点.则OMN △与ABP △的面积之比为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)记关于x 的不等式()(1)0x a x -+≤的解集为P ,不等式|1|1x -≤的解集为Q . (1)若3a =,求集合P;(2)若Q P ⊆,求正数a 的取值范围. 16.(本小题满分14分)已知函数()22cos sin cos f x x x x x =-+.(1)求函数()f x 的最小正周期; (2)若()1013f α=,且,42ππα⎡⎤∈⎢⎥⎣⎦,求sin 2α的值.17.(本小题满分14分)已知函数2()lg(1)1af x x=-+(其中0a >). 求证:(1)用反证法证明函数()f x 不能为偶函数;(2)函数()f x 为奇函数的充要条件是1a =.18.(本小题满分16分)为改善行人过马路难的问题,市政府决定在如图所示的矩形区域ABCD (60AB =米,104AD =米)内修建一座过街天桥,天桥的高GM 与HN 均为米,6GEM HFN π∠=∠=,,,,AE EG HF FC 的造价均为每米1万元,GH 的造价为每米2万元,设MN 与AB 所成的角为0,4παα⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,天桥的总造价(由,,,,AE EG GH HF FC 五段构成,GM 与HN 忽略不计)为W 万元.(1)试用α表示GH 的长;(2)求W 关于α的函数关系式; (3)求W 的最小值及相应的角α.19.(本小题满分16分) (A )(四星高中学生做)已知椭圆E :22221(0)x y a b a b +=>>上任意一点到两焦点距离之和为,左、右焦点分别为12,F F ,点P 是右准线上任意一点,过2F 作直线2PF 的垂线2F Q 交椭圆于Q 点.(1)求椭圆E 的标准方程;(2)证明:直线PQ 与直线OQ 的斜率之积是定值; (3)点P 的纵坐标为3,过P 作动直线与椭圆交于两个 不同点M 、N ,在线段MN 上取点H ,满足MP MHPN HN=, 试证明点H 恒在一定直线上.(B )(三星高中及普通高中学生做)第18题图第19题图已知椭圆E :22221(0)x y a b a b +=>>上任意一点到两焦点距离之和为,左、右焦点分别为12,F F ,点P 是右准线上任意一点,过2F 作直线2PF 的垂线2F Q 交椭圆于Q 点. (1)求椭圆E 的标准方程;(2)证明:直线PQ 与直线OQ 的斜率之积是定值; (3)证明:直线PQ 与椭圆E 只有一个公共点. 20.(本小题满分16分) (A )(四星高中学生做)设函数()x a x f ln =,()212g x x =. (1)记()()()h x f x g x =-,若4a =,求()x h 的单调递增区间;(2)记()g x '为()x g 的导函数,若不等式()()()()23f x g x a x g x '+≤+-在[]e x ,1∈上有解,求实数a 的取值范围;(3)若在[]1,e 上存在一点0x ,使得()()()00001()f x f x g x g x ''->+'成立,求a 的取值范围.(B )(三星高中及普通高中学生做) 设函数()x a x f ln =,()212g x x =. (1)记()()()h x f x g x =-,若4a =,求()x h 的单调递增区间;(2)记()g x '为()x g 的导函数,若不等式()()()()23f x g x a x g x '+≤+-在[]e x ,1∈上有解,求实数a 的取值范围;(3)若1a =,对任意的120x x >>,不等式()()()()121122m g x g x x f x x f x ->-⎡⎤⎣⎦恒成立.求()1,≤∈m Z m m 的值.2012-2013学年度高二调研测试数学试题(文)答案一、填空题:每小题5分,共计70分.1.,sin 1x R x ∃∈> 2 3.600 4.}{1,2,3 5.236.甲7 8.5 9.111123212n n ++++>- 10.4a ≥ 11 12.()2,e +∞ 13.2p 14.8二、解答题:本大题共6小题,共计90分.15.解: (1)当3a =时,(3)(1)0x x -+≤,则解集P 为}{13x x -≤≤.……………… 7分 (2)由题意,解集为Q=}{02x x ≤≤,所以2a ≥.……………………………………… 14分16.解:(1)()22cos sin cos cos 222sin 26f x x x x x x x x π⎛⎫=-+==+ ⎪⎝⎭. 所以函数()f x 的最小正周期22T ππ==.…………………………………………………… 6分 (2)由题52sin 2613πα⎛⎫+= ⎪⎝⎭,得5sin 2613πα⎛⎫+= ⎪⎝⎭,因为42ππα≤≤,则272366πππα≤+≤, 则12cos 2613πα⎛⎫+=- ⎪⎝⎭,………………………………………………………………………… 9分所以sin 2sin 2sin 2cos cos 2sin 666666ππππππαααα⎛⎫⎛⎫⎛⎫=+-=+-+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭…14分 17解:(1)假设函数()f x 为偶函数,则()f x -=()f x ,∴2lg(1)1a x --=2lg(1)1a x -+,即211a x --=211a x -+,化简得:2401axx=-, ∴0a =,与条件0a >矛盾.∴函数()f x 不能为偶函数.……………………………… 7分(2)充分性:由1a =,函数2()lg(1)1f x x =-+=1lg1x x -+, 11xx-+>0,∴11x -<<, 又()f x +()f x -=1lg1x x -++1lg 1xx+-=lg10=,∴当1a =时,函数()f x 为奇函数.…… 10分 必要性:由函数()f x 为奇函数,即()f x +()f x -=0,∴2lg(1)1a x -++2lg(1)1a x --=21lg()1a x x --++21lg()1a x x-+-=0,化简得2(21)1a -=, 0a >,∴1a =,∴当函数()f x 为奇函数时, 1a =.…………………………………… 14分(注:必要性的证明也可由定义域的对称性得到1a =)18.解:(1)由题意可知MNP α∠=,故有60tan MP α=,所以在Rt NMT ∆中60cos GH MN α==……………………………………………………………………………………6分(2)60(8060tan )12cos W αα=+⨯+⨯sin 18060120cos cos ααα=+-+sin 28060cos αα-=+.………………………………………………………… 11分(3)设sin 2()cos f ααα-=(其中π0)4α≤≤,则22cos cos (sin )(sin 2)12sin ()cos cos f αααααααα----'==. 令()0f α'=得12sin 0α-=,即1sin 2α=,得6πα=.列表所以当6α=时有max ()f α=,此时有min 8080W =++=+答:排管的最小费用为80+万元,相应的角6πα=.…………………………… 16分(A )(四星高中学生做)19.解:(1)由题,a =c a =从而得1c =,b = 所以椭圆E :22132x y +=……………………………………………………………………… 4分 (2)设()03,P y ,()11,Q x y , 因为22PF F Q ⊥,所以220011111212(1)QF PF y y y y k k x x =⋅==---, 所以1012(1)y y x -=- 又因为21011012111133PQ OQy y y y y y k k x x x x --⋅=⋅=--且22112(1)3x y =-代入化简得23PQ OQ k k ⋅=-……10分 (3)设过P 的直线l 与椭圆交于两个不同点1122(,),(,)M x y N x y ,点(,)H x y ,则2211236x y +=,2222236x y +=.∵MP MH PN HN =,∴设MP MH PN HNλ==,则,MP PN MH NH λλ=-= , ∴1122(3,3)(3,3)x y x y λ--=---,1122(,)(,)x x y y x x y y λ--=--整理得12123,11x x x x x λλλλ-+==-+,12123,11y y y y y λλλλ-+==-+, ∴从而2222221212223,311x x y y x y λλλλ--==--,∴222222222221212112222223323(23)69611x x y y x y x y x y λλλλλ-+-+-++===--,所以点H 恒在直线2320x y +-=上.………………………………………………… 16分(B )(三星高中及普通高中学生做)解:(1)(2)同(A )(3)由(2)知,直线PQ 的方程为()111123x y y x x y -=--,即111223x y x y y =-+, 由22111132223x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩得22221111(32)121890y x x x x y +-+-=,化简得:221120x x x x -+=, 解得0x x =,所以直线PQ 与椭圆C 只有一个交点.……………………………………… 16分 (A )(四星高中学生做)20.解:(1)当4a =时,()4ln f x x =,此时()214ln 2h x x x =-, 由()'40h x x x=->得22x -<<, 又0>x ,则02x <<.所以()x h 的单调递增区间为()0,2.…………………… 4分(2)不等式()()()()x g x a x g x f -+≤+32'即为()22132ln x x a x x a -+≤+, 则()x x x x a -≥-221ln ,由[]e x ,1∈知0ln >-x x ,因而x x x x a ln 212--≥,设x x xx y ln 212--=,由()()()22'ln 2111ln 1x x x x x x x x y -⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛----=()()2ln ln 1211x x x x x -⎪⎭⎫⎝⎛-+-=,且当()e x ,1∈时01>-x ,0ln 121>-+x x ,从而,0'>y .由不等式有解,知21min -=≥y a ……………………… 10分(3)不等式()()()''000'01()f x fx g x g x ->+等价于00001ln a a x x x x ->+, 整理为0001ln 0ax a x x +-+<,设1()ln a m x x a x x +=-+,则由题意可知只需在],1[e 上存在一点0x ,使得0()0m x <.2'2221(1)(1)(1)()1a a x ax a x a x m x x x x x+--+--+=--==, 因为,0>x 所以,01>+x 令,01=--a x 得a x +=1.………………………………………… 12分①若11a +≤,即0a ≤时,令(1)20m a =+<,解得2a <-. ②若e a ≤+<11,即10-≤<e a 时,()m x 在a +1处取得最小值, 令(1)1ln(1)10m a a a a +=+-++<,即)1ln(11a a a +<++,所以)1ln(11+<++a aa 考察式子t t t ln 11<-+,因为e t ≤<1,所以左端大于1,而右端小于1,所以不成立 ③当e a >+1,即1->e a 时,()m x 在],1[e 上单调递减,只需()0m e <,得211e a e +>-,又因为0121112<--=-+--e e e e e ,所以,211e a e +>-. 综上所述,2a <-或211e a e +>-.………………………………………………………………… 16分(B )(三星高中及普通高中学生做) 解:(1)(2)同(A )(3)当1=a ,()x x f ln =.由()()()()121122m g x g x x f x x f x ->-⎡⎤⎣⎦恒成立知,()()()()222111x f x x mg x f x x mg ->-恒成立,设()()0ln 22>-=x x x x m x t . 由题意知021>>x x ,故当0>x 时函数()x t 单调递增,则()01ln '≥--=x mx x t 恒成立,因此,x x m 1ln +≥恒成立,记x x y 1ln +=,由()2'ln x xx y -=,知函数在()1,0上单调递增,在()+∞,1上单调递减, 则()()11max ==h x h ,所以1≥m ,又1,≤∈m Z m ,所以1=m .…………… 16分。

盐城市2012届高三年级第二次模拟考试数学参考答案

盐城市2012届高三年级第二次模拟考试数学参考答案

盐城市2012届高三年级第二次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分. 1.12 2.0 3.35 4.36 5.0≤a ≤4 6.4 7.2 8.3π9.20 10.5,1212ππ⎡⎤-⎢⎥⎣⎦11. 13 12. 8 13.{}|12x x ≤< 14.5 (注: 第13题讲评时可说明, 为什么1x =是不等式的解?)二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.(1)证明: 过A 作AF ⊥DC 于F, 则CF=DF=AF,所以090DAC ∠=, 即AC DA ⊥…………………………… 2分又PA ⊥底面ABCD ,AC ⊂面ABCD ,所以AC PA ⊥……4分 因为,PA AD ⊂面PAD ,且PA AD A = ,所以AC ⊥底面PAD …………………………………………6分而AC ⊂面ABCD , 所以平面AEC ⊥平面PAD …………………………………………………… 8分 (2)连接BD 交AC 于点O, 连接EO, 因为PD 平面AEC ,PD ⊂面PBD ,面PBD 面AEC=EO, 所以PD//EO …………………………………………………………………11分 则:PE EB =:DO OB , 而::2DO OB DC AB ==, 所以:2PE EB =………………………… 14分16.解: (1)因为2222212cos 22a c aca cb B ac ac+-+-==……………………………………………………3分 123224ac acac -≥=, 所以3cos 4B ≥…………………………………………………………………… 6分 (2)因为cos()cos cos()cos()2sin sin 1A C B A C A C A C -+=--+==,所以1sin sin 2A C =…………9分 又由212b ac =,得211sin sin sin 24B A C ==,所以1sin 2B =………………12分 由(1),得6B π=…………………………………14分17.解: (1) 因为40FG =,100AG =,所以由GC GC AG FG AB +=,即10040GC GC x +=,解得400040GC x =-, 同理,由GD GD AG EG AB +=,即10090GD GD x +=, 解得900090GC x =-…………………………………2分 所以2941000()5000,[140,180]90401303600xy GD GC x x x x x =-=⨯-=⨯∈---+……… 5分 因为222360050000(1303600)x y x x -'=⨯<-+, 所以y 在[140,180]上单调递减, 故当140x =㎝时, y 取得最大值为140㎝………………………………………………………………8分A B C D F O另法: 可得5000,[140,180]3600130y x x x=∈+-, 因为3600130x x +-在[140,180]上单调递增, 所以y 在[140,180]上单调递减, 故当140x =㎝时,y 取得最大值为140㎝…………………………8分 (2)由100GC GC h x +=,得100h GC x h =-,由10050GD GD h x +=+,得100(50)50h GD x h +=--,所以由题意知1GC A G AG GD <=≤,即100100(50)10050h h x h x h +<≤---对[140,180]x ∈恒成立……………………12分 从而2502x h x h ⎧<⎪⎪⎨⎪≥-⎪⎩对[140,180]x ∈恒成立,解得14070218050402h h ⎧<=⎪⎪⎨⎪≥-=⎪⎩,故h 的取值范围是[)40,70…14分(注: 讲评时可说明, 第(2)题中h 的范围与AG 的长度无关, 即去掉题中AG=100㎝的条件也可求解)18.解:(1)由2222211124c a a b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得122a b c ⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩,所以椭圆C 的方程为2221x y +=………………………4分(2)设(,)B m n ,(,)C m n -,则12||||||||2ABC S m n m n ∆=⨯⨯=⋅………………………………………6分又2212|||m n m n =+≥=⋅,所以||||4m n ⋅≤,当且仅当|||m n =时取等号…………………………………………………………………………8分从而4ABC S ∆≤, 即ABC ∆…………………………………………………… 9分 (3)因为A(-1,0),所以12:(1),:(1)AB y k x AC y k x =+=+,由122(1)21y k x x y =+⎧⎨+=⎩,消去y,得2222111(12)4210k x k x k +++-=,解得x=-1或21211212k x k -=+, ∴点2112211122(,)1212k k B k k -++……………11分 同理,有2222222122(,)1212k k C k k -++,而122k k =,∴211221184(,)88k k C k k -++…12分 ∴直线BC 的方程为11222111122221111221142281212()8121212812k k k k k k y x k k k k k k -++--=⋅---++-++, 即21112221112312()122(2)12k k k y x k k k --=⋅-+++,即112211352(2)2(2)k k y x k k =+++………………………14分 所以2112(35)0yk x k y +++=,则由0350y x =⎧⎨+=⎩,得直线BC 恒过定点5(,0)3-…………………16分(注: 第(3)小题也可采用设而不求的做法,即设1122(,),(,)D x y E x y ,然后代入找关系)19.解: (1)因为2k q =,所以21214k k a a +-=,故13521,,,,k a a a a -⋅⋅⋅是首项为1,公比为4的等比数列, 所以13521141(41)143k kk a a a a --+++⋅⋅⋅+==--…………………………………………………… 4分 (注: 讲评时可说明, 此时数列{}k a 也是等比数列, 且公比为2) (2)①因为22122,,k k k a a a ++成等差数列,所以212222k k k a a a ++=+,而21222211,k k k k k k a a a a q q ++++==⋅,所以112k k q q ++=,则111kk kq q q +--=………………………… 7分 得1111111k k k k q q q q +==+---,所以111111k k q q +-=--,即11k k b b +-=, 所以{}k b 是等差数列,且公差为1………………………………………………………………………9分②因为12d =,所以322a a =+,则由223212a a a =⨯=+,解得22a =或21a =-………………10分(ⅰ)当22a =时, 12q =,所以11b =,则1(1)1k b k k =+-⨯=,即11k k q =-,得1k k q k +=,所以 221221(1)k k a k a k +-+=,则2121321121231k k k k k a a a a a a a a +-+--=⋅⋅⋅⋅⋅⋅⋅2222222(1)21(1)(1)1k k k k k +=⋅⋅⋅⋅⋅⋅⋅=+-……12分 所以2212(1)(1)1k k ka k a k k k q k++===++,则2121k k k d a a k +=-=+,故(3)2k k k D +=……………14分(ⅱ)当21a =-时, 11q =-,所以112b =-,则13(1)122k b k k =-+-⨯=-,即1312k k q =--,得1232k k q k -=-,所以2121321121231k k k k k a a a a a a a a +-+--=⋅⋅⋅⋅⋅⋅⋅2222222131()()()122214()3512()()()222k k k k k --=⋅⋅⋅⋅⋅⋅⋅=----,则212(21)(23)k k kaa k k q +==--,所以21242k k k d a a k +=-=-,从而22k D k =.综上所述,(3)2k k k D +=或22k D k =…………………………………………………………………16分20.解:(1)因为2=a ,且∈x [2,3],所以3|3||2|131()2x x x xx x e e f x eeeee e e --+--=+=+=+≥=, 当且仅当x =2时取等号,所以()f x 在∈x [2,3]上的最小值为3e …………………………………4分 (2)由题意知,当[,)x a ∈+∞时,|21|||1x a x a ee -+-+≤,即|21|||1x a x a -+≤-+恒成立……………… 6分所以|21|1x a x a -+≤-+,即2232ax a a ≥-对[,)x a ∈+∞恒成立,则由2220232a a a a≥⎧⎨≥-⎩,得所求a 的取值范围是02a ≤≤……………………………………………9分(3) 记12()|(21)|,()||1h x x a h x x a =--=-+,则12(),()h x h x 的图象分别是以(2a -1,0)和(a ,1)为顶点开口向上的V 型线,且射线的斜率均为1±.①当1216a ≤-≤,即712a ≤≤时,易知()g x 的最小值为01(21)1f a e -==……………………11分②当a <1时,可知2a -1<a ,所以(ⅰ)当12()()h a h a ≤,得|(21)|1a a --≤,即20a -≤≤时,在∈x [1,6]上,12()()h x h x <,则12()()f x f x <,所以1()()g x f x =的最小值为221(1)a f e -=………………………………………12分 (ⅱ)当12()()h a h a >,得|(21)|1a a -->,即201a a <-<<或时,在∈x [1,6]上,12()()h x h x >, 则12()()f x f x >,所以2()()g x f x =的最小值为22(1)a f e -=………………………………………13分 ③当72a >时,因为2a -1>a ,可知216a ->,且12(6)|621|271()h a a h a =-+=->=,所以 (ⅰ)当762a <≤时,()g x 的最小值为12()f a e e ==…………………………………………………14分 (ⅱ)当6a >时,因为12()|21||1|11()h a a a a a h a =-+=-=->=,所以在∈x [1,6]上,12()()h x h x >,则12()()f x f x >,所以2()()g x f x =的最小值为52(6)a f e -=………………………………………15分综上所述, 函数()g x 在∈x [1,6]上的最小值为22257112202017626a aa a e a e a a e a ea ---⎧≤≤⎪⎪-≤≤⎪⎪<-<<⎨⎪⎪<≤⎪⎪>⎩或……………………16分数学附加题部分21.A. 证明:∵三角形ABC 内接于圆O ,且060BAC ∠=,所以0120BDC ∠=,所以060DBC DCB ∠+∠=.又060BFC DCB ∠+∠=,所以DBC BFC ∠=∠……………………5分同理, DCB CEB ∠=∠,所以CBE BFC ∆∆ ,所以BF BC BC CE=,即2BC BF CE =⋅ ……………10分 B. 解:设a b A c d ⎡⎤=⎢⎥⎣⎦, 由1203a b c d ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 得23a c =⎧⎨=⎩………………………………………… 5分 再由1133113abcd ⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦, 得33a b c d +=⎧⎨+=⎩, ∴20b d =⎧⎨=, ∴2130A ⎡⎤=⎢⎥⎣⎦……………………… 10分C. 解:根据椭圆的参数方程, 可设点(4cos )P θθ(θ是参数)…………………………… 5分 则2z x =8cos 6sin 10sin()10θθθϕ=-=+≤, 即z 最大值为10………………………10分D. 证明: 因为122331111()a aa a a a +++++122331[()()()]a a a a a a ⋅+++++≥……………………………… 6分 当且仅当1233m a a a ===时等号成立, 则由122331111()a a a a a a +++++29m ⋅≥, 知12233111192a a a a a a m ++≥+++………………………………………………………………… 10分(注: 此题也可以用柯西不等式证明)22. 解:(1)当12p q ==时,ξ~13,2B ⎛⎫⎪⎝⎭,故13322E np ξ==⨯=………………………………………4分 (2)ξ的可取值为0,1,2,3, 且()()()22011P q p pq ξ==--=, ()()()()2132211112P q q q C p p q p q ξ==-+--=+,12232(2)(1)(1)2P C pq p q p pq p ξ==-+-=+, ()23P qp ξ==.所以的分布列为: ……………………………8分E ξ=0×2pq +1×()322q p q ++2×()232pq p ++3×2qp =1+p ……………………………10分23.(1)解:2(!)n n n n n E A A n =⋅=………………2分 111(1)n n n F C C n n +=⋅=+………………4分(2)因为ln 2ln !n E n =,(1)n F n n =+,所以11ln 02E F =<=,22ln ln 46E F =<=,33ln ln3612E F =<=,…,由此猜想:当*n N ∈时,都有ln n n E F <,即2ln !(1)n n n <+……………6分下用数学归纳法证明*2ln !(1)()n n n n N <+∈. ① 当n=1时,该不等式显然成立.② 假设当*()n k k N =∈时,不等式成立,即2ln !(1)k k k <+,则当1n k =+时,2l n (1)!2l n (1)2l n !2l n (1)kk k k k k +=++<+++, 要证当1n k =+时不等式成立,只要证:2ln(1)(1)(1)(2)k k k k k +++≤++, 只要证: ln(1)1k k +≤+…………………………… 8分令()ln ,(1,)f x x x x =-∈+∞,因为1()0xf x x-'=<,所以()f x 在(1,)+∞上单调递减, 从而()(1)10f x f <=-<, 而1(1,)k +∈+∞,所以ln(1)1k k +≤+成立, 则当1n k =+时, 不等式也成立.综合①②, 得原不等式对任意的*n N ∈均成立……………………………………………………… 10分。

江苏省盐城市2012-2013学年高一下学期期末数学试题 Word版含答案(苏教版)

江苏省盐城市2012-2013学年高一下学期期末数学试题 Word版含答案(苏教版)

2012/2013学年度第二学期期终调研考试高一数学试题注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.4.第19、20题,请四星级高中学生选做(A ),三星级高中与普通高中学生选做(B ),否则不给分.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上. 1.已知集合{}1,2,3P =,{},4Q a =,若{}1P Q =,则a = ▲ .2.函数13sin()23y x π=-的最小正周期为 ▲ .3.在等比数列{}n a 中,若251,8a a ==,则3a = ▲ . 460y +-=的倾斜角的大小为 ▲ .5.在ABC ∆中,若45,60AB B C =∠=︒∠=︒,则AC = ▲ .6.已知直线1:240l x y +-=与 2:(2)10l mx m y +--=平行,则实数m = ▲ . 7.已知正四棱锥的底面边长是6,则该正四棱锥的侧面积为 ▲ . 8.如图,在ABC ∆中,90A ∠=︒,3AB =,4AC =,则CA CB ⋅= ▲ . 9.设2()log f x x =,则10(4)f = ▲ .10.已知,m n 是两条不重合的直线,,αβ是两个不重合的平面. ①若m β⊥,m α⊂,则αβ⊥; ②若αβ⊥, n αβ=,m α⊂,则m n ⊥;③若//αβ,m α⊂,n β⊂,则//m n ; ④若//m α,m β⊂,n αβ=,则//m n .上述命题中为真命题的是 ▲ (填写所有真命题的序号).11.若方程ln 3x x =-的解在区间(1,)()a a a Z -∈内,则a = ▲ .A B C第8题12.若函数()||f x x x a =+-的最小值为32a +,则实数a 的值为 ▲ . 13.已知数列{}n a 为等差数列,若9810a a +<,则数列{}||n a 的最小项是第 ▲ 项.14.在平面直角坐标系xOy中,若曲线x =y x b =+的距离为1,则b 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在斜三棱柱111ABC A B C -中,已知侧面11ACC A ⊥底面ABC ,11AC C C =,,E F 分别是11AC 11A B 的中点.(1)求证://EF 平面11BB C C ; (2)求证:平面ECF ⊥平面ABC . 16.(本小题满分14分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,设(3,1)m =,(1cos ,sin )n A A =+. (1)当3A π=时,求||n 的值;(2)若1,a c ==m n ⋅取最大值时,求b .17.(本小题满分14分)在平面直角坐标系xOy 中,已知圆C 经过(2,2)A -,(1,1)B 两点,且圆心在直线220x y --=上.第15题ABCE FA 1B 1C 1(1)求圆C 的标准方程;(2)设直线l 与圆C 相交于,P Q 两点,坐标原点O 到直线l 的距离为15,且POQ ∆的面积为25,求直线l 的方程.18.(本小题满分16分)根据国际公法,外国船只不得进入离我国海岸线12海里以内的区域(此为我国领海,含分界线). 若外国船只进入我国领海,我方将向其发出警告令其退出. 如图,已知直线AB 为海岸线,,A B 是相距12海里的两个观测站,现发现一外国船只航行于点P 处,此时我方测得α=∠BAP ,β=∠ABP (0απ<<,0βπ<<). (1)试问当120,30==βα时,我方是否应向该外国船只发出警告? (2)若1tan 2α=,则当β在什么范围内时,我方应向该外国船只发出警告? 19.(本小题满分16分) (A )(四星级高中学生做)已知数列{}n a 是首项为1,公差为d 的等差数列;数列{}n b 是公比为2的等比数列,且{}n b 的前4项的和为152.ABPαβ 第18题·O xyA B ·第17题(1)求数列{}n b 的通项公式;(2)若3d =,求数列{}n a 中满足*89()i b a b i N ≤≤∈的所有项i a 的和; (3)设数列{}n c 满足n n n c a b =⋅,若5c 是数列{}n c 中的最大项,求公差d 的取值范围.(B )(三星级高中及普通高中学生做)已知数列{}n a 是首项为1,公差为d 的等差数列;数列{}n b 是公比为2的等比数列,且{}n b 的前4项的和为152.(1)求数列{}n b 的通项公式;(2)若3d =,求数列{}n a 中满足*89()i b a b i N ≤≤∈的所有项i a 的和;(3)设数列{}n c 满足n n n c a b =⋅,数列{}n c 的前n 项和为n T ,若n T 的最大值为5T ,求公差d 的取值范围.20.(本小题满分16分) (A )(四星级高中学生做)(1)求证:函数()22xxf x -=+在[0,)+∞上是单调递增函数;(2)求函数()22()xxf x x R -=+∈的值域;(3)设函数1421()421x x k x x g x ++++=++,若对任意的实数123,,x x x ,都有123()()()g x g x g x +≥,求实数k 的取值范围.(B )(三星级高中及普通高中学生做)(1)求证:函数()22xxf x -=+在[0,)+∞上是单调递增函数;(2)求函数()22()xxf x x R -=+∈的值域;(3)设函数()44(22)()xxx x h x a a R --=+++∈,求()h x 的最小值()a ϕ.2012/2013学年度第二学期期终调研考试高一数学参考答案一、填空题:每小题5分,共计70分.1.1 2.4π 3.2 4.120°(23π) 5 6.237.488.16 9.20 10.①④ 11.3 12. -1 13.814.(2]二、解答题:本大题共6小题,共计90分.15.证明:(1)在111ABC ∆中,因为,E F 分别是11AC ,11A B 的中点,所以11//EF B C , ……4分又EF ⊄面11BB C C,11B C ⊂面11BB C C ,所以//EF 平面11BB C C . …………7分(2)因为11AC C C =,且E 是11AC 的中点,所以EC ⊥11AC ,故EC ⊥AC , 又侧面11ACC A ⊥底面ABC ,且EC ⊂侧面11ACC A ,所以EC ⊥底面ABC . …………11分又EC ⊂面ECF ,所以面ECF ⊥面ABC . …………14分16.解: (1)当3A π=时,33(,2n =,…………3分所以23||()n =+= …………6分(2)因为3(1cos )sin 2sin()3m n A A A π⋅=++=++,所以当m n ⋅取最大值时,6A π=. …………10分又1,a c ==22132cos 336b b b b π=+-=+-,解之得2b =或1b =. …………14分17.解:(1)因为(2,2)A -,(1,1)B ,所以3AB k =-,AB 的中点为31(,)22-,故线段AB 的垂直平分线的方程为113()232y x +=-,即330x y --=,由330220x y x y --=⎧⎨--=⎩,解得圆心坐标为(0-. …………4分所以半径r 满足221(11)5r =+--=. …………6分故圆C 的标准方程为22(1)5x y ++=. …………7分(2)因为112255OPQ S PQ ∆=⨯⨯=,所以4PQ =.①当直线l 与x 轴垂直时,由坐标原点O 到直线l 的距离为15知,直线l 的方程为15x = 或15x =-,经验证,此时4PQ ≠,不适合题意; …………9分②当直线l 与x 轴不垂直时,设直线l 的方程为y kx b =+, 由坐标原点到直线l的距离为115d ==,得22125k b += (*), …………11分又圆心到直线l的距离为2d =,所以4PQ ==,即22(1)1b k +=+(**), …………13分由(*),(**)解得3414k b ⎧=±⎪⎪⎨⎪=⎪⎩.综上所述,直线l的方程为3410x y +-=或3410x y -+=. …………14分18.解:(1)如图:过P 作PH 垂直AB 于H ,因为 120,30==βα,所以30=∠APB ,所以AB=PB=12, …………4分 所以PH=AB 123660sin <= ,所以应向该外国船只发出警告. (7)分(2)在ABP ∆中,由正弦定理得:()αβαπsin sin PBAB =--,所以()βαπα--=sin sin 12PB ,所以()()()βαβαβαπβαβπ+=--=-⋅=s s s 12sin sin sin 12sin PB PH , …………10分令12≤PH ,得()12sin sin sin 12≤+βαβα,即()βαβα+≤sin sin sin , 所以s αβ≤+, …………12分又因为1tan 2α=,所以α为锐角,且sin αα==,所以25c o s5βββ≤,即s i ββ≥-, …………14分故sin cos 0ββ+≥)04πβ+≥,解得304πβ<≤, ABPαβ H所以当304πβ<≤时,我方应向该外国船只发出警告. …………16分 19.(A )(四星级高中学生做)解:(1)因为{}n b 是公比为2的等比数列,且其前4项的和为152,所以115(1248)2b +++=,解得112b =, …………2分 所以121222n n n b --=⨯=. …………4分(2)因为数列{}n a 是首项为1,公差3d =的等差数列,所以32n a n =-,由89i b a b ≤≤,得672322i ≤-≤,解得2243i ≤≤, …………6分所以满足89i b a b ≤≤的所有项i a 为222343,,,a a a ⋅⋅⋅,这是首项为2264a =,公差为3的等差数列, 共43-22+1=22项,故其和为22216422321012⨯⨯+⨯=. …………9分 (3)由题意,得2[1(1)]2n n n n c a b n d -=⋅=+-⨯, 因为5c 是{}n c 的最大项,所以首先有54c c ≥且56c c ≥, 即32(14)2(13)2d d +⨯≥+⨯且34(14)2(15)2d d +⨯≥+⨯, 解得1156d -≤≤-. …………12分 ① 当4n ≥时,在1156d -≤≤-的条件下,35[14]20c d =+⨯>,但7n ≥时,2[1(1)]20n n c n d -=+-⨯≤,所以此时5c 是最大的; …………14分②当3n ≤时,由152535,,c c c c c c ≤⎧⎪≤⎨⎪≤⎩,得18(14),218(14),2(12)8(14)d d d d d ⎧≤+⎪⎪+≤+⎨⎪+≤+⎪⎩,解得1564731314d d d ⎧≥-⎪⎪⎪≥-⎨⎪⎪≥-⎪⎩.综合①②,所求的公差d 的取值范围是1156d -≤≤-. …………16分(B )(三星级高中及普通高中学生做) 解:(1)(2)同(A )(3)因为120n n b -=>,若0d ≥,则0n a >,所以0n n n c a b =⋅>,此时n T 无最大项, 所以0d <, …………12分 此时{}n a 单调递减,欲n T 的最大项为5T ,则必有560,0c c ≥≤,即560,0a a ≥≤,…………14分又1(1)n a n d =+-,所以140,150d d +≥⎧⎨+≤⎩,解得1145d -≤≤-. …………16分20.(A )(四星级高中学生做)解:(1)证明:设12,[0,)x x ∈+∞,且12x x <,因为112212121211()()(22)(22)(22)()22xx x x x x x x f x f x ---=+-+=-+- 21121212121222(22)(21)(22)22x x x x x x x x x x x x +++---=-+=, …………3分因为12121220,220,210x x x x x x ++>-<->,所以12()()0f x f x -<,所以()2x x f x -=+在[0,)+∞上是单调递增函数. …………5分(2)由(1)知,当[0,)x ∈+∞时,()[(0),)f x f ∈+∞,即()[2,)f x ∈+∞, …………7分又因为()22()x x f x f x --=+=,所以()f x 是偶函数, 所以当x R∈时,()f x 的值域为[2+∞. …………9分(3)因为对任意的实数123,,x x x ,都有123()()()g x g x g x +≥,所以min max [2()][()]g x g x ≥,…………11分由于1421()421x x k x x g x ++++=++222222x x k x x--++=++,令22x xt -+=, 则222()()1(2)22k k t g x r t t t t +-===+++≥, ①当1k =时,()1r t =,适合题意; …………12分②当1k <时,22()14k r t +<≤,由22214k +⨯≥,得1k <; …………14分③当1k >时,221()4k r t +<≤,由22214k +⨯≥,得21log 6k <≤.综上,实数k 的取值范围为2(,log 6]-∞. …………16分 (B )(三星级高中及普通高中学生做) 解:(1)(2)同(A );(3)因为2()(22)(22)2x x x x h x a --=+++-,令22x xt -+=,则2()()2,[2,)h x m t t at t ==+-∈+∞, (11)分因为函数()m t 的对称轴方程为2at =-,所以 ①当22a -≥,即4a ≤-时,2()()224a a a m ϕ=-=--, …………13分 ②当22a-<,即4a >-时,()(2)22a m a ϕ==+, …………15分综上所述,22,4()422,4a a a a a ϕ⎧--≤-⎪=⎨⎪+>-⎩. …………16分。

盐城市中学2013-2014学年高二上学期期中考试数学(文)试题

盐城市中学2013-2014学年高二上学期期中考试数学(文)试题

第Ⅰ卷(共50分)一、填空题:本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上.1.命题“x R ∀∈,20x ≥”的否定是 .2.抛物线24x y =的焦点坐标是 .3.若()22x x f =,则()1f '-等于 .4.双曲线2214y x -=的渐近线方程为 .5.“两条直线不相交”是“两条直线是异面直线”的 条件.(填 “充分不必要”、“必要不充分”、“充要”、“既不必要又不充分”中的一个)6.函数28ln y x x =-的单调递减区间为.7.设x ,y R ∈且1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,则2z x y =+的最小值是 .8.设集合{}2230A x x x =--<,{}21xB x =>,则A B = .9.若双曲线221916x y -=上一点P 到右焦点的距离为4,则点P 到左焦点的距离是 .10.已知正数y x ,满足21x y +=,则21x y+的最小值为 .11.P 为椭圆14522=+y x 上的点,21,F F 是其两个焦点,若 3021=∠PF F ,则21PF F ∆的面积是 .12.已知函数()y f x =的图象在点(1,(1))f 处的切线方程为32y x =-,则函数2()()g x x f x =+的图象在点(1,(1))g 处的切线方程为 .13.过椭圆:C 22221(0)x y a b a b+=>>的左顶点A 且斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰为右焦点F ,若12k =,则椭圆的离心率e 的值是 .14.已知函数2()(,)f x x b x c b c R =++∈,若b 、c 满足214b c ≥+,且22()()()f c f b M c b -≤-恒成立,则M 的最小值为 .第Ⅱ卷(共80分)二、解答题:(本大题共6小题,计80分. 解答应写出必要的文字说明、证明过程或演算步骤,请把答案写在答题纸的指定区域内)15.已知命题p :任意x R ∈,21x a +≥,命题q :函数2()21f x x ax =-+在(,1]-∞-上单调递减.(1)若命题p 为真命题,求实数a 的取值范围; (2)若p 和q 均为真命题,求实数a 的取值范围.16.已知顶点在原点O ,焦点在x轴上的抛物线过点. (1)求抛物线的标准方程;(2)若抛物线与直线2y x =-交于A 、B 两点,求证:1OA OB k k ⋅=-.1212121212(4)(4)4()1644424161.4OA OB y y x x x x x x k k x x ---++⋅===-+==-17.已知函数()a x x x x f +++-=9323.(1)求()x f 的单调递减区间;(2)若()x f 在区间[]2,2-上的最大值为20,求它在该区间上的最小值.18.某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为P 元,则销售量Q (单位:件)与零售价P (单位:元)有如下关系:28300170Q P P =--,问该商品零售价定为多少元时毛利润L 最大,并求出最大毛利润.(毛利润=销售收入-进货支出)关系为19.已知圆224O x y +=:,若焦点在x 轴上的椭圆22221x y a b += 过点(01)P -,,且其长轴长等于圆O 的直径. (1)求椭圆的方程;(2)过点P 作两条互相垂直的直线1l 与2l ,1l 与圆O 交于A 、B 两点, 2l 交椭圆于另一点C ,设直线1l 的斜率为k ,求弦AB 长; (3)求ABC ∆面积的最大值.20.设函数()ln f x x ax =-,a R ∈.(1)当1x =时,函数()f x 取得极值,求a 的值;(2)当102a <<时,求函数()f x 在区间[1,2]上的最大值; (3)当1a =-时,关于x 的方程22()mf x x =(0)m >有唯一实数解,求实数m 的值.。

2012-2013学年度第二学期高二年级调研测试数学文科试卷(含答案)

2012-2013学年度第二学期高二年级调研测试数学文科试卷(含答案)

2012~2013学年度第二学期高二年级调研测试数学试题(文科)一、填空题:(本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡...相应位置上.)1.若集合{}{}{}0,,2,3,3A m B A B ===I ,则实数=m ▲. 答案:32.已知“凡是9的倍数的自然数都是3的倍数”和“自然数n 是9的倍数”,根据三段论推理规则,我们可以得到的结论是 ▲ . 答案:n 是3的倍数.3.函数0y =的定义域为 ▲ .答案:{}2,x 4x x >-≠且4.用反证法证明命题“若210x -=,则1x =-或1x =”时,假设命题的结论不成立的正确叙述是“ ▲ ”. 答案:假设x ≠-1且x ≠1.5.已知复数22(815)(918)i z m m m m =-++-+为纯虚数,则实数m 的值为 ▲ . 答案: 5.6.已知函数3(0)()(0)xx f x x x ⎧≤⎪=⎨>⎪⎩,则1()4f f ⎡⎤-⎢⎥⎣⎦= ▲ .答案: -12.7.已知集合{}3(,)1,,,(,)2,,4y A x y x R y R B x y y ax x R y R x ⎧-⎫==∈∈==+∈∈⎨⎬-⎩⎭,若A B ⋂=∅,则实数a 的值为 ▲ . 答案:148.已知方程3log 5x x =-的解所在区间为(,1)()k k k N *+ ∈,则k = ▲ . 答案: 3.9.对于大于1的自然数m 的n 次幂可用奇数进行如图所示的“分裂”,仿此,记36的“分裂”中最小的数为a ,而26的“分裂”中最大的数是b ,则a +b = ▲ . 答案:4210.在矩形ABCD 中,5AB =,2BC =,现截去一个角PCQ ∆,使P Q 、分别落在边BC CD 、上,且PCQ ∆的周长为8,设PC x =,CQ y =,则用x 表示y 的表达式为y = ▲ .答案:y=8328x x --(0<x ≤2). 11.给出下列命题:①在区间(0,)+∞上,函数1y x -=,12y x =,2(1)y x =-,3y x =中有三个是增函数;②若log 3log 30m n <<,则01m n <<<;③若函数()f x 是奇函数,则(1)f x -的图象关于点(1,0)A 对称;④函数()()21f x x x x =⋅+--有2个零点. 其中正确命题的序号..为 ▲ . 答案:③④A BCDPQ12.当(34)x ∈,时,不等式240x mx ++<恒成立,则m 的取值范围是 ▲ . 答案:m ≤-5.13.设1a >,若函数2()log ()a f x ax x =-在区间1,62⎡⎤⎢⎥⎣⎦上是增函数,则a 的取值范围是▲ . 答案: a>2.14.设不等式2(1)0x px p p +--≥对任意正整数x 都成立,则实数p 的取值范围是 ▲ .答案:≤p ≤二、解答题:本大题共6小题,共90分.(解答应写出必要的文字说明,证明过程或演算步骤)15. (本小题满分14分)设全集是实数集R ,22{|2730},{|0}A x x x B x x a =-+≤=+<,(1) 当4a =-时,求A B ; (2) 若()R A B B =r ð,求负数a 的取值范围.解:(1)1{|3}2A x x =≤≤ ………………………………………………4分 当4a =-时,{|22}B x x =-<< …………………………………………………4分{|23}A B x x =-<≤ ………………………………………………… 8分(2) 1{|}2R A x x =<或x>3r ð ………………………………………10分∵0a <,∴{|B x x =<, …………………… 12分当()R A B B =r ð时,有R B A ⊆r ð,要使R B A ⊆r ð,12≤成立, 解得104a -≤<………………14分 16.(本题满分14分)已知复数22(4sin )2(cos 1)z a i θθ=-++,其中a +∈R,),0(πθ∈,i 为虚数单位,且z 是方程2220x x ++=的一个根.(1)求θ与a 的值;(2)若w x yi =+(,x y 为实数),求满足1zw z i-≤+的点(,)x y 表示的图形的面积. 解:(1)由方程x 2+2x+2=0得x=-1±i ………………………………………2分 2(cos 1)0θ+≥∴z=-1+I ……………………………………………………………………4分又z=(a 2-42sin θ)+2(cos θ+1)i∴22a -4sin 1 2(cos 1)1θθ⎧=-⎨+=⎩ …………………………………………………………………… 6分 a ∈(0,+∞),),0(πθ∈∴θ=23π, …………………………………………………………………… 8分(2)1125z i z i i --==+-+ …………………………………………………… 10分∴1w -≤(1,0)为圆心,5为半径的圆,………………………… 12分∴面积为22(55ππ= ………………………… 14分 17.(本题满分14分)已知定义域为R 的函数2()2x x bf x a-=+是奇函数.(1)求,a b 的值;(2) 利用定义判断函数()y f x =的单调性;(3)若对任意[0,1]t ∈,不等式22(2)()0f t kt f k t ++->恒成立,求实数k 的取值范围.解: (1)1101(0)011111(1)(1)221bb a f a a b f f a a -⎧-=⎧⎪===⎧⎪⎪+∴+⎨⎨⎨=⎩⎪⎪-=-=⎩⎪++⎩得(需验证)………………4分 (其它解法酌情给分)12122(22)(21)(21)x x x x -=++(2)由(Ⅰ)知121221(),21x xf x x x R x x -=∀∈<+、,且 121212121221212(22)()()2121(21)(21)x x x x x x x x f x f x ----=-=++++则 12121212,22220,210,210x x x x x x x x <∴<∴-<+>+>1212()()0()()f x f x f x f x ∴-<∴<()y f x R ∴=在上为增函数………………9分(求导数方法酌情给分) (3)22(2)()0f t kt f k t ++->22(2)()f t kt f k t ∴+>--22()()()f x f k t f t k ∴--=-是奇函数22(2)()f t kt f t k ∴+>-()f x 为增函数2222(1)t kt t k k t t ∴∴+>-∴+>-…………10分 [][]220.111,211t t t t k k t t ∈∴+∈∴>-∴<++恒成立-222(1)1(1)11111220111111t t t t t t t t t t t -+-==+=-+=++-≥=++++++……12分 当且仅当0t =时等号成立。

2012-2013学年度第二学期高二年级调研测试数学理科试卷(含答案)-推荐下载

2012-2013学年度第二学期高二年级调研测试数学理科试卷(含答案)-推荐下载

8.设
a

0且a
1,若函数
f
(x)

loga
(ax2
范围是 ▲ .
9. (1 mx)6 a0 a1x a2 x2 a6 x6 且 a1 a2 a3 a4 a5 a6 63 ,则实数 m
的值为 ▲ .
10.整数的数对列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),
x
时,生产的商品能当年全部售完.
(1)写出年利润
高二数学(理科) 第 3 页 (共 4 页)
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

盐城室2012—2013学年度高二调研测试 数学试题(文科) 2013.6注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 4.第19、20题,请四星高中学生选做(A ),三星高中与普通高中学生选做(B ),否则不给分.参考公式:样本数据1x ,2x , ,n x 的方差])()()[(1222212x x x x x x ns n -++-+-=(x 为样本平均数)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上. 1.x R ∀∈,sin 1x ≤的否定是 ▲ .2.已知复数z 满足i(2i)z =-(其中i 为虚数单位) 3.某校对全校1000200的样本,已知女生抽了80人,则该校的男生数为 ▲ . 4.集合}{23,log A a =,}{,B a b =,若}{1A B = ,则A B = ▲ . 5.有4件产品,其中有2件次品,从中任选2件,恰有1件次品的概率为 ▲ . 6其中产量比较稳定的水稻品种是 ▲ .7.若双曲线22221(0,0)x y a b a b-=>>的一个焦点到一条渐近线的距离等于a ,则该双曲线的离心率为 ▲ .8.执行右边的程序框图,若15p =,则输出的n = ▲ .9.观察下列不等式:11111131111,11,1,1222323722315>++>++++>++++> ,11151,,23312++++> 由此猜想第n 个不等式为 ▲ .10.若关于x 的方程24x ax +=有正实根,则实数a 的取值范围是▲ .11.在锐角ABC △中,角AB C ,,所对的边分别为a b c ,,,已知sin A =,2a =,ABC S =△,则b 的值为 ▲ .12.若函数()()ln 3x f x ae x =--的定义域为R ,则实数a 的取值范围是 ▲ .13.已知Rt ABC ∆的三个顶点都在抛物线22(0)y px p =>上,且斜边AB ∥y 轴,则斜边上的高等于 ▲ .14.已知曲线C :()(0)af x x a x=>+,直线:y x =,在曲线C 上有一个动点P ,过点P 分别作直线和y 轴的垂线,垂足分别为,A B .再过点P 作曲线C 的切线,分别与直线和y 轴相交于点,M N ,O 是坐标原点.则OMN △与ABP △的面积之比为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)记关于x 的不等式()(1)0x a x -+≤的解集为P ,不等式|1|1x -≤的解集为Q . (1)若3a =,求集合P;(2)若Q P ⊆,求正数a 的取值范围. 16.(本小题满分14分)已知函数()22cos sin cos f x x x x x =-+.(1)求函数()f x 的最小正周期; (2)若()1013f α=,且,42ππα⎡⎤∈⎢⎥⎣⎦,求sin 2α的值.17.(本小题满分14分)已知函数2()lg(1)1af x x=-+(其中0a >). 求证:(1)用反证法证明函数()f x 不能为偶函数;(2)函数()f x 为奇函数的充要条件是1a =.18.(本小题满分16分)为改善行人过马路难的问题,市政府决定在如图所示的矩形区域ABCD (60AB =米,104AD =米)内修建一座过街天桥,天桥的高GM 与HN 均为米,6GEM HFN π∠=∠=,,,,AE EG HF FC 的造价均为每米1万元,GH 的造价为每米2万元,设MN 与AB 所成的角为0,4παα⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,天桥的总造价(由,,,,AE EG GH HF FC 五段构成,GM 与HN 忽略不计)为W 万元.(1)试用α表示GH 的长;(2)求W 关于α的函数关系式; (3)求W 的最小值及相应的角α.19.(本小题满分16分) (A )(四星高中学生做)已知椭圆E :22221(0)x y a b a b +=>>上任意一点到两焦点距离之和为,左、右焦点分别为12,F F ,点P 是右准线上任意一点,过2F 作直线2PF 的垂线2F Q 交椭圆于Q 点.(1)求椭圆E 的标准方程;(2)证明:直线PQ 与直线OQ 的斜率之积是定值; (3)点P 的纵坐标为3,过P 作动直线与椭圆交于两个 不同点M 、N ,在线段MN 上取点H ,满足MP MHPN HN=, 试证明点H 恒在一定直线上.(B )(三星高中及普通高中学生做)第18题图第19题图已知椭圆E :22221(0)x y a b a b +=>>上任意一点到两焦点距离之和为,左、右焦点分别为12,F F ,点P 是右准线上任意一点,过2F 作直线2PF 的垂线2F Q 交椭圆于Q 点. (1)求椭圆E 的标准方程;(2)证明:直线PQ 与直线OQ 的斜率之积是定值; (3)证明:直线PQ 与椭圆E 只有一个公共点. 20.(本小题满分16分) (A )(四星高中学生做)设函数()x a x f ln =,()212g x x =. (1)记()()()h x f x g x =-,若4a =,求()x h 的单调递增区间;(2)记()g x '为()x g 的导函数,若不等式()()()()23f x g x a x g x '+≤+-在[]e x ,1∈上有解,求实数a 的取值范围;(3)若在[]1,e 上存在一点0x ,使得()()()00001()f x f x g x g x ''->+'成立,求a 的取值范围.(B )(三星高中及普通高中学生做) 设函数()x a x f ln =,()212g x x =. (1)记()()()h x f x g x =-,若4a =,求()x h 的单调递增区间;(2)记()g x '为()x g 的导函数,若不等式()()()()23f x g x a x g x '+≤+-在[]e x ,1∈上有解,求实数a 的取值范围;(3)若1a =,对任意的120x x >>,不等式()()()()121122m g x g x x f x x f x ->-⎡⎤⎣⎦恒成立.求()1,≤∈m Z m m 的值.2012-2013学年度高二调研测试数学试题(文)答案一、填空题:每小题5分,共计70分.1.,sin 1x R x ∃∈> 2 3.600 4.}{1,2,3 5.236.甲7 8.5 9.111123212n n ++++>- 10.4a ≥ 11 12.()2,e +∞ 13.2p 14.8二、解答题:本大题共6小题,共计90分.15.解: (1)当3a =时,(3)(1)0x x -+≤,则解集P 为}{13x x -≤≤.……………… 7分 (2)由题意,解集为Q=}{02x x ≤≤,所以2a ≥.……………………………………… 14分16.解:(1)()22cos sin cos cos 222sin 26f x x x x x x x x π⎛⎫=-+==+ ⎪⎝⎭. 所以函数()f x 的最小正周期22T ππ==.…………………………………………………… 6分 (2)由题52sin 2613πα⎛⎫+= ⎪⎝⎭,得5sin 2613πα⎛⎫+= ⎪⎝⎭,因为42ππα≤≤,则272366πππα≤+≤, 则12cos 2613πα⎛⎫+=- ⎪⎝⎭,………………………………………………………………………… 9分所以sin 2sin 2sin 2cos cos 2sin 666666ππππππαααα⎛⎫⎛⎫⎛⎫=+-=+-+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭…14分 17解:(1)假设函数()f x 为偶函数,则()f x -=()f x ,∴2lg(1)1a x --=2lg(1)1a x -+,即211a x --=211a x -+,化简得:2401axx=-, ∴0a =,与条件0a >矛盾.∴函数()f x 不能为偶函数.……………………………… 7分(2)充分性:由1a =,函数2()lg(1)1f x x =-+=1lg1x x -+, 11xx-+>0,∴11x -<<, 又()f x +()f x -=1lg1x x -++1lg 1xx+-=lg10=,∴当1a =时,函数()f x 为奇函数.…… 10分 必要性:由函数()f x 为奇函数,即()f x +()f x -=0,∴2lg(1)1a x -++2lg(1)1a x --=21lg()1a x x --++21lg()1a x x-+-=0,化简得2(21)1a -=, 0a >,∴1a =,∴当函数()f x 为奇函数时, 1a =.…………………………………… 14分(注:必要性的证明也可由定义域的对称性得到1a =)18.解:(1)由题意可知MNP α∠=,故有60tan MP α=,所以在Rt NMT ∆中60cos GH MN α==……………………………………………………………………………………6分(2)60(8060tan )12cos W αα=+⨯+⨯sin 18060120cos cos ααα=+-+sin 28060cos αα-=+.………………………………………………………… 11分(3)设sin 2()cos f ααα-=(其中π0)4α≤≤,则22cos cos (sin )(sin 2)12sin ()cos cos f αααααααα----'==. 令()0f α'=得12sin 0α-=,即1sin 2α=,得6πα=.列表所以当6α=时有max ()f α=,此时有min 8080W =++=+.答:排管的最小费用为80+万元,相应的角6πα=.…………………………… 16分(A )(四星高中学生做)19.解:(1)由题,a =c a =从而得1c =,b = 所以椭圆E :22132x y +=……………………………………………………………………… 4分 (2)设()03,P y ,()11,Q x y , 因为22PF F Q ⊥,所以220011111212(1)QF PF y y y y k k x x =⋅==---, 所以1012(1)y y x -=- 又因为21011012111133PQ OQy y y y y y k k x x x x --⋅=⋅=--且22112(1)3x y =-代入化简得23PQ OQ k k ⋅=-……10分 (3)设过P 的直线l 与椭圆交于两个不同点1122(,),(,)M x y N x y ,点(,)H x y ,则2211236x y +=,2222236x y +=.∵MP MH PN HN =,∴设MP MH PN HNλ==,则,MP PN MH NH λλ=-= , ∴1122(3,3)(3,3)x y x y λ--=---,1122(,)(,)x x y y x x y y λ--=--整理得12123,11x x x x x λλλλ-+==-+,12123,11y y y y y λλλλ-+==-+, ∴从而2222221212223,311x x y y x y λλλλ--==--,∴222222222221212112222223323(23)69611x x y y x y x y x y λλλλλ-+-+-++===--,所以点H 恒在直线2320x y +-=上.………………………………………………… 16分(B )(三星高中及普通高中学生做)解:(1)(2)同(A )(3)由(2)知,直线PQ 的方程为()111123x y y x x y -=--,即111223x y x y y =-+, 由22111132223x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩得22221111(32)121890y x x x x y +-+-=,化简得:221120x x x x -+=, 解得0x x =,所以直线PQ 与椭圆C 只有一个交点.……………………………………… 16分 (A )(四星高中学生做)20.解:(1)当4a =时,()4ln f x x =,此时()214ln 2h x x x =-, 由()'40h x x x=->得22x -<<, 又0>x ,则02x <<.所以()x h 的单调递增区间为()0,2.…………………… 4分(2)不等式()()()()x g x a x g x f -+≤+32'即为()22132ln x x a x x a -+≤+, 则()x x x x a -≥-221ln ,由[]e x ,1∈知0ln >-x x ,因而x x x x a ln 212--≥,设x x xx y ln 212--=,由()()()22'ln 2111ln 1x x x x x x x x y -⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛----=()()2ln ln 1211x x x x x -⎪⎭⎫⎝⎛-+-=,且当()e x ,1∈时01>-x ,0ln 121>-+x x ,从而,0'>y .由不等式有解,知21min -=≥y a ……………………… 10分(3)不等式()()()''000'01()f x fx g x g x ->+等价于00001ln a a x x x x ->+, 整理为0001ln 0ax a x x +-+<,设1()ln a m x x a x x +=-+,则由题意可知只需在],1[e 上存在一点0x ,使得0()0m x <.2'2221(1)(1)(1)()1a a x ax a x a x m x x x x x+--+--+=--==, 因为,0>x 所以,01>+x 令,01=--a x 得a x +=1.………………………………………… 12分①若11a +≤,即0a ≤时,令(1)20m a =+<,解得2a <-. ②若e a ≤+<11,即10-≤<e a 时,()m x 在a +1处取得最小值, 令(1)1ln(1)10m a a a a +=+-++<,即)1ln(11a a a +<++,所以)1ln(11+<++a aa 考察式子t t t ln 11<-+,因为e t ≤<1,所以左端大于1,而右端小于1,所以不成立 ③当e a >+1,即1->e a 时,()m x 在],1[e 上单调递减,只需()0m e <,得211e a e +>-,又因为0121112<--=-+--e e e e e ,所以,211e a e +>-. 综上所述,2a <-或211e a e +>-.………………………………………………………………… 16分(B )(三星高中及普通高中学生做) 解:(1)(2)同(A )(3)当1=a ,()x x f ln =.由()()()()121122m g x g x x f x x f x ->-⎡⎤⎣⎦恒成立知,()()()()222111x f x x mg x f x x mg ->-恒成立,设()()0ln 22>-=x x x x m x t . 由题意知021>>x x ,故当0>x 时函数()x t 单调递增,则()01ln '≥--=x mx x t 恒成立,因此,x x m 1ln +≥恒成立,记x x y 1ln +=,由()2'ln x xx y -=,知函数在()1,0上单调递增,在()+∞,1上单调递减, 则()()11max ==h x h ,所以1≥m ,又1,≤∈m Z m ,所以1=m .…………… 16分。

相关文档
最新文档