高二数学测试题含答案
重庆市西南大学附中2023-2024学年高二上学期10月阶段性检测 数学试题(含答案)

西南大学附中 3- 4学年高二上阶段性检测(一)数 学 试 题(满分:150分;考试时间:120分钟)2023年10月注意事项:1.答题前,考生先将自己的姓名、班级、考场/座位号、准考证号填写在答题卡上.2.答选择题时,必须使用2B 铅笔填涂;答非选择题时,必须使用0.5毫米的黑色签字笔书写;必须在题号对应的答题区域内作答,超出答题区域书写无效;保持答卷清洁、完整.3.考试结束后,将答题卡交回(试题卷学生保存,以备评讲).一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 在以下调查中,适合用全面调查的个数是( )①调查一个班级学生的吃早餐情况 ②调查某种饮料质量合格情况 ③调查某批飞行员的身体健康指标 ④调查某个水库中草鱼的所占比例 A .1B .2C .3D .42. 样本中共有5个个体,其值分别为12345x x x x x ,,,,.若该样本的平均数为3,则131x +,234531313131x x x x ++++,,,的平均数为( )A .1B .3C .9D .103. 围绕民宿目的地进行吃住娱乐闭环消费已经成为疫情之后人们出游的新潮流.在用户出行旅游决策中,某机构调查了某地区1000户偏爱酒店的用户与1000户偏爱民宿的用户住宿决策依赖的出行旅游决策平台,得到如下统计图,则下列说法中不正确的是( )A .偏爱民宿用户对小红书平台依赖度最高B .在被调查的两种用户住宿决策中,小红书与携程旅行的占比总和相等C .在被调查的两种用户住宿决策中,同程旅行占比都比抖音的占比高D .小红书在所有被调查用户住宿决策中的占比与携程旅行在所有被调查用户住宿决策中的占比不相等4. 现代足球的前身起源于中国古代山东淄州(今淄博市)的球类游戏“蹴鞠”,后经阿拉伯人由中国传至欧洲,逐渐演变发展为现代足球.周末,高二年级甲、乙两位同学出于对足球的热爱,去体育场练习点球.在同一罚球点,两人各自踢了10个球,甲进了9个球,乙进了8个球,以频率估计各自进球的概率.记事件A :甲踢进球;事件B :乙踢进球.甲、乙两人是否进球互不影响,则接下来一次点球中,()P A B =( )A .45B .910C .1825D .49505. 过点A (1,−2)且与直线:2630l x y −−=平行的直线方程是( )A .370x y −−=B .350x y −+=C .310x y +−=D .350x y −−=6. 抛掷一个骰子,将得到的点数记为a ,则a ,4,5能够构成锐角三角形的概率是( )A .16 B .13C .12D .237. 某学校对高中年级的手机情况进行分层抽样调查,该校高一、高二、高三年级学生各有700人、600人、700人.其中高一年级平均每人拥有1.1个手机,方差为0.5;高二年级平均每人拥有1个手机,方差为0.4;高三年级平均每人拥有0.9个手机,方差为0.4,试估计高中年级带手机状况的方差为( ) A .0.433B .0.435C .0.442D .0.4518. “缤纷艺术节”是西大附中的一个特色,学生们可以尽情地发挥自己的才能,某班的五个节目(甲、乙、丙、丁、戊)进入了初试环节,现对这五个节目的出场顺序进行排序,其中甲不能第一个出场,乙不能第三个出场,则一共有( )种不同的出场顺序. A .72B .78C .96D .120二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对得5分,部分选对的得3分,有选错的得0分. 9. 某家商场举行抽奖活动,小聪、小明两人共同前去抽奖,设事件A =“两人都中奖”;B =“两人都没中奖”;C =“恰有一人中奖”;D =“至少一人没中奖”;下列关系正确的是( ) A .BC D =B .AC ≠∅ C .CD ⊆ D .B D B =10. 小张、小陈为了了解自己的数学学习情况,他们对去年一年的数学测试情况进行了统计分析.其中小张每次测试的平均成绩是135分,全年测试成绩的标准差为6.3;小陈每次测试的平均成绩是130分,全年测试成绩的标准差为3.5.下列说法正确的是( ) A .小张数学测试的最高成绩一定比小陈高 B .小张测试表现时而好,时而糟糕 C .小陈比小张的测试发挥水平更稳定D .平均来说小陈比小张数学成绩更好11. 下列说法错误有( )A .“1a =−”是“210a x y −+=与直线20x ay −−=互相垂直”的充要条件B .过(x 1,y 1),(x 2,y 2)两点的直线的方程为112121y y x x y y x x −−=−− C .直线22cos sin 10x y αα+−=恒过定点(1,1)D .经过点(1,2)且在x 轴和y 轴上截距都相等的直线方程为30x y +−=12. 甲、乙两个口袋中装有除了编号不同以外其余完全相同的号签.其中,甲袋中有编号为1、2、3的三个号签;乙袋有编号为1、2、3、4、5、6的六个号签. 现从甲、乙两袋中各抽取1个号签,从甲、乙两袋抽取号签的过程互不影响.记事件A :从甲袋中抽取号签1;事件B :从乙袋中抽取号签6;事件C :抽取的两个号签和为3;事件D :抽取的两个号签编号不同.则下列选项中,正确的是( ) A .1()18P AB =B .1()9P C =C .事件A 与事件C 相互独立D .事件A 与事件D 相互独立三、填空题:本大题共4小题,每小题5分,共20分.13. 数据2,4,5,8,a ,10,11的平均数是7,则这组数据的第60百分位数为__________. 14. 若A ,B 两个事件相互独立,且1()3P AB =,则()P A B = .15. 已知两点A (−1,1),B (3,−2),过点P (2,−1)的直线l 与线段AB 有公共点,则直线l (不考虑斜率不存在的情况)的斜率k 的取值范围是__________.16. 甲、乙两人进行象棋比赛,采取五局三胜制(不考虑平局,先赢得三场的人为获胜者,比赛结束).根据前期的统计分析,得到甲在和乙的第一场比赛中,取胜的概率为0.5,受心理方面的影响,前一场比赛结果会对甲的下一场比赛产生影响,如果甲在某一场比赛中取胜,则下一场取胜率提高0.1,反之,降低0.1.则甲以3∶1取得胜利的概率为__________.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17. (10分) 钛合金具有较高的抗拉强度,为了了解某厂家钛合金的抗拉强度情况,随机抽取了10件钛合金产品进行抗拉强度(单位:MPa )测试,统计数据如下:910 905 900 896 907 912 915 893 903 899(1) 求这10件产品的平均抗拉强度x 和标准差s ;(2) 该10件产品的抗拉强度位于x s −和x s +之间所占的百分比是多少?18. (12分) 已知平面内两点P (−1,−3),Q (3,3).(1) 求PQ 的垂直平分线所在直线的直线方程;(2) 过点Q 作直线l ,分别与x 轴,y 轴的正半轴交于A ,B 两点,当||||OA OB +取得最小值时,求直线l 的方程.19. (12分) 某中学为研究本校高二学生学完“概率与统计”之后的情况,进行了一次测验,随机抽取了100位同学的测试成绩作为样本,得到以[8090),,[90100),,[100110),,[110120),,[120130),,[130140),,[140150],分组的样本频率分布直方图如图.(1) 求直方图中x 的值;(2) 请估计本次该年级学生数学成绩的中位数和平均数;(计算结果精确到0.1) (3) 样本内数学分数在[130140),,[140150],的两组学生中,用分层抽样的方法抽取5名学生,再从这5名学生中随机选出2人,求选出的两名学生中恰有一人成绩在[130140),中的概率.20. (12分)已知在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,2sin()cos A B C B A C +=−=,. (1) 求sin A ;(2) 若3b =,求AC 边上的高.数学分数21. (12分) 多项选择题是高考的一种题型,其规则如下:有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.现高二某同学正在进行第一次月考,做到多项选择题的11题和12题.该同学发现自己只能全凭运气,在这两个多项选择题中,他选择一个选项的概率是12,选择两个选项的概率是13,选择三个选项的概率是16.已知该同学做题时题目与题目之间互不影响且第11题正确答案是两个选项,第12题正确答案是三个选项.(1) 求该同学11题得5分的概率;(2) 求该同学两个题总共得分不小于7分的概率.22. (12分) 如图,在三棱柱111ABC A B C −中,1111386B A B C AA AB BC AB BC ====⊥,,,,,D 为AC 中点,15tan 12BB D ∠=. (1) 求证:1BC B D ⊥;(2) 线段11B C 上是否存在一点E ,使得AE 与面11BCC B 的夹角.A参考答案一、选择题1—4BDCD 5—8ACCB 9.ACD 10.BC11.ABD12.ABD二、填空题13.914.2315.2(,1][,)3-∞--+∞ 16.0.17417.(1)91090590089690791291589390389990410x +++++++++==22222222222(910904)(905904)(900904)(896904)(907904)(912904)(915904)(893904)(903904)(899904)45.810s -+-+-+-+-+-+-+-+-+-==∴s =(2)∵67<<∴897898x s <-<,910911x s <+<∴610010⨯%=60%18.(1)∵(1,3),(3,3)P Q --∴PQ 中点3(1,0),2PQ M k =∴23k =-直线222:(1)333l y x x =--=-+(2)设(,0),(0,)A a B b 其中(,0a b >)则直线:1x yl a b+=∵Q 在直线上∴331a b+=∴3333()(612b a a b a b a b a b+=++=++≥当且仅当6a b ==时,等号成立此时,:6l y x =-+19.(1)(0.0120.0220.0280.0180.0080.002)101x ++++++⨯=解得0.01x =(2)中位数0.1610010105.70.28=+⨯=0.12850.22950.281050.181150.11250.081350.02145107.4x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=(3)[130,140):1000.088⨯=(人);[140,150]:1000.022⨯=(人)∴在[130,140)中抽取4人,[140,150]中抽取1人总共有10种情况,A:恰有一人成绩在[130,140)中:4种∴42()105P A ==20.(1)∵2,A B C A B C π+=++=∴3C π=sin()cos cos()B AC A B -==-+sin cos cos sin cos cos sin sin B A B A A B A B-=-+化简得(cos sin )(cos sin )0B B A A +-=∴344B A ππ==(舍)或∴2sin 2A =(2)212362sin sin()sin cos cos sin 22224B A C A C A C =+=+=⨯+⨯=由正弦定理sin sin b c B C =,可得92362c -=∴92362933sin 222c A --=⨯=21.解:(1)根据题意,11题得5分需满足选两个选项且选对,选两个选项共有6种情况,,,,,AB AC AD BC BD CD .所以1113618P =⨯=…………………………………………………………………………………….5分(2)总得分不低于7分共3种情况,它们分别是:第11题得5分且第12题得2分;第11题得2分且第12题得5分;第11题得5分且第12题得5分,记事件1A :11题得2分;事件2A :11题得5分;事件1B :12题得2分;事件2B :12题得5分则1121()244P A =⨯=;21()18P A =1131113()=243224P B =⨯+⨯;2111()6424P B =⨯=………………………………..9分12212237()()()864P P A B P A B P A B =++=……………………………………………….12分22.(1)证明:连接BD ∵8,6,AB BC AB BC ==⊥∴10AC =∵D 为AC 中点∴5BD =∵15tan 12BB D ∠=,∴2221111112cos 213B D BB BD BB D B D BB +-∠==⋅∴112B D =∵22211B D BD BB +=∴1B D BD ⊥……………………………………….2分∵11B A BC =且D 为AC 中点∴1B D AC ⊥………………………………………3分∵11B D ACB D BD AC BD D ⊥⎧⎪⊥⎨⎪=⎩∴1B D ABC ⊥面…………………………………4分∵BC ABC⊂面∴1BC B D ⊥……………………………………….5分(2)如图,以D 为原点,CB 为x 轴正向,AB 为y 轴正向,1DB为z 轴正向建立如图所示的空间直角坐标系.(3,4,0),(3,4,0),(3,4,0),(0,0,12),(6,0,12)A B C B C ---,(6,0,0),(3,4,12)BC BB =-=--令111B E B C λ=,则(6,0,12)E λ-,(63,4,12)AE λ=-- ………………………………..…………….7分令面11BCC B 的法向量为n10n BC n BB ⎧⋅=⎪⎨⋅=⎪⎩,∴(0,3,1)n = ……………………………………………………………………..10分||1274sin cos 185||||n AE n AE θα⋅===⋅解得13λ=所以E 是靠近1B 的三等分点……………………………………………………………………….12分。
南京师范大学附属中学2023-2024学年高二上学期期初测试数学试题(含答案)

A. , 1 2,
B. , 1 2,
C. 3,
D. 3,
【答案】C 【解析】 【分析】由并集和补集的概念即可得出结果.
【详解】∵U R, A {x∣1 x 3}, B x∣x 2
∴ A B (,3) ,则 ðU (A B) [3, ) ,
故选:C.
2.
已知复数 z
i3
1 2i2
10. 已知 a 0 , b 0 ,且 a b 1,下列不等式恒成立的有( )
A. log2 a log2 b 2
B. 3ab 1 3
C. 1 1 3 2 2 a ab
D. 1 1 2 a 1 b 2
11. 已知函数 f x 对任意 x R ,都有 f x 2 f x 0成立,且函数 f x 是奇函数,当 x 1, 0
(1)求 A 的大小;
(2)若 a 3 ,求 b2 c2 取值范围.
第 4 页/共 21 页
南师附中 2023—2024 学年上学期高二期初测试
数学试题
一、单项选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一
项是符合题目要求的.
1. 已知U R, A {x∣1 x 3}, B x∣x 2 ,则 ðU A B ( )
2c
,则 S b2 2c2
的最大值为______.
四、解答题:本题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤. r
17. 已知 a , b , c 是同一平面内的三个向量,其中 a 1, 2 .
(1)若 b 3 5 ,且 a//b ,求 b 的坐标;
(2)若 c 10 ,且 2a c 与 4a 3c 垂直,求 a 与 c 的夹角 .
高二数学直线测试及答案

(5)直线一、选择题(本大题共10小题 :每小题5分 :共50分) 1.和直线3x -4y +5=0关于x 轴对称的直线方程是( )A .3x +4y -5=0B .3x +4y +5=0C .-3x +4y -5=0D .-3x +4y +5=02.若直线的斜率k = -5 :则倾斜角α=( ) A .arctan(-5) B . π-arctan(-5) C .arctan5D . π-arctan53.若直线ax +b y +c=0过第一、二、三象限 :则( ) A .a b>0 : bc>0 B .a b>0 : bc<0 C .a b<0 : bc>0D .a b<0 : bc<04.如图 :直线l 1的倾斜角a 1=30° :直线l 1⊥l 2 :则l 2的斜率为( )A .-33B . 33C .-3D .35.若斜率为-2的直线l 经过点(0 :8) :则l 与两坐标轴围成的三角形面积为( )A .8B .16C .32D .646.若A (-2 :3) :B (3 :-2) :C (21:m )三点在同一直线上 :则m 的值为 ( )A .-2B .2C .- 21D . 217.两条直线A 1x +B 1y +C 1=0 : A 2x +B 2y +C 2=0垂直的充要条件是( )A . A 1 A 2+B 1 B 2=0 B . A 1 A 2- B 1 B 2=0C .2121B B A A = -1 D .2121A A B B =1 8.已知两条直线l 1:y = x : l 2:ax -y =0 :其中a 为实数 :当这两条直线的夹角在(0 :12)内变动时 :a 的取值范围是( )A .(0 :1)B .(33 : 3)C .(33: 1) ∪(1 : 3)D .(1 :3)9.已知直线l 1:y =-2x +3 :l 2:y ==x -23:则l 1、l 2的夹角是A .arctan3B .arctan(-3)C .π-arctan3D . π-arctan(-3)10.已知直线l 1:sin θ·x +cos θ·y +m=0 : l 2:x +cot θ·y +n=0 (θ为锐角 :m :n ∈R 且m ≠n)则y xl 2l 1a 2a 1l 1与l 2的位置关系是 ( )A .平行B .垂直C .重合D .相交但不垂直二、填空题(本题共4小题 :每小题6分 :共24分)11.已知直线l 的方程是kx -y +2+3k =0(k ∈R) :则直线l 必经过点 . 12.若直线的倾斜角为π-arctan21:且过点(1 :0) :则直线l 的方程为 . 13.直线 2x -y -4=0绕它与x 轴的交点逆时针旋转45°所得的直线方程是 . 14.两条平行线3x +4y -12=0和6x +8y +6=0间的距离是 . 三、解答题(本大题共6题 :共76分)15.求经过原点且经过以下两条直线的交点的直线的方程:022:,022:21=--=+-y x l y x l .(12分)16.△ABC 中 :BC 边上的高所在直线的方程为x -2y +1=0 :∠A 的平分线所在直线的方程为y =0 :若点B 的坐标为(1 :2) :求点A 和点C 的坐标.(12分) 17.已知两点A (-1 :-5) :B (3 :-2) :直线l 的倾斜角是直线AB 倾斜角的一半 :求直线l 的斜率. (12分)18.在△ABC 中 :已知顶点A (1 :1) :B (3 :6)且△ABC 的面积等于3 :求顶点C 的轨迹方程.(12分)19.光线从点A (2 :3)射出 :若镜面的位置在直线01:=++y x l 上 :反射线经过 B (1 :1) :求入射光线和反射光线所在直线的方程 :并求光线从A 到B 所走过的路线长.(14分)20.如图 :根据指令(γ :θ)(γ≥0 :-180°<θ≤180°) :机器人在平面上能完成下列动作:先原地旋转角度θ(θ为正时 :按逆时针方向旋转θ :θ为负时 :按顺时针方向旋转θ) :再朝其面对的方向沿直线行走距离γ.(1)现机器人在平面直角坐标系的坐标原点 :且面对x 轴正方向.试给机器人下一个指令 :使其移动到点(4 :4).(2)机器人在完成该指令后 :发现在点(17 :0)处有一小球 正向坐标原点作匀速直线滚动.已知小球滚动的速度为机器人直线行走速度的2倍 :若忽略机器人原地旋转所需的时间 :问机器人最快可在何处截住小球?并给出机器人截住小球所需的指令(结果用反三角函数表示).(14分)y4A B (1 :2)O xy参考答案一.选择题(本大题共10小题 :每小题5分 :共50分)题号 1 2 3 4 5 6 7 8 9 10 答案BDDCBDACAA二.填空题(本大题共4小题 :每小题6分 :共24分)11.(-3 :2) 12.x +2 y -1=0 13.3 x + y -6=0 14. 3 三、解答题(本大题共6题 :共76分) 15.(12分)[解析]:解方程组⎩⎨⎧==⎩⎨⎧=--=+-22 022022y x y x y x 得所以 : l 1与l 2的交点是(2 :2). 设经过原点的直线方程为kx y = :把点(2 :2)的坐标代入以上方程 :得1=k :所以所求直线方程为.x y =(另:求直线交点与求直线方程的综合 :求解直线方程也可应用两点式:020020--=--x y :即.x y =)16.(12分)[解析]:由 ⎩⎨⎧==+-0012y y x 得顶点A (-1 :0)又 :AB 的斜率1)1(102=---=ABk因为x 轴是∠A 的平分线 :故AC 的斜率为-1 :AC 所在直线的方程为y =-( x +1) ①已知BC 上的高所在直线方程为x -2 y +1=0 :故BC 的斜率为-2 :BC 所在的直线方程为y -2=-2(x –1)② 联立①②解得顶点C 的坐标为(5 :-6). 17.(12分)[解析]:设直线l 的倾斜角α :则由题得直线AB 的倾斜角为2α.∵tan2α=kAB =.43)1(3)5(2=----- 43tan 1tan 22=-∴σσ即3tan 2α+8tan α-3=0 : 解得tan α=31或tan α=-3. ∵tan2α=43>0 :∴0°<2α<90° : 0°<α<45° : ∴tan α=31. 因此 :直线l 的斜率是31 18.(12分)[解析]:设顶点C 的坐标为(x :y ) :作CH ⊥AB 于H :则动点C 属于集合P ={C|321=⋅CH AB } :∵kAB=251316=--.∴直线AB 的方程是y -1=25(x -1) :即5x -2y -3=0.∴|CH|=29325)2(532522--=-+--y x y x329325292129)16()13(22=--⨯⨯∴=-+-=y x AB化简 :得|5x -2y -3|=6 :即5x -2y -9=0或5x -2y +3=0 :这就是所求顶点C 的轨迹方程.19.(14分)[解析]:设点A 关于直线l 的对称点为),(00y x A 'l A A 被' 垂直平分 .34123012322000000⎩⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧=--=++++∴y x x y y x 解得)1,1(),3,4(B A --'点 在反射光线所在直线上.∴反射光线的方程为0154414313=+-++=++y x x y 即解方程组⎩⎨⎧=++=+-010154y x y x 得入射点的坐标为)31,32(--.由入射点及点A 的坐标得入射光线方程为02453223231331=+-++=++y x x y 即光线从A 到B 所走过的路线长为41)13()14(||22=--+--='B A20.(14分)xy44OPQ[解析]:(1)如图γ=24:θ= 45 :所下指令为(24 : 45)(2)设机器最快在点P (x :0)处截住小球 :则因为小球速度是机器人速度的2倍 :所以在相同时间内有22)40()4(217-+-=-x x即73230161232=-==-+x x ,x x或得 因为要求机器人最快地去截住小球 :即小球滚动距离最短 :所以x =7 : 故机器人最快可在点P (7 :0)处截住小球 : 又设Q (4 :4) :机器人在Q 点旋转的角度为α- 则PQ|5)40()47(222=-+-=1=OQ k :344740-=--=PQ k(法一):由1=OQk ⇒∠QOP=45° :34-=PQ k ⇒∠QPx=34arctan -π34arctan45+=∴ α : -)34arctan 45(+-= α (法二): PQOQ PQ OQ k k k k ⋅+-=1tan α71341)34(1-=⋅---=7arctan 180-=∴ α :)7arctan 180(--=- α 故 :所给的指令为(5 :34arctan45--)或(5 :7arctan 180+- )。
2023-2024学年吉林省长春市部分校高二下学期期末测试数学试卷(含答案)

2023-2024学年吉林省长春市部分校高二下学期期末测试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.设x ∈R ,则“1<x <2”是“|x−2|<1”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2.已知集合A ={x|log 2x ≥1},B ={x|1<x <3},则A ∪B =( )A. [2,3)B. (1,+∞)C. [2,+∞)D. (0,+∞)3.命题“∃x ∈R,−x 2+ax−1>0”是假命题,则实数a 的取值范围是( ).A. (−∞,2]B. (−2,2)C. [−2,2]D. [2,+∞)4.已知函数f(x)=2e x ,则lim Δx→0f(1+Δx)−f(1)−3Δx =( )A. −2e3B. −2eC. 2e −3D. 2e5.曲线f(x)=3x 3−1x 在点(1,f(1))处的切线的方程为( )A. 10x +y−8=0B. 10x−y−8=0C. 8x−y−6=0D. 8x +y−6=06.若a =30.5,b =log 0.53,c =0.32,则a ,b ,c 的大小关系为( )A. b <a <cB. c <b <aC. c <a <bD. b <c <a7.定义在R 上的奇函数f (x ),满足f (x +3)=f (1−x ),x ∈[0,2]时,f (x )=me x −1,则f (31)=( )A. e +1B. e−1C. 1−eD. −e8.已知函数y =f (x )是定义在R 上的奇函数,f ′(x)是f (x )的导函数,且当x ∈(−∞,0)时,xf′(x )<2f (x ),f(−1)=0,则不等式f (x 2)>0的解集为( )A. (−∞,−1)∪(0,1) B. (−1,a )∪(0,1)C. (−1,0)∪(1,+∞)D. (−∞,−1)∪(1,+∞)二、多选题:本题共3小题,共15分。
安徽省马鞍山市2023-2024学年高二上学期期末测试数学试题含答案

马鞍山2023-2024学年度第一学期期末测试高二数学试题(答案在最后)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在空间直角坐标系中,已知()1,3,2A --,()2,0,4AB =,则点B 的坐标是A.()3,3,2 B.()3,3,2---C.()1,3,6- D.()1,3,6--【答案】C 【解析】【分析】根据空间向量的坐标运算即可求解.【详解】设(),,B x y z ,()1,3,2A --,则()1,3,2AB x y z =++-,而()2,0,4AB =,所以123024x y z +=⎧⎪+=⎨⎪-=⎩,解得136x y z =⎧⎪=-⎨⎪=⎩,所以()1,3,6B -,故选:C.【点睛】本题考查了空间向量的坐标运算,属于基础题.2.由点(1,4)P -向圆2246120x y x y +--+=引的切线长是()A.3B.C.D.5【答案】A 【解析】【分析】将圆的方程化为标准形式,求出点(1,4)P -到圆心()2,3的距离,结合勾股定理即可得解.【详解】圆2246120x y x y +--+=即圆()()22231x y -+-=的圆心半径分别为()2,3,1r =,点(1,4)P -到圆心()2,3的距离为d ==,所以点(1,4)P -向圆2246120x y x y +--+=3=.故选:A.3.已知等差数列{}n a 的公差为1,108a =,则2024a =()A.2021B.2022C.2023D.2024【答案】B 【解析】【分析】由等差数列的性质代入即可求解.【详解】由题意得()2024102024101820142022a a +-⨯=+==.故选:B.4.抛物线22y x =的焦点坐标为()A.10,2⎛⎫ ⎪⎝⎭B.10,4⎛⎫ ⎪⎝⎭C.10,8⎛⎫ ⎪⎝⎭D.()0,1【答案】C 【解析】【分析】先将抛物线方程化为标准形式,再求焦点坐标.【详解】由22y x =得212x y =,所以抛物线为开口向上的抛物线,且14p =,所以焦点坐标为10,8⎛⎫ ⎪⎝⎭,故选:C5.已知椭圆22221(0)x y a b a b +=>>的焦点为12,F F ,等轴双曲线222y x b -=的焦点为3F ,4F ,若四边形1324F F F F 是正方形,则该椭圆的离心率为()A.12B.2 C.3D.2【答案】C 【解析】【分析】根据椭圆和双曲线的焦距相等列方程,然后整理可得.【详解】由题意知,椭圆和双曲线的焦距相等,所以有=,整理得2213b a =,所以3e ===.故选:C6.已知正项等比数列{}n a 中,24492a a ⋅=,791092a a ⋅=,则13a =()A.732 B.832 C.932D.992【答案】B 【解析】【分析】由正项等比数列的性质,2243a a a ⋅=,2798313a a a a a ⋅==⋅,可求13a 的值.【详解】正项等比数列{}n a 中,2243492a a a ⋅==,则3232a =,27981092a a a ⋅==,则8532a =,又28313a a a =⋅,即131029322a =⋅,解得13832a =.故选:B7.三棱锥O ABC -中,点P ∈面ABC ,且12OP OA kOB OC =+-,则实数k =()A.12-B.12 C.1 D.32【答案】D 【解析】【分析】由四点共面的充要条件列方程即可得解.【详解】由题意三棱锥O ABC -中,点P ∈面ABC ,且12OP OA kOB OC =+- ,所以1112k +-=,解得32k =.故选:D.8.已知O 为坐标原点,双曲线:22221x y a b-=(0a >,0b >)的左焦点为F ,右顶点为A ,过点F 向双曲线的一条渐近线作垂线,垂足为P ,且FP OA =,直线AP 与双曲线的左支交于点B ,则PFB ∠的大小为()A.30︒B.45︒C.60︒D.75︒【答案】B 【解析】【分析】根据FP 垂直渐近线且=FP OA ,可得e =a b ==()1,1P -及2B x =-,这样就可得BF x ⊥轴,从而可得求解.【详解】易知FP b =,于是a b =,故离心率e =,不妨设a b ==()1,1P -,()2,0F -,)A,不难求得2B x =-,于是BF x ⊥轴,所以45PFB ∠=︒.故选:B二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若三条直线l 1:210x y -+=,l 2:10x y +-=,l 3:220x ay a ++-=有2个公共点,则实数a 的值可以为()A.2-B.1- C.1D.2【答案】BD 【解析】【分析】由题意知三条直线中,有两条直线相互平行,讨论13,l l 平行和23,l l 平行,求解即可.【详解】由题意可得,三条直线中,有两条直线相互平行,l 1:210x y -+=的斜率为2,l 2:10x y +-=的斜率为1-,所以12,l l 不平行,若13,l l 平行,则22211a a -=≠-,解得:1a =-,若23,l l 平行,则22111a a -=≠-,解得:2a =,综上:实数a 的值为1a =-或2a =.故选:BD .10.平面直角坐标系数Oxy 中,已知(1,0),(1,0)A B -,则使得动点P 的轨迹为圆的条件有()A.1PA PB ⋅=B.221PA PB += C.||2||PA PB = D.||||3PA PB +=【答案】AC 【解析】【分析】设(,)P x y ,根据选项中的条件列出方程,化简,结合化简结果可判断动点轨迹是否为圆,即可判断A ,B ,C ;结合椭圆定义可判断D.【详解】设(,)P x y ,则(1,),(1,)PA x y PB x y =---=--,对于A ,由1PA PB ⋅=得222211,2x y x y -+=∴+=,此时动点P 的轨迹为圆,A 正确;对于B ,由221PA PB += 得2222(1)(1)1x y x y --++-+=,则2212x y =-+,该式无意义,此时点P 不存在,B 错误;对于C ,由||2||PA PB ==,整理得2210103x y x +-+=,即22516()39x y -+=,此时动点P 的轨迹为圆,C 正确;对于D ,由||||3PA PB +=可知,动点P 到两定点(1,0),(1,0)A B -的距离之和为3,且3||2AB >=,此时动点P 的轨迹为椭圆,D 错误,故选:AC11.已知曲线C :221mx ny +=,则下列结论正确的是()A.若0m n >>,则C 是椭圆,其焦点在y 轴上B.若0m n =>,则CC.若0mn <,则C 是双曲线,其渐近线方程为0mx ny ±=D.若0,0m n =>,则C 是两条直线【答案】ABD 【解析】【分析】结合选项条件,分别根据椭圆、圆以及双曲线的标准方程,化简曲线C :221mx ny +=为相应的标准方程,即可判断A ,B ,C ;0,0m n =>时,方程即为y =,即可判断D.【详解】对于A ,若0m n >>,则110m n<<故曲线C :221mx ny +=,即22111x y m n+=,表示椭圆,其焦点在y 轴上,A 正确;对于B ,若0m n =>,110m n=>则曲线C :221mx ny +=,即221x y n+=,表示半径为的圆,B 正确;对于C ,若0mn <,不妨设0,0m n ><,则曲线C :221mx ny +=,即22111x y m n-=-,表示焦点在x 轴上的双曲线则a b ==b y x a =±=,0=,C 错误;对于D ,若0,0m n =>,曲线C :221mx ny +=,即21ny =,即y =,则C 是两条直线,D 正确,故选:ABD12.已知数列{}n a 中,10a =,()2*1n n n a a a n λ+=+-∈N,则下列结论正确的是()A.当0λ=时,数列{}n a 为常数列B.当0λ<时,数列{}n a 单调递减C.当104λ<≤时,数列{}n a 单调递增D.当14λ>时,数列{}n a 为摆动数列【答案】ABC 【解析】【分析】求出数列{}n a 各项的值,可判断A 选项;利用数列的单调性可判断B 选项;利用数学归纳法推导出n a ⎡∈⎣,结合数列的单调性可判断C 选项;取1λ=,求出数列{}n a 各项的值,可判断D 选项.【详解】对于A 选项,当0λ=时,()2*1n n n a a a n +=-∈N,由10a =可得20a =,30a =,40a =,L ,以此类推可知,对任意的n *∈N ,0n a =,此时,数列{}n a 为常数列,A 对;对于B 选项,当0λ<时,则210n n n a a a λλ+-=-≤<,此时,数列{}n a 单调递减,B 对;对于C 选项,因为104λ<≤,()2*1n n n a a a n λ+=+-∈N ,且10a =,则(2a λ=∈,猜想,n *∀∈N ,0n a ≤<当1n =时,猜想成立,假设当()n k k *=∈N时,猜想成立,即0ka≤<,则当1n k =+时,2211124k k k k a a a a λλ+⎛⎫=-++=--++ ⎪⎝⎭,因为104λ<≤,则102<≤,则函数21124y x λ⎛⎫=--++ ⎪⎝⎭在⎡⎣上单调递增,所以,2211124k kk k a a a a λλλ+⎛⎫⎡=-++=--++∈ ⎪⎣⎝⎭,即1k a +⎡∈⎣成立,由数学归纳法可知,对任意的n *∈N ,n a ⎡∈⎣,所以,210n n n a a a λ+-=->,此时,数列{}n a 单调递增,C 对;对于D 选项,当14λ>时,取1λ=,则()2*11n n n a a a n +=+-∈N 且10a =,则21a =,31a =,41a =,L ,以此类推可知,当2n ≥且n *∈N 时,1n a =,即0,11,2n n a n =⎧=⎨≥⎩,此时,数列{}n a 不是摆动数列,D 错.故选:ABC.【点睛】方法点睛:判断数列单调性的方法有:(1)利用数列对应的函数的单调性判断;(2)对数列的前后项作差(或作商),利用比较法判断.三、填空题:本题共4小题,每小题5分,共20分.13.过点()1,0作直线与24y x =交于A ,B 两点,若||4AB =,则直线AB 的倾斜角为______.【答案】90︒【解析】【分析】联立直线与抛物线方程可求得12x x +,再利用抛物线的焦点弦公式得到关于m 的方程,解之即可得解.【详解】因为抛物线24y x =的焦点坐标(1,0)F ,准线为=1x -,则直线AB 过抛物线的焦点,且由题意可知直线AB 的斜率不为0,不妨设直线AB 为1x my =+,()11,A x y ,()22,B x y ,联立214x my y x=+⎧⎨=⎩,消去x ,得2440y my --=,易知0∆>,则124y y m +=,故()21212242x x m y y m +=++=+,因为||4AB =,所以1224x x ++=,即2422m +=,故0m =,所以直线AB 的方程为1x =,则直线AB 的倾斜角为90︒.故答案为:90︒.14.设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =__________.【答案】1n-【解析】【详解】原式为1111n n n n n n n a S S S S S S ++++=⇔-=,整理为:1111n n S S +-=,即1111n n S S +-=-,即数列1n S ⎧⎫⎨⎬⎩⎭是以-1为首项,-1为公差的等差的数列,所以()()1111n n n S =-+--=-,即1n S n =-.【点睛】这类型题使用的公式是11n n n S a S S -⎧=⎨-⎩12n n =≥,一般条件是()n n S f a =,若是消n S ,就需当2n ≥时构造()11n n S f a --=,两式相减1n n n S S a --=,再变形求解;若是消n a ,就需在原式将n a 变形为:1nn n a S S -=-,再利用递推求解通项公式.15.设12,F F 是椭圆22221x y a b+=(0a b >>)的两个焦点,P 为椭圆上任一点,若1260F PF ∠=︒且12F PF △的面积为3,则该椭圆的短轴长为______.【答案】10【解析】【分析】由椭圆定义得到122PF PF a +=,122F F c =,由余弦定理得到21243b PF PF ⋅=,结合三角形面积公式得到方程,求出5b =,得到答案.【详解】由椭圆定义得122PF PF a +=,122F F c =,由余弦定理得()2222212121212121212122cos 22PF PF PF PF F F PF PF F F F PF PF PF PF PF +-⋅-+-∠==⋅⋅222121212124244222a PF PF c b PF PF PF PF PF PF -⋅--⋅==⋅⋅,即2121242122b PF PF PF PF -⋅=⋅,解得21243b PF PF ⋅=,由三角形面积公式得221212114sin 22323b PF PF FPF ⋅∠=⋅⋅=,即233=,解得5b =,故该椭圆的短轴长210b =.故答案为:1016.设集合{}1,2,3,,14A ⊆ ,若A 中任意3个元素均不构成等差数列,则集合A 中元素最多有______个.【答案】8【解析】【分析】先判断出8k ≤,再根据特例可判断等号成立,故可求元素个数的最大值.【详解】设{}12,,,k A a a a = ,若9k ≥且{}n a 递增,由题意可知31533,3a a a a -≥-≥且3153a a a a -≠-,故517a a -≥,同理957a a -≥,又5195a a a a -≠-,故有9115a a -≥,矛盾.故8k ≤,取{1,2,4,5,10,11,13,14}A =满足条件.故答案为:8.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.棱长为2的正四面体PABC 中,设PA a = ,PB b = ,PC c =.M ,N 分别是棱,AB PC 的中点.(1)用向量a ,b ,c 表示MN;(2)求||MN.【答案】(1)1()2MN a b c =--+(2)||MN =【解析】【分析】(1)根据空间向量基本定理求解即可;(2)由空间向量模长公式和数量积公式求解即可.【小问1详解】连接PM ,所以()111222MN PN PM PC PA AM PC PA AB ⎛⎫=-=-+=-+ ⎪⎝⎭111111222222PC PA PB PA PC PA PB ⎛⎫=-+-=-- ⎪⎝⎭,因为PA a = ,PB b = ,PC c =,所以1111111()2222222MN PC PA PB c a b a b c =--=--=--+.【小问2详解】MN == 因为正四面体PABC 的边长为2,所以,,a b c的夹角为60︒,2a b c === ,所以12222c a b a c b ⋅=⋅=⋅=⨯⨯=,MN == .18.已知公差不为0的等差数列{}n a 的首项13a =,且11a +,21a +,41a +成等比数列.(1)求数列{}n a 的通项公式;(2)设11n n n b a a +=,*N n ∈,n S 是{}n b 的前n 项和,求使113n S <成立的最大的正整数n .【答案】(1)41n a n =-(2)8【解析】【分析】(1)设等差数列{}n a 的公差为,0d d ≠,由题意列出关于d 的方程,求出d ,即可求得答案;(2)结合(1)可得11n n n b a a +=的表达式,利用裂项相消法求得n S 的表达式,解数列不等式,即可求得答案.【小问1详解】设等差数列{}n a 的公差为,0d d ≠,13a =,由11a +,21a +,41a +成等比数列,得()()()2214111a a a +=++,即2(4)4(43)d d +=+,解得4d =或0(舍),所以34(1)41n a n n =+-=-;【小问2详解】因为111111(41)(43)44143n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭,所以1111111111437711414343433(43)n nS n n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-== ⎪-+++⎝⎭⎝⎭,由113n S <,得13(43)13n n <+,解得9n <,所以使113n S <成立的最大的正整数8n =.19.在三棱台111ABC A B C -中,1111,2,4A B AA AB ===,1AA ⊥平面ABC ,11AB AC ⊥.(1)求证:AB BC ⊥;(2)若4BC =,求直线1AC 与平面1B AC 所成角的正弦值.【答案】(1)证明见解析(2)19【解析】【分析】(1)根据题意先证1AB ⊥平面1BAC ,可得1AB BC ⊥,进而可证BC ⊥平面11BAA B ,即可得结果;(2)建系,求平面1B AC 的法向量,利用空间向量求线面夹角.【小问1详解】因为1AA ⊥平面ABC ,且,AB BC ⊂平面ABC ,可知1AA BC ⊥,1AA AB ⊥,在11Rt B A A △中,可得11111tan 2AA AB A A B ∠==,在1Rt A AB △中,可得11111tan tan 2AA B A B A BA BA ∠=∠==,即1111tan tan 1AB A B A B ∠⋅∠=,且1111π,0,2AB A B A B ⎛⎫∠∠∈ ⎪⎝⎭,可得1111π2AB A B A B ∠+∠=,则11AB A B ⊥,又因为11AB AC ⊥,111A B AC A ⋂=,11,A B A C ⊂平面1BAC ,可得1AB ⊥平面1BAC ,且BC ⊂平面1BAC ,则1AB BC ⊥.且11AA AB A = ,11,AA AB ⊂平面11BAA B ,可得BC ⊥平面11BAA B ,且AB ⊂平面11BAA B ,所以BC AB ⊥.【小问2详解】如图,以B 为坐标原点,,BC BA 分别为,x y 轴所在直线,过B 平行于直线1AA 的直线为z 轴所在直线,建立空间直角坐标系则11(0,4,0),(4,0,0),(0,3,2),(0,4,2)A C B A ,可得111(4,4,2),(0,1,2),(4,3,2)CA AB CB =-=-=-,设平面1B AC 的法向量为(,,)n x y z = ,则11204320n AB y z n CB x y z ⎧⋅=-+=⎪⎨⋅=-++=⎪⎩ ,令1z =,解得2x y ==,可得(2,2,1)n =,则11121cos ,639CA n CA n CA n ⋅===⨯⋅,所以直线1AC 与平面1B AC 所成角的正弦值为19.20.已知椭圆Γ:224x y λ+=(0λ>).(1)若椭圆Γ的焦距为6,求λ的值;(2)设(0,1)P ,若椭圆Γ上两点M ,N 满足2MP PN =,求点N 横坐标取最大值时λ的值.【答案】(1)12(2)20【解析】【分析】(1)由焦距以及,,a b c 之间的关系列方程即可求解;(2)设出直线方程,并与椭圆方程联立,结合已知和韦达定理即可求解.【小问1详解】设焦距为26c =,则294c λλ=-=,解得12λ=.【小问2详解】要使点N 的横坐标最大,需直线MN 斜率存在.设:1MN y kx =+,与椭圆Γ联立得()2241840k x kx λ+++-=,由韦达定理:2284,4141M N M Mk x x x x k k λ--+==++.由2MP PN =知2M N x x =-,故()2841N M N kx x x k =-+=+,要使点N 的横坐标最大,在这里不妨取0k >,所以28814142N k k x k k =≤=+,当且仅当12k =时,等号成立.当12k =时,224241M N N x x x k λ-==-+,即482λ-=-,此时20λ=.21.已知数列{}n a 的前n 项和为n S ,点(),n n S 在函数222x xy =+的图象上.(1)求数列{}n a 的通项公式;(2)设2n an b =,(i )求数列{}(21)n n a b -⋅的前n 项和n T ;(ii )求数列{}2n n a b ⋅的前n 项和n R .【答案】(1)()*n a n n =∈N (2)(i )1(23)26n n T n +=-+;(ii )()212326n n R n n +=-+-【解析】【分析】(1)由,n n S a 的关系即可求解;(2)(i )由错位相减法以及等比数列求和公式即可得解;(ii )由(i )结论结合错位相减法以及等比数列求和公式即可得解.【小问1详解】点(),n n S 在函数222x x y =+的图象上,所以222n n nS =+.当1n =时,111a S ==;当2n ≥时,1n n n a S S n -=-=.故()*n a n n =∈N .【小问2详解】由(1)知,()*,2n n na n n b=∈=N.(i )121232(21)2n n T n =⨯+⨯++- ①,23121232(23)2(21)2n n n T n n +=⨯+⨯++-+- ②,①-②得:()()311231121222222(21)22(21)212n nn n n T n n -++--=++++--=+-- ,故1(23)26n n T n +=-+.(ii )2122212222nn R n =⨯+⨯++⨯ ③,222322121222(1)22nn n R n n +=⨯+⨯++-⨯+⨯ ④,③-④得:1222121123252(21)222nn n n n R n n T n ++-=⨯+⨯+⨯++--=- ,故()212326n n R n n +=-+-.22.过点()2,8-作直线l 与双曲线C :221416x y -=交于A ,B 两点,P 是双曲线C 的左顶点,直线,PA PB与y 轴分别交于,Q R .(1)求直线l 斜率的取值范围;(2)求证:线段QR 的中点M 为定点,并求出点M 的坐标.【答案】(1)522k k k ⎧⎫>-≠±⎨⎬⎩⎭且(2)证明见解析,(0,2)M -【解析】【分析】(1)设:8(2)l y k x -=+,与双曲线22:1416x y C -=联立由直线与双曲线的位置关系求解即可;(2)表示出直线PA 的方程,令0x =求出,Q R 得坐标,则()()()122112122222Q kM y y y x y x y y y x x ++++==++,将韦达定理代入化简即可得出答案.【小问1详解】由题意可知直线l 的斜率存在,设:8(2)l y k x -=+,与双曲线22:1416x y C -=联立得:()()()22224416432800k x k k x k k --+-++=.因为直线l 与双曲线C 交于,A B 两点,所以240k -≠且0∆>,由240k -≠,得2k ≠±,由()()()()2222Δ4164443280256250k kk k k k =++-⋅++=+>,得52k >-,解得直线l 斜率的取值范围为522k k k ⎧⎫>-≠±⎨⎬⎩⎭且.【小问2详解】(2,0)P -,设()()1122,,,A x y B x y ,则11:(2)2y PA y x x =++,令0x =得1122Q y y x =+,同理可得2222k y y x =+.于是,()()()122112121212222222Q kM y y y x y x y y y yy x x x x ++++==+=++++()()()()12211212122828241624k x x k x x k x x k x x x x ⎡⎤⎡⎤⎡⎤+++++++++⎣⎦⎣⎦⎣⎦=+++()()121212122(84)83224kx x k x x k x x x x +++++=+++,由韦达定理有()2212122243280416,44k k k k x x x x k k-++++==--,代入上式可得:()()()()()()222222243280(84)416(832)41282,6443280241644M k k k k k k k k y k k kk k -+++++++-===---+++++-所以线段QR 的中点为定点(0,2)M -..【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;。
高二数学测试题及答案

高二数学测试题及答案新博士教导高二数学摸底试卷姓名:得分:第Ⅰ卷(挑选题,共50分)一、挑选题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,惟独一项是符合题目要求的.1.若y x C C C 117117+=,则y x ,的值分离是()A .6,12==y xB .7,11==y xC .6,11==y xD .7,12==y x2.已知直线α平面⊥m ,直线β平面?n ,给出下列四个命题:①若βα//,则n m ⊥;②若βα⊥,则n m //;③若n m //,则βα⊥;④若n m ⊥,则βα//.其中正确的命题有()A .③④B .①③C .②④D .①②3.5个人排成一排,若A 、B 、C 三人左右挨次一定(不一定相邻),那么不同排法有()A .55AB .3333A A ?C .3355A AD .33A4.某校高三年级进行一次演讲赛共有10位学生参赛,其中一班有3位,二班有2位,其它班有5位,若采纳抽签的方式确定他们的演讲挨次,则一班有3位学生恰好被排在一起(指演讲序号相连),而二班的2位学生没有被排在一起的概率为()A .110B .120C .140D .11205.一颗骰子的六个面上分离标有数字1、2、3、4、5、6,若以延续掷两次骰子分离得到的点数m 、n 作为P 点坐标,则点P 落在圆1622=+y x 内的概率为()A .91B .92C .31D .946.坛子里放有3个白球,2个黑球,从中举行不放回摸球. A 1表示第一次摸得白球,A 2表示其次次摸得白球,则A 1与A 2是()A .互斥大事B .自立大事C .对立大事D .不自立大事7.从6种小麦品种中选出4种,分离种植在不同土质的4块土地上举行实验,已知1号、2 号小麦品种不能在实验田甲这块地上种植,则不同的种植办法有()A .144种B .180种C .240种D .300种8.在(312xx -)8的绽开式中常数项是()A .-28B .-7C .7D .289.甲、乙两人自立地解同一问题,甲解决这个问题的概率是P 1,乙解决这个问题的概率是 P 2,那么其中至少有1人解决这个问题的概率是()A .P 1+P 2B .P 1·P 2C .1-P 1·P 2D .1-(1- P 1) (1- P 2)10.袋中有6个白球,4个红球,球的大小相同,则甲从袋中取1个是白球,放入袋中,乙再取1个是红球的概率为()A .245B .415C .825D .625第Ⅱ卷(非挑选题,共100分)二、填空题:本大题共4小题,每小题6分,共24分。
高二数学必修二测试题及答案

高二数学必修二测试题及答案【导语】着眼于眼前,不要沉迷于玩乐,不要沉迷于学习进步没有别*的痛楚中,进步是一个由量变到质变的进程,只有足够的量变才会有质变,沉迷于痛楚不会改变什么。
作者高二频道为你整理了《高二数学必修二测试题及答案》,期望对你有所帮助!【一】卷Ⅰ一、挑选题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数、,“”是“方程的曲线是双曲线”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.命题“所有能被2整除的数都是偶数”的否定是A.所有不能被2整除的数都是偶数B.所有能被2整除的数都不是偶数C.存在一个不能被2整除的数是偶数D.存在一个能被2整除的数不是偶数3.已知椭圆上的一点到椭圆一个焦点的距离为,则到另一焦点距离为A.B.C.D.4.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题是“甲降落在指定范畴”,是“乙降落在指定范畴”,则命题“至少有一位学员没有降落在指定范畴”可表示为A.B.C.D.5.若双曲线的离心率为,则其渐近线的斜率为A.B.C.D.6.曲线在点处的切线的斜率为A.B.C.D.7.已知椭圆的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线的焦点坐标为A.B.C.D.8.设是复数,则下列命题中的假命题是A.若,则B.若,则C.若,则D.若,则9.已知命题“若函数在上是增函数,则”,则下列结论正确的是A.否命题“若函数在上是减函数,则”是真命题B.逆否命题“若,则函数在上不是增函数”是真命题C.逆否命题“若,则函数在上是减函数”是真命题D.逆否命题“若,则函数在上是增函数”是假命题10.马云常说“便宜没好货”,他这句话的意思是:“不便宜”是“好货”的A.充分条件B.必要条件C.充分必要条件D.既不充分也不必要条件11.设,,曲线在点()处切线的倾斜角的取值范畴是,则到曲线对称轴距离的取值范畴为A.B.C.D.12.已知函数有两个极值点,若,则关于的方程的不同实根个数为A.2B.3C.4D.5卷Ⅱ二、填空题:本大题共4小题,每小题5分,共20分.13.设复数,那么等于________.14.函数在区间上的值是________.15.已知函数,则=________.16.过抛物线的焦点作倾斜角为的直线,与抛物线分别交于、两点(在轴左侧),则.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明进程或演算步骤.17.(本小题满分10分)已知z是复数,和均为实数(为虚数单位).(Ⅰ)求复数;(Ⅱ)求的模.18.(本小题满分12分)已知集合,集合若是的充分不必要条件,求实数的取值范畴.19.(本小题满分12分)设椭圆的方程为点为坐标原点,点,分别为椭圆的右顶点和上顶点,点在线段上且满足,直线的斜率为.(Ⅰ)求椭圆的离心率;(Ⅱ)设点为椭圆的下顶点,为线段的中点,证明:.20.(本小题满分12分)设函数(其中常数).(Ⅰ)已知函数在处获得极值,求的值;(Ⅱ)已知不等式对任意都成立,求实数的取值范畴.21.(本小题满分12分)已知椭圆的离心率为,且椭圆上点到椭圆左焦点距离的最小值为. (Ⅰ)求的方程;(Ⅱ)设直线同时与椭圆和抛物线相切,求直线的方程.22.(本小题满分12分)已知函数(其中常数).(Ⅰ)讨论函数的单调区间;(Ⅱ)当时,,求实数的取值范畴.参考答案一.挑选题CDBACCDABBDB二.填空题三.解答题17.解:(Ⅰ)设,所以为实数,可得,又由于为实数,所以,即.┅┅┅┅┅┅┅5分(Ⅱ),所以模为┅┅┅┅┅┅┅10分18.解:(1)时,,若是的充分不必要条件,所以,,检验符合题意;┅┅┅┅┅┅┅4分(2)时,,符合题意;┅┅┅┅┅┅┅8分(3)时,,若是的充分不必要条件,所以,,检验不符合题意.综上.┅┅┅┅┅┅┅12分19.解(Ⅰ)已知,,由,可得,┅┅┅┅┅┅┅3分所以,所以椭圆离心率;┅┅┅┅┅┅┅6分(Ⅱ)由于,所以,斜率为,┅┅┅┅┅┅┅9分又斜率为,所以(),所以.┅┅┅┅┅┅┅12分20.解:(Ⅰ),由于在处获得极值,所以,解得,┅┅┅┅┅┅┅3分此时,时,,为增函数;时,,为减函数;所以在处获得极大值,所以符合题意;┅┅┅┅┅┅┅6分(Ⅱ),所以对任意都成立,所以,所以.┅┅┅┅┅┅┅12分21.解:(Ⅰ)设左右焦点分别为,椭圆上点满足所以在左顶点时取到最小值,又,解得,所以的方程为.(或者利用设解出得出取到最小值,对于直接说明在左顶点时取到最小值的,酌情扣分);┅┅┅┅┅┅┅4分(Ⅱ)由题明显直线存在斜率,所以设其方程为,┅┅┅┅┅┅┅5分联立其与,得到,,化简得┅┅┅┅┅┅┅8分联立其与,得到,,化简得,┅┅┅┅┅┅┅10分解得或所以直线的方程为或┅┅┅┅┅┅┅12分22.(Ⅰ),设,该函数恒过点.当时,在增,减;┅┅┅┅┅┅┅2分当时,在增,减;┅┅┅┅┅┅┅4分当时,在增,减;┅┅┅┅┅┅┅6分当时,在增.┅┅┅┅┅┅┅8分(Ⅱ)原函数恒过点,由(Ⅰ)可得时符合题意.┅┅┅┅┅┅┅10分当时,在增,减,所以,不符合题意.┅┅┅┅┅┅┅12分【二】一、挑选题1.一个物体的位移s(米)和与时间t(秒)的关系为s?4?2t?t,则该物体在4秒末的瞬时速度是A.12米/秒B.8米/秒C.6米/秒D.8米/秒2.由曲线y=x2,y=x3围成的封闭图形面积为为A.21711B.C.D.41212323.给出下列四个命题:(1)若z?C,则z≥0;(2)2i-1虚部是2i;(3)若a?b,则a?i?b?i;(4)若z1,z2,且z1>z2,则z1,z2为实数;其中正确命题的个数为....A.1个B.2个C.3个D.4个4.在复平面内复数(1+bi)(2+i)(i是虚数单位,b是实数)表示的点在第四象限,则b的取值范畴是A.bB.b??11C.?<b<2D.b<2225.下面几种推理中是演绎推理的为....A.由金、银、铜、铁可导电,料想:金属都可导电;1111,,,的通项公式为an?B.料想数列(n?N?);n(n?1)1?22?33?42C.半径为r圆的面积S??r,则单位圆的面积S??;D.由平面直角坐标系中圆的方程为(x?a)2?(y?b)2?r2,估计空间直角坐标系中球的方程为(x?a)2?(y?b)2?(z?c)2?r2.6.已知f?x2x?1??2a?3a,若f1??8,则f??1??xA.4B.5C.-2D.-337.若函数f?x??lnx?ax在点P?1,b?处的切线与x?3y?2?0垂直,则2a?b等于A.2B.0C.-1D.-28.sinx?cosx?dx的值为A.0B.2?2??C.2D.449.设f?x?是一个多项式函数,在?a,b?上下列说法正确的是A.f?x?的极值点一定是最值点B.f?x?的最值点一定是极值点C.f?x?在?a,b?上可能没有极值点D.f?x?在?a,b?上可能没有最值点10.函数f?x?的定义域为?a,b?,导函数f??x?在?a,b?内的图像如图所示,则函数f?x?在?a,b?内有极小值点A.1个B.2个C.3个D.4个11.已知a1?1,an?1?an且?an?1?an??2?an?1?an??1?0,运算a2,a3,料想an等于A.nB.nC.nD.n?3?n12.已知可导函数f(x)(x?R)满足f¢(x)>f(x),则当a?0时,f(a)和eaf(0)大小关系为A.f(a)eaf(0)C.f(a)=eaf(0)D.f(a)≤eaf(0)232二、填空题13.若复数z=(a-2)+3i(a?R)是纯虚数,则14.f(n)=1+a+i=.1+ai111++鬃?(n?N+)23n经运算的f(2)?357,f(4)?2,f(8)?,f(16)?3,f(32)?,估计当n≥2时,有______.2221(n?N+),记f(n)?(1?a1)(1?a2)(1?an),试通过运算(n+1)215.若数列?an?的通项公式an=f(1),f(2),f(3)的值,估计出f(n)?________________.16.半径为r的圆的面积s(r)??r2,周长C(r)?2?r,若将r看作(0,+∞)上的变量,则(?r2)'?2?r①,①式用语言可以叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R的球,若将R看作(0,+?)上的变量,请写出类比①的等式:____________________.上式用语言可以叙述为_________________________.三、解答题:17.抛物线y?x2?1,直线x?2,y?0所围成的图形的面积18.已知a?b?c,求证:114??.a?bb?ca?c2an?2an?219.已知数列{an}的前n项和Sn满足:Sn?,且an?0,n?N?.2an(1)求a1,a2,a3;(2)料想{an}的通项公式,并用数学归纳法证明21.设函数f?x??xekx?k?0?(1)求曲线y?f?x?在点0,f?0?处的切线方程.(2)若函数f?x?在区间??1,1?内单调递增,求k的取值范畴.22.已知函数f(x)=alnx+x(a为实常数).(1)若a=-2,求证:函数f(x)在(1,+?)上是增函数;(2)求函数f(x)在[1,e]上的最小值及相应的x值;22??一、挑选题题号答案1C2A3A4A5C6A7D8C9C10A11B12B12.提示:令g(x)=e-xf(x),则gⅱ(x)=e-x[f(x)-f(x)]>0.所以g(x)在(-?,?)上为增函数,g(a)>g(0).e-af(a)>e0f(0),即f(a)>eaf(0),故选B.二、填空题13.n?24-3in14.f(2)?25n?2111f(n)?(1?2)(1?2)[1?]2n?223(n?1)215.f(n)?111111?(1?)(1?)(1?)(1?)(1?)(1?)22 33n?1n?113243nn?2n?2...???22334n?1n?12n?216.(?R)'?4?R;球的体积函数的导数等于球的表面积函数4332三、解答题17.解由x?1?0,得抛物线与轴的交点坐标是(?1,0)和(1,0),所求图形分成两块,分别用定积分表示面积2S1??|x2?1|dx,S2??(x2?1)dx.1112故面积S?S1?S2??1?1|x2?1|dx??(x2?1)dx=?(1?x2)dx??(x2?1)dx1?11212x3=(x?)318.证明:∵1?111818x32?(?x)1=1??12?(?1)?.333333a-ca-ca-b+b-ca-b+b-c+=+a-bb-ca-bb-cb-ca-bb-ca-b+≥2+2?a-bb-ca-bb-c4,(a>b>c)=2+∴a-ca-c114.+≥4得+≥a-bb-ca-bb-ca-ca11+-1,所以,a1=-1?2a119.(1)a1=S1=3,又∵an>0,所以a1=3-1.S2=a1?a2?a21??1,所以a2?5?3,2a23S3=a1?a2?a3?(2)料想an=a31??1所以a3?7?5.2a32n-1.3-1成立.2k-1成立2k+1.2n+1-证明:1o当n=1时,由(1)知a1=2o假定n=k(k?N+)时,ak=2k+1-ak+1=Sk?1?Sk?(ak?1aa111-??1)?(k??1)=k+1+2ak+12ak?12ak2所以ak+1+22k+1ak+1-2=0ak+1=2(k+1)+1-2(k+1)-1所以当n=k+1时料想也成立.综上可知,料想对一切n?N+都成立.kxkx¢¢f(x)=e+kxe21.解:(1),f(0)=1,f(0)=0∴y=f(x)在(0,0)处的切线方程为y=x.(x)=ekx+kxekx=(1+kx)ekx=0,得x=-(2)法一f¢若k>0,则当x?(?,当x?(1(k10)k1(x)0,f(x)单调递增.,+?)时,f¢k1若k0,f(x)单调递增.),f¢k1当x?((x)<0,f(x)单调递减.,+?)时,f¢k若f(x)在区间(-1,1)内单调递增,1≤-1,即k≤1.k1当k<0时,-≥1,即k≥-1.k故f(x)在区间(-1,1)内单调递增时当k>0时,-k的取值范畴是[-1,0)U(0,1]法二∵f(x)在区间(-1,1)内单调递增,(x)≥0在区间(-1,1)上恒成立.∴f¢ekx+kxekx≥0,∵ekx>0,∴1+kx≥0.即1+kx≥0在区间(-1,1)上恒成立.令g(x)=1+kx,4ìg(-1)≥0??∴í解得-1≤k≤1.?g(1)≥0??当k=0时,f(x)=1.故k的取值范畴是[-1,0)U(0,1].22.解:(1)当a??2时,f(x)?x2?2lnx,2(x2-1)(x)=>0.x?(1,?),f¢x故函数f(x)在(1,+?)上是增函数.2x2+a(x)=>0.(2)f¢x当x?[1,e],2x2+a?[a2,a+2e2].若a≥-2,f¢,(x)在[1,e]上非负(仅当a=-2,x=1时,f¢(x)=0)故函数f(x)在[1,e]上是增函数.此时,[f(x)]min=f(1)=1.若-2e2故[f(x)]min=f(-若a≤-2e2,f¢(x)在[1,e]上非正(仅当时a=-2e2,x=e时,f¢(x)=0)故函数f(x)在[1,e]上是减函数,此时[f(x)]min=f(e)=a+e2.综上可知,当a≥-2时,f(x)的最小值为1,相应的x的值为1;当-2e22e2时,f(x)的最小值为a+e2,相应的x值为e.。
期末高二数学选修2-2、2-3测试题(含答案)

高二数学选修2-2、2-3期末检测试题命题:伊宏斌 命题人:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试用时120分钟.第Ⅰ卷(选择题,共50分)一.选择题(本大题共10小题,每小题5分,共50分)1.过函数x y sin =图象上点O (0,0),作切线,则切线方程为 ( ) A .x y = B .0=y C .1+=x y D .1+-=x y 2.设()121222104321x a x a x a a x x x ++++=+++ ,则=0a ( )A .256B .0C .1-D .1 3.定义运算a cad bc b d=-,则ii 12(i 是虚数单位)为 ( ) A .3 B .3- C .12-i D .22+i4.任何进制数均可转换为十进制数,如八进制()8507413转换成十进制数,是这样转换的:()1676913818487808550741323458=+⨯+⨯+⨯+⨯+⨯=,十六进制数1444706165164163162)6,5,4,3,2(23416=+⨯+⨯+⨯+⨯=,那么将二进制数()21101转换成十进制数,这个十进制数是 ( )A .12B .13C .14D .155.用数学归纳法证明:“两两相交且不共点的n 条直线把平面分为)(n f 部分,则2)1(1)(++=n n n f 。
”在证明第二步归纳递推的过程中,用到)()1(k f k f =++ 。
( ) A .1-k B .k C .1+k D .2)1(+k k6.记函数)()2(x fy =表示对函数)(x f y =连续两次求导,即先对)(x f y =求导得)('x f y =,再对)('x f y =求导得)()2(x fy =,下列函数中满足)()()2(x f x f=的是( )7.甲、乙速度v 与时间t 的关系如下图,)(b a 是b t =时的加速度,)(b S 是从0=t 到b t =的路程,则)(b a 甲与)(b a 乙,)(b S 甲与)(b S 乙的大小关系是 ( )A .)()(b a b a 乙甲>,)()(b S b S 乙甲>B .)()(b a b a 乙甲<,)()(b S b S 乙甲<C .)()(b a b a 乙甲<,)()(b S b S 乙甲>D .)()(b a b a 乙甲<,)()(b S b S 乙甲< 8.如图,蚂蚁从A 沿着长方体的棱以 的方向行走至B ,不同的行走路线有( )A .6条B .7条C .8条D .9条9、等比数列{a }n 中,120143,9a a ==,122014(x)(x a )(x a )....(x )f x a =---,'(x)f 为函数(x)f 的导函数,则'(0)f =( )A 0B 10073C 20163D 3021310.设{}10,9,8,7,6,5,4,3,2,1=M ,由M 到M 上的一一映射中,有7个数字和自身对应的映射个数是 ( )A .120B .240C .710 D .360B第8题图第Ⅱ卷(非选择题 共100分)二.填空题(本大题4个小题,每小题5分,共25分) 11(15)如果5025001250(12)(1)(1)(1)x a a x a x a x +=+-+-++-,那么1349a a a +++= .12.设复数z 满足条件1z =,那么z i +取最大值时的复数z 为 . 13.已知数列{}a n 为等差数列,则有,02321=+-a a a 0334321=-+-a a a aa a a a a 123454640-+-+=类似上三行,第四行的结论为__________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学测试题2014-3-9一、选择题:(本大题共12小题,每小题5分,共60分,只有一项是符合题目要求的.)1.命题 “若△ABC 不是等腰三角形,则它的任何两个内角不相等”的逆否命题是( )A.若△ABC 是等腰三角形,则它的任何两个内角相等B.若△ABC 任何两个内角不相等,则它不是等腰三角形C.若△ABC 有两个内角相等,则它是等腰三角形D.若△ABC 任何两个角相等,则它是等腰三角形2.“三角函数是周期函数,tan y x =,ππ22x ⎛⎫∈- ⎪⎝⎭,是三角函数,所以tan y x =,ππ22x ⎛⎫∈- ⎪⎝⎭,是周期函数”.在以上演绎推理中,下列说法正确的是( ) (A)推理完全正确 (B)大前提不正确 (C)小前提不正确 (D)推理形式不正确3.以下有四种说法,其中正确说法的个数为:( )(1)“m 是实数”是“m 是有理数”的充分不必要条件;(2) “a b >”是“22a b >”的充要条件;(3) “3x =”是“2230x x --=”的必要不充分条件; (4)“A B B =I ”是“A φ=”的必要不充分条件.A. 0个B. 1个C. 2个D. 3个 4 .已知动点P (x ,y )满足2)2()2(2222=+--++y x y x ,则动点P 的轨迹是A.双曲线B.双曲线左支C. 双曲线右支D. 一条射线5.用S 表示图中阴影部分的面积,则S 的值是( ) A .dx x f ca ⎰)( B .|)(|dx x f ca ⎰C .dx x f dx x f c b b a ⎰⎰+)()(D .dx x f dx x f ba cb ⎰⎰-)()(6 . 已知椭圆221102x y m m +=--,若其长轴在y 轴上.焦距为4,则m 等于 A.4. B.5. C. 7. D .8.7.已知斜率为1的直线与曲线1xy x =+相切于点p ,则点p 的坐标是( )( A ) ()2,2- (B) ()0,0 (C) ()0,0或()2,2- (D) 11,2⎫⎛ ⎪⎝⎭8.以坐标轴为对称轴,以原点为顶点且过圆096222=++-+y x y x 的圆心的抛物线的方程是( )A .23x y =或23x y -=B .23x y =C .x y 92-=或23x y =D .23x y -=或x y 92=9.设'()f x 是函数()f x 的导函数,将()y f x =和'()y f x =的图象画在同一个直角坐标系中,不可能正确的是 ( )A B C D.10.试在抛物线x y 42-=上求一点P ,使其到焦点F 的距离与到()1,2-A 的距离之和最小,则该点坐标为 ( )(A )⎪⎭⎫⎝⎛-1,41 (B )⎪⎭⎫ ⎝⎛1,41 (C )()22,2-- (D )()22,2-11.已知点F 1、F 2分别是椭圆22221x y a b+=的左、右焦点,过F 1且垂直于x 轴的直线与椭圆交于A 、B 两点,若△ABF 2为正三角形,则该椭圆的离心率e 为( )(A )12 (B )22 (C )13(D )3 12.已知βα,是三次函数bx ax x x f 22131)(23++=的两个极值点,)2,1(),1,0(∈∈βα,则12--a b 的取值范围是( ) A )1,41( B )1,21( C )41,21(- D )21,21(-二、填空题(共4个小题,每小题5分,共20分)13. 用数学归纳法证明:)12(312)()2)(1(-⨯⨯⨯⨯=+++n n n n n n ΛΛ时,从“k 到1+k ”左边需增加的代数式是______________________14.已知1623++++=x a ax x x f )()(有极大值和极小值,则a 的取值范围为15. 与双曲线221916x y -=有共同的渐近线,且过点(3,3)-的双曲线的方程为 .16、已知函数)(x f 是定义在R 上的奇函数,0)1(=f ,0)()(2>-'x x f x f x (0)x >,则不等式()0f x >的解集是 .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17(本小题满分10分)给定两个命题:p :对任意实数x 都有012>++ax ax 恒成立; q :关于x 的方程02=+-a x x 有实数根;如果p 与q 中有且仅有一个为真命题,求实数a 的取值范围.18. 设函数3()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线1870x y +-=垂直,导函数'()f x 的最小值为12.(1)求a ,b ,c 的值;(2)设2()()f x g x x=,当0x >时,求()g x 的最小值. 19. (本小题满分14分)在数列{}n a 中,113a =,且123(21)n n a a a a n a n++++=-L*()n ∈N .(1)写出此数列的前5项;(2)归纳猜想{}n a 的通项公式,并加以证明.20.(本小题12分)如图,点P 为斜三棱柱111C B A ABC -的侧棱1BB 上一点,1BB PM ⊥交1AA 于点M ,1BB PN ⊥交1CC 于点N . (1) 求证:MN CC ⊥1;(2) 在任意DEF ∆中有余弦定理:DFE EF DF EF DF DE ∠⋅-+=cos 2222.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.21. (本题满分12分)如图所示,F 1、F 2分别为椭圆C :)0(12222>>=+b a by a x 的左、右两个焦点,A 、B为两个顶点,已知椭圆C 上的点)23,1(到F 1、F 2两点的距离之和为4.(1)求椭圆C 的方程和焦点坐标;(2)过椭圆C 的焦点F 2作AB 的平行线交椭圆于P 、Q 两点,求△F 1PQ 的面积.22. 已知函数2()(2ln ),(0)f x x a x a x=-+->。
(1)讨论()f x 的单调性.(2)若)(x f 在区间(1,2)上单调递减,求实数a 的取值范围。
高二数学测试题答案2014-3-9CBACD DCDDA DA 13. 2(2k+1) 14.63>-<a a 或 15.149422=-y x16. ),1()0,1(+∞-Y 可得()'()f x f x x>,由导数的定义得,当01x <<时, ()(1)()1f x f f x x x->-,又0)1(=f ,()(1)()xf x x f x <-,∴()0f x <;当1x >时, 同理得()0f x <.又)(x f 是奇函数,画出它的图象得()0f x >⇒(1,0)(1,)x ∈-+∞U . 17解:对任意实数x 都有012>++ax ax 恒成立⎩⎨⎧<∆>=⇔00a a 或40<≤⇔a ;………………………………………………3分关于x 的方程02=+-a x x 有实数根41041≤⇔≥-⇔a a ;……………2分 如果p 正确,且q 不正确,有44141,40<<∴><≤a a a 且;……………2分如果q 正确,且p 不正确,有041,40<∴≤≥<a a a a 且或.…………2分所以实数a 的取值范围为()⎪⎭⎫ ⎝⎛∞-4,410,Y ……………………………………10分18. 解:(1)∵()f x 为奇函数,∴()()f x f x -=-,即33ax bx c ax bx c --+=---, ∴0c =,又∵2'()3f x ax b =+的最小值为12,∴12b =; 又直线1870x y +-=的斜率为118- ,因此,'(1)318f a b =+=, ∴2a =, ∴2a =,12b =,0c =为所求.(2)由(1)得3()212f x x x =+,∴当0x >时,2()()f x g x x =62()2x x =+≥⋅=,∴()g x 的最小值为. 19.解:(1)由已知113a =,123(21)nn a a a a n a n++++=-L ,分别取2345n =,,,,得2111153515a a ===⨯,312111()145735a a a =+==⨯,4123111()277963a a a a =++==⨯, 51234111()4491199a a a a a =+++==⨯,所以数列的前5项是:113a =,2115a =,3135a =,4163a =,5199a =;(2)由(1)中的分析可以猜想1(21)(21)n a n n =-+.下面用数学归纳法证明: ①当1n =时,猜想显然成立. ②假设当n k =时猜想成立,即1(21)(21)k a k k =-+.那么由已知,得12311(21)1k k k a a a a a k a k +++++++=++L ,即21231(23)k k a a a a k k a +++++=+L . 所以221(2)(23)k k k k a k k a +-=+, 即1(21)(23)k k k a k a +-=+, 又由归纳假设,得11(21)(23)(21)(21)k k k a k k +-=+-+,所以11(21)(23)k a k k +=++,即当1n k =+时,公式也成立. 由①和②知,对一切*n ∈N ,都有1(21)(21)n a n n =-+成立20(1) 证:MN CC PMN CC PN CC PM CC BB CC ⊥⇒⊥∴⊥⊥⇒111111,,//平面Θ;(2) 解:在斜三棱柱111C B A ABC -中,有αcos 21111111111222A ACC B BCC A ACC B BCC A ABB S S S S S ⋅-+=,其中α为平面B B CC 11与平面A A CC 11所组成的二面角.∴⊥,1PMN CC 平面Θ上述的二面角为MNP∠,在PMN∆中,cos 2222⇒∠⋅-+=MNP MN PN MN PN PMMNP CC MN CC PN CC MN CC PN CC PM ∠⋅⋅⋅-+=cos )()(211111222222,由于111111111,,BB PM S CC MN S CC PN S A ABB A ACC B BCC ⋅=⋅=⋅=,∴有αcos 21111111111222A ACC B BCC A ACC B BCC A ABB S S S S S ⋅-+=21、解:(1)由题设知:2a = 4,即a = 2, 将点)23,1(代入椭圆方程得 1)(2122232=+b ,解得b 2 = 3∴c 2 = a 2-b 2 = 4- 3 = 1 ,故椭圆方程为13422=+y x , ……………………………5分焦点F 1、F 2的坐标分别为(-1,0)和(1,0) ……………………………6分(2)由(Ⅰ)知)3,0(),0,2(B A -,23==∴AB PQ k k , ∴PQ 所在直线方程为)1(23-=x y , 由⎪⎪⎩⎪⎪⎨⎧=+-=134)1(2322y x x y 得 093482=-+y y 设P (x 1,y 1),Q (x 2,y 2),则89,232121-=⋅-=+y y y y , ……………………………9分 .2212212212121211=⨯⨯=-⋅=∴∆y y F F S PQ F ……………………………12分22.解:(1)()f x 的定义域是(0,+∞),22222()1.a x ax f x x x x -+'=+-=设2()2g x x ax =-+,二次方程()0g x =的判别式28a ∆=-.① 当280a ∆=-<,即0a <<时,对一切0x >都有()0f x '>,此时()f x 在(0,)+∞上是增函数。