电力系统短路计算课程设计

合集下载

电力系统短路电流计算

电力系统短路电流计算

电力系统短路电流计算电力系统短路电流计算是电力系统设计和运行中非常重要的一项工作。

短路电流是指在系统发生故障时电流的最大值,通常由短路电流计算来确定。

短路电流的计算对于保护设备的选择、电路设计和系统运行状态的分析都具有重要意义。

短路电流计算主要分为对称分量法和非对称分量法两种方法。

下面将对这两种方法进行详细介绍。

1.对称分量法:对称分量法是一种传统的短路电流计算方法,它将三相电流分解为正序、负序和零序三个对称分量,然后再计算每个分量的短路电流。

对称分量法的计算步骤如下:a.首先需要确定系统的短路电流初始值。

可以通过测量系统的各个节点电压和电流来获得。

一般来说,短路电流初始值取系统额定电流的2-3倍。

b.将系统的正常运行条件下的三相电流表示为复数形式:iA,iB和iC。

c.计算三相电流的正序分量:I1=(iA+α^2*iB+α*iC)/3,其中α=e^(j2π/3),j为虚数单位。

d.计算三相电流的负序分量:I2=(iA+α*iB+α^2*iC)/3e.计算三相电流的零序分量:I0=(iA+iB+iC)/3f.计算每个分量的短路电流。

可以使用短路电流公式和阻抗矩阵来计算。

例如,正序分量的短路电流I1'=Z1*I1,其中Z1为正序阻抗。

g.将三个分量的短路电流叠加得到总的短路电流。

2.非对称分量法:非对称分量法是一种更加准确的短路电流计算方法,它考虑了系统故障时的非对称特性,可以更好地反映系统的短路电流分布。

非对称分量法的计算步骤如下:a.获取系统正常运行条件下的三相电流。

b. 将三相电流转换为abc坐标系下的矢量形式。

c.计算叠加故障电流矢量。

d. 将叠加故障电流矢量转换为dq0坐标系的正序、负序和零序分量。

e.根据正、负、零序分量计算短路电流。

非对称分量法相比于对称分量法更加准确,但在计算过程中需要考虑更多的参数和细节,计算复杂度较高。

需要注意的是,短路电流计算是在假设系统中所有设备均采用理想的电气参数的情况下进行的。

短路故障分析课程设计

短路故障分析课程设计

短路故障分析课程设计一、教学目标本课程的教学目标是使学生掌握短路故障的基本概念、类型及分析方法。

通过本课程的学习,学生应能够:1.描述短路故障的定义、特点及危害。

2.识别并区分不同类型的短路故障。

3.运用基本的分析方法对短路故障进行分析和判断。

在技能目标方面,学生应能够:1.熟练使用相关仪器设备进行短路故障的检测和分析。

2.运用所学知识对实际电路中的短路故障进行排查和处理。

在情感态度价值观目标方面,学生应能够:1.认识到短路故障分析在电力系统运行中的重要性。

2.培养严谨的科学态度和团队协作精神。

二、教学内容本课程的教学内容主要包括以下几个部分:1.短路故障的基本概念、分类及危害。

2.短路故障的分析方法,包括直观分析法、数学分析法等。

3.短路故障检测和处理的方法及技巧。

4.短路故障分析在电力系统中的应用案例。

第1周:短路故障的基本概念、分类及危害。

第2周:短路故障的分析方法。

第3周:短路故障检测和处理的方法及技巧。

第4周:短路故障分析在电力系统中的应用案例。

三、教学方法为了提高教学效果,本课程将采用多种教学方法,包括:1.讲授法:通过讲解使学生掌握短路故障的基本概念、分类及危害。

2.案例分析法:分析实际案例,使学生更好地理解短路故障的分析方法及应用。

3.实验法:学生动手进行短路故障的检测和处理,提高其实际操作能力。

四、教学资源为实现教学目标,我们将准备以下教学资源:1.教材:《电力系统短路故障分析》。

2.参考书:相关论文、技术规范等。

3.多媒体资料:PPT、视频等。

4.实验设备:短路故障检测仪、电路仿真软件等。

教学资源将贯穿整个教学过程,为学生提供丰富的学习体验,提高教学效果。

五、教学评估本课程的教学评估将采用多元化评价方式,全面、客观地评价学生的学习成果。

评估方式包括:1.平时表现:评价学生在课堂上的参与度、提问回答等情况,占总评的20%。

2.作业:布置相关作业,评价学生的理解和应用能力,占总评的30%。

电力系统短路计算课程设计

电力系统短路计算课程设计

南昌工程学院课程设计 (论文)机械与电气工程学院电气工程及其自动化专业课程设计(论文)题目电力系统短路电流计算学生姓名班级学号指导教师完成日期2013 年11 月30 日成绩:评语:指导教师:年月日南昌工程学院课程设计(论文)任务书机械与电气工程学院 10电气工程及其自动化专业班学生:日期:自2013年 11 月 18 日至 2013 年11 月 30 日指导教师:助理指导教师(并指出所负责的部分):教研室:电气工程教研室主任:附录:短路点的设置如下,计算时桥开关和母连开关都处于闭合状态。

一、取基准容量:S B=100MVA 基准电压:U B=U av二、计算各元件电抗标幺值:(1)X L=0.401Ω/km,L1=16.582km L2=14.520km ,X d1=X d 2=X''d=0.0581,=0.0581,两条110kV进线为LGJ-150型系统电抗标幺值X''d线路长度一条为16.582km,另一条为14.520km.。

(2)主变铭牌参数如下:1﹟主变:型号 SFSZ8-31500/110接线 YN/Y N/d11变比110±4×2.5%∕38.5±2×2.5%∕10.5 短路电压(%) U K(1-2)=10.47 U K(3-1)=18 UK(2-3)=6.33短路损耗(kw)PK(1-2)=169.7PK(3-1)=181 PK(2-3)=136.4空载电流(%) I0(%)=0.46空载损耗(kW) P0=40.62﹟主变:型号 SFSZ10-40000/110接线 Y N/YN/d11变比 110±8×1.25%∕38.5±2×2.5%∕10.5 短路电压(%) U K(1-2)=11.79 UK(3-1)=21.3 U K(2-3)=7.08短路损耗(kW) PK(1-2)=74.31 PK(3-1)=74.79 P K(2-3)=68.30 空载电流(%) I0(%)=0.11空载损耗(kW) P0=26.71(3)转移电势E∑=1目录第一章电力系统故障分析的基本知识 (1)1.1短路概述 (1)1.2标幺值 (3)第二章电力系统三相短路电流的计算 (5)2.1计算的条件和近似………………………………………………………………………52.2简单系统''I计算 (5)2.3计算短路电流时的简化条件 (6)第三章简单不对称短路的分析与计算 (7)3.1对称分量法 (7)3.2电力系统各序网络的制定………………………………………………………………83.3对称分量法在不对称短路计算中的运用...................................................8 3.4简单不对称短路的分析与计算 (9)3.5正序等效定则…………………………………………………………………………12第四章算例.............................................................................................14 4.1各元件电抗标幺值计算 (15)4.2K1点短路电流计算 (16)4.3 K2点短路电流计算 (19)4.4K3点短路电流计算 (22)4.5短路计算结果统计表 (2)54.6计算结果总结……………………………………………………………………………25参考文献……………………………………………………………………………………27第一章 电力系统故障分析的基本知识1.1 短路概述1.1.1短路的定义及类别在电力系统的运行过程中,时常会发生故障,其中大多数是短路故障。

电力系统两相短路计算与仿真(4)

电力系统两相短路计算与仿真(4)

辽宁工业大学《电力系统分析》课程设计(论文)题目:电力系统两相短路计算与仿真(4)院(系):工程技术学院专业班级:电气工程及其自动化12学号:学生姓名:指导教师:教师职称:起止时间:15-06-15至15-06-26课程设计(论文)任务及评语课程设计(论文)任务原始资料:系统如图各元件参数标幺值如下(各元件及电源的各序阻抗均相同):T1:电阻0.01,电抗0.16,k=1.05,标准变比侧Y N接线,非标准变比侧Δ接线;T2:电阻0,电抗0.2,k=0.95,标准变比侧Y N接线,非标准变比侧Δ接线;L24: 电阻0.03,电抗0.07,对地容纳0.03;L23: 电阻0.025,电抗0.06,对地容纳0.028;L34: 电阻0.015,电抗0.06,对地容纳0.03;G1和 G2:电阻0,电抗0.07,电压1.03;负荷功率:S1=0.5+j0.18;任务要求:当节点4发生B、C两相金属性短路时,1 计算短路点的A、B和C三相电压和电流;2 计算其它各个节点的A、B和C三相电压和电流;3 计算各条支路的电压和电流;4 在系统正常运行方式下,对各种不同时刻BC两相短路进行Matlab仿真;5 将短路运行计算结果与各时刻短路的仿真结果进行分析比较,得出结论。

指导教师评语及成绩平时考核:设计质量:论文格式:总成绩:指导教师签字:年月日G GG1 T1 2 L24 4 T2 G21:k k:1L23 L343S1摘要在电力系统的设计和运行中,必须考虑到可能发生的故障和不正常运行情况,防止其破坏对用户的供电和电气设备的正常工作。

从电力系统的实际运行情况看,这些故障多数是由短路引起的,因此除了对电力系统短路故障有较深刻的认识外,还必须熟练账务电力系统的短路计算。

这里着重接好电力系统两相短路计算方法,主要讲解了对称分量法在不对称短路计算中的应用。

其次,通过具体的简单环网短路实例,对两相接地短路进行分析和计算。

不对称短路故障分析与计算(电力系统课程设计)

不对称短路故障分析与计算(电力系统课程设计)

不对称短路故障分析
02
不对称短路故障类型
单相接地短路
其中一相电流通过接地电阻,其余两 相保持正常。
两相短路
两相接地短路
两相电流通过接地电阻,另一相保持 正常。
两相之间没有通过任何元件直接短路。
不对称短路故障产生的原因
01
02
03
设备故障
设备老化、绝缘损坏等原 因导致短路。
外部因素
如雷击、鸟类或其他异物 接触线路导致短路。
操作错误
如误操作或维护不当导致 短路。
不对称短路故障的危害
设备损坏
短路可能导致设备过热、烧毁或损坏。
安全隐患
短路可能引发火灾、爆炸等安全事故。
停电
短路可能导致电力系统的局部或全面停电。
经济损失
停电和设备损坏可能导致重大的经济损失。
不对称短路故障计算
03
方法
短路电流的计算
短路电流的计算是电力系统故障分析中的重要步骤,它涉及到电力系统的 运行状态和设备参数。
不对称短路故障分析与 计算(电力系统课程设计)
contents
目录
• 引言 • 不对称短路故障分析 • 不对称短路故障计算方法 • 不对称短路故障的预防与处理 • 电力系统不对称短路故障案例分析 • 结论与展望
引言
01
课程设计的目的和意义
掌握电力系统不对称短路故障的基本原理和计算 方法
培养解决实际问题的能力,提高电力系统安全稳 定运行的水平
故障描述
某高校电力系统在宿舍用电高峰期发生不对称短路故障,导致部 分宿舍楼停电。
故障原因
经调查发现,故障原因为学生私拉乱接电线,导致插座短路。
解决方案
加强学生用电安全教育,规范用电行为;加强宿舍用电管理,定 期检查和维护电路。

原创力 电力系统三相短路电流计算电力系统分析课程设计毕业设计.doc文档投.docx

原创力 电力系统三相短路电流计算电力系统分析课程设计毕业设计.doc文档投.docx

1前言 (2)1.1短路的原因 (2)1.2短路的类型 (2)1.3短路计算的目的 (2)1.4短路的后果 (3)2电力系统三相短路电流计算42. 1电力系统网络的原始参数 (4)2・2制定等值网络及参数计算 (5)2・2・1标幺制的概念 (5)2. 2. 2有三级电压的的网络中各元件参数标幺值的计算 (6)2. 2. 3计算各元件的电抗标幺值 (8)2. 2. 4系统的等值网络图 (9)2.3短路电流计算曲线的确 (9)2.4故障点短路电流计算 (10)2.4. Ifi点三相短路. (10)2. 4.2f3点短路. (12)3电力系统不彬短路电流计算 (15)3.1对称分量法的应用 (15)3・2各序网络的制定 (16)3.2.1同步发电机的各序电抗 (16)3. 2. 2变压器的各序电抗 (16)3. 3不对称短路的分析 (17)3. 3.1不对称短路三种情况的分析 (17)3・3・2正序等效定则 (20)3. 3. 3不对称短路时短路点电流的计算 (21)4结论 (27)5总结与体会 (28)6 WS (29)7参考文献 (30)1前言在电力系统的设计和运行中,都必须考虑到可能发生的故障和不正常运行的情况,因为它们会破坏对用户的供电和电气设备的正常工作,而且还可能对人生命财产产生威胁。

从电力系统的实际运行情况看,这些故障绝大多数多数是由短路引起的,因此除了对电力系统的短路故障有一较深刻的认识外,还必须熟练掌握电力系统的短路计算。

短路是电力系统的严重故障。

所谓短路,是指一切不正常的相与相之间或相与地(对于中性点接地的系统)发生通路的情况。

1.1短路的原因产生短路的原因很多,主要有如下几个方而:(1)元件损坏,例如绝缘材料的自然老化、设计、安装及维护不良所带来的设备缺陷发展成短路等:(2)气象条件恶劣, 例如當击造成的网络放电或避雷器动作,架空线路由于大风或导线覆冰引起电杆倒塌等:(3)违规操作,例如运行人员带负荷拉闸,线路或设备检修后未拆除接地线就加上电压等;(4)其他,如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等。

电力系统短路电流计算书

电力系统短路电流计算书

电力系统短路电流计算书电力系统短路电流计算书是电力系统设计和运维中非常重要的一份文档。

短路电流计算是电力系统中最重要的计算之一。

此计算是为了估算电力设备在发生电线短路时所承受的电流大小和持续时间,以便选定恰当的保护电器和电缆。

短路电流分析是依据系统的拓扑结构、线路参数和源的参数进行的。

因此,在短路电流计算中,根据电力设备的电气参数对整个电网进行仿真模拟是非常关键的一步。

比如说,在AC电源的电路分析过程中,需要考虑到系统的电阻、电抗和电容等电性质。

而在DC电源的分析过程中,需要把握电势差、电场和电流的关系。

电力系统短路电流的计算和分析有助于工程师们对电力设备的负荷特性进一步加深理解,从而能够设计出更为安全和稳定的电力系统。

在短路电流计算中,工程师们需要考虑很多因素,如需要仿真的系统拓扑结构,电缆线路的参数以及电气设备的参数等。

对于短路电流分析的结果,工程师们需要编写一份详细的短路电流计算书,并进行仔细的校对和核对。

这份文档将包含以下内容:1. 系统拓扑结构和各个节点的参数表格:这个表格将涵盖系统中所有电气设备的电性质参数,包括电流、电阻、电抗和电容等等。

2. 短路电流计算的详细过程:这个部分包括全部的短路电流计算过程,包括短路电流的费用和电力质量分析等。

3. 选定保护设备的详细方案:根据短路电流的计算结果,工程师们需要选定合适的保护设备,包括断路器、熔断器、隔离开关等等。

这一部分将提供关于保护设备相关性能和规格的详细参数表格。

4. 搜集短路电流计算数据的方法:短路电流测试可以提供真实有效的数据,让工程师们对他们的计算结果进行进一步的验证和校对。

这一部分将详细解释如何进行短路电流测试,并给出一些有用的短路电流测试方法和建议。

总之,电力系统短路电流计算书的编写对于电力工程来说是至关重要的。

它为电力系统的规划、实施和维护提供了基石。

不仅如此,这份文档更是对于电力系统设计和运维人员的一份重要参考,可以帮助他们做出最为理性和科学的决策。

不对称短路故障分析与计算(电力系统课程设计)

不对称短路故障分析与计算(电力系统课程设计)

负载负序电抗标幺值为 X 8(2) 0.35 ,零序电抗标幺值 X 8(0) 1.2 。
电力系统分析课程设计
手算过程
原件的序阻抗标幺值
电动机电抗标幺值:
X 4(1)

1100 0.85 6.5 2

6.538 ;
(1)由于异步电动机定子绕组是星形或三角接法,零序电流不能通过异步电
动机,零序电抗无限大。
XL(1) 6
X*5(1)
X*6(1) 0.296
X*7(1)
0.296
X*T1(1)
0.656
X*1(1)
0.204
X*T2(1)
0.333
X*2(1)
0.416
0.145
X*T3(1)
0.333
X*3(1)
0.416
X*T4(1)
1.05
X*M(1)
6.538
正序标幺值等值网络图
电力系统分析课程设计 手算过程
式中
SB :设定的基准容量,单位 MV A; PN :电动机额定的有功功率,单位 MW; cosN :电动机额定有功功率因数。
电力系统分析课程设计
手算过程
发 电 机 电抗标幺值 :
原件的序阻抗标幺值
X 1(1)

0.264 100 110/ 0.85

0.204 ;
X 2(1)

0.13 100 25 / 0.8

10.5 100
100 16

0.656 ;
XT3

10.5 100

100 31.5

0.333 ;
XT2

10.5 100
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南昌工程学院课程设计 (论文)机械与电气工程学院电气工程及其自动化专业课程设计(论文)题目电力系统短路电流计算学生姓名班级学号指导教师完成日期2013 年11 月30 日成绩:评语:指导教师:年月日南昌工程学院课程设计(论文)任务书机械与电气工程学院 10电气工程及其自动化专业班学生:日期:自 2013 年 11 月 18 日至 2013 年 11 月 30 日指导教师:助理指导教师(并指出所负责的部分):教研室:电气工程教研室主任:附录:短路点的设置如下,计算时桥开关和母连开关都处于闭合状态。

一、取基准容量:S B=100MVA 基准电压:U B=U av二、计算各元件电抗标幺值:=0.0581,(1)X L=0.401Ω/km ,L1=16.582km L2=14.520km ,X d1=X d2=X''d 系统电抗标幺值X''=0.0581,两条110kV进线为LGJ-150型d线路长度一条为16.582km,另一条为14.520km.。

(2)主变铭牌参数如下:1﹟主变:型号 SFSZ8-31500/110接线 Y N/Y N/d11变比 110±4×2.5%∕38.5±2×2.5%∕10.5短路电压(%) U K(1-2)=10.47 U K(3-1)=18 U K(2-3)=6.33短路损耗(kw) P K(1-2)=169.7 P K(3-1)=181 P K(2-3)=136.4空载电流(%) I0(%)=0.46空载损耗(kW) P0=40.62﹟主变:型号 SFSZ10-40000/110接线 Y N/Y N/d11变比 110±8×1.25%∕38.5±2×2.5%∕10.5 短路电压(%) U K(1-2)=11.79 U K(3-1)=21.3 U K(2-3)=7.08短路损耗(kW) P K(1-2)=74.31 P K(3-1)=74.79 P K(2-3)=68.30空载电流(%) I0(%)=0.11空载损耗(kW) P0=26.71(3)转移电势E∑=1目录第一章电力系统故障分析的基本知识 (1)1.1短路概述 (1)1.2标幺值 (3)第二章电力系统三相短路电流的计算 (5)2.1计算的条件和近似 (5)2.2简单系统''I计算 (5)2.3计算短路电流时的简化条件 (6)第三章简单不对称短路的分析与计算 (7)3.1对称分量法 (7)3.2电力系统各序网络的制定 (8)3.3对称分量法在不对称短路计算中的运用 (8)3.4简单不对称短路的分析与计算 (9)3.5正序等效定则 (12)第四章算例 (14)4.1 各元件电抗标幺值计算 (15)4.2 K1点短路电流计算 (16)4.3 K2点短路电流计算 (19)4.4 K3点短路电流计算 (22)4.5短路计算结果统计表 (25)4.6计算结果总结 (25)参考文献 (27)第一章 电力系统故障分析的基本知识1.1 短路概述1.1.1短路的定义及类别在电力系统的运行过程中,时常会发生故障,其中大多数是短路故障。

短路故障是电力系统除正常运行情况以外的相与相之间或相与地之间的连接。

在三相供电系统中,破坏供电系统正常运行的故障最为常见而且危害性最大的就是各种短路。

对中性点不接地系统有相与相之间的短路,对中性点接地系统有相与相之间的短路和相与地之间的短路。

其短路的基本种类有:三相短路、两相短路、单相短路、两相接地短路、单相接地短路等,如图1-1所示。

发生短路故障时,电力系统从正常的稳定状态过渡到短路的稳定状态,一般需3~5秒。

在这一暂态过程中,短路电流的变化很复杂。

在短路后约半个周波(0.01秒)时将出现短路电流的最大瞬时值,称为短路冲击电流。

它会产生很大的电动力,其大小可用来校验电工设备在发生短路时机械应力的动稳定性。

(a) (b)(c) (d)1.1.2 产生短路的原因产生短路的主要原因是电气设备载流部分的相间绝缘或相地绝缘被破坏,产生短路的原因既有客观的,也有主观的,主要如下:(1)元件损坏,例如设备绝缘材料老化,设计、制造、安装、维护不良等造成的设备缺陷发展成为短路。

(2)气象条件影响,例如雷击过后造成的闪烁放电,由于风灾引起架空线断线和导线覆冰引起电线杆倒塌等。

图1-1 短路的种类 (a )三相短路;(b )两相短路;(c )两相短路接地;(e )单相接地短路(3)人为过失,例如工作人员带负荷拉闸,检修线路或设备时未拆除接地线合闸供电,运行人员的误操作等。

(4)其他原因,例如挖沟损伤电缆,鸟兽风筝跨接在载流裸导体上等。

1.1.3 短路的危害短路对电力系统的正常运行和电气设备有很大的危害。

电力系统中出现短路故障时,系统功率分布的忽然变化和电压的严重下降,可能破坏各发电厂并联运行的稳定性,使整个系统解列,这时某些发电机可能过负荷,因此,必须切除部分用户。

短路时电压下降的愈大,持续时间愈长,破坏整个电力系统稳定运行的可能性愈大。

为保证系统安全可靠地运行,减轻短路造成的影响,除在运行维护中应努力设法消除可能引起短路的一切原因外,还应尽快地切除短路故障部分,使系统电压在较短的时间内恢复到正常值。

短路的主要危害如下:(1)电流的热效应:由于短路电流比正常工作电流大几十倍至几百倍,这将使电气设备过热,绝缘损坏,甚至把电气设备烧毁。

(2)电流的电动力效应:巨大的短路电流通过电气设备将产生很大的电动力,可能引起电气设备的机械变形、扭曲甚至损坏。

(3)电流的电磁效应:交流电通过导线时,在线路的周围空间产生交变电磁场,交变电磁场将在邻近的导体中产生感应电动势。

当系统正常运行或对称短路时,三相电流是对称的,在线路的周围空间各点产生的交变电磁场彼此抵消,在邻近的导体中不会产生感应电动势;当系统发生不对称短路时,短路电流产生不平衡的交变磁场,对线路附近的通讯线路信号产生干扰。

(4)电流产生电压降:巨大的短路电流通过线路时,在线路上产生很大的电压降,使用户的电压降低,影响负荷的正常工作(电机转速降低或停转,白炽灯变暗或熄灭)。

供电系统发生短路时将产生上述后果,故在供电系统的设计和运行中,应设法消除可能引起短路的一切因素。

为了尽可能减轻短路所引起的后果和防止故障的扩大,一方面,要计算短路电流以便正确选择和校验各电气设备,保证在发生短路时各电气设备不致损坏。

另一方面,一旦供电系统发生短路故障,应能迅速、准确地把故障线路从电网中切除,以减小短路所造成的危害和损失。

1.1.4短路计算的目的和意义计算短路电流是为了使供电系统安全、可靠运行,减小短路所带来的损失和影响。

所计算短路电流用于解决下列技术问题:(1)选择校验电气设备:校验电气设备的热稳定性和动稳定性,确保电气设备在运行中不受短路电流的冲击而损坏。

(2)选择和整定继电保护装置:为了确保继电保护装置灵敏、可靠、有选择性地切除电网故障,在选择、整定继电保护装置时,需计算出保护范围末端可能产生的最小两相短路电流,用于校验继电保护装置动作灵敏度是否满足要求。

(3)选择限流装置:当短路电流过大造成电气设备选择困难或不经济时,可在供电线路串接限流装置来限制短路电流。

是否采用限流装置,必须通过短路电流的计算来决定,同时确定限流装置的参数。

(4)选择供电系统的接线和运行方式:不同的接线和运行方式,短路电流的大小不同。

在判断接线及运行方式是否合理时,必须计算出在某种接线和运行方式下的短路电流才能确定。

在电力系统和电气设备的设计和运行中,短路计算是解决一系列技术问题所不可缺少的基本计算,比如在选择发电厂和电力系统的主接线时为了比较不同方案接线图,进行电力系统暂态稳定计算,研究短路对用户的影响。

另外,合理配置各种继电保护和自动装置并正确整定其参数等都必须进行短路计算。

1.2标幺值1.2.1标么值的概念:与有名值同单位)基准值)实际有名值(任意单位标么值(= (1-1) 标么值是一个没有量纲的数值,对于同一个有名值,基准值选得不同,其标么值也就不同。

因此,说明一个量的标么值时,必须同时说明它的基准值;否则,标么值的意义不明确。

采用标么制易于比较电力系统中各元件的特性和参数,易于判断电气设备的特征和参数的优劣还可以使计算量大大简化。

1.2.2基准值的选取标幺值的选取有一定的随意性,但各量的基准值之间应服从: 功率方程:UI S 3= (1-2)欧姆定律:U (1-3)通常选定电压和功率的基准值,则电流和阻抗的基准值分别为B BB U S I 3= (1-4)B B 2B B X S U Z == (1-5)三相对称系统中,不管是Y 接线还是∆接线,任何一点的线电压(或线电流)的标么值与该点的相电压(或相电流)的标么值相等,且三相总功率的标么值与每相的功率标么值相等。

故采用标么制时,对称三相电路完全可以用单相电路计算。

1.2.3不同基准值的标么值之间的换算电力系统中各种电气设备如发电机、变压器、电抗器的阻抗参数均是以其本身额定值为基准值的标幺值或百分值给出的,而在进行电力系统计算时,必须取统一的基准值,因此要求将原来的以本身额定值为基准值的阻抗标幺值换算到统一的基准值。

换算原则是换算前后的物理量的有名值保持不变。

首先要将以原有基准值计算出的标么值还原成有名值,然后再计算新基准值下的标么值。

设统一选定的基准电功率和基准电压分别为B B U S 和,对于发电机、变压器,若已知其额定标幺电抗为*N X ,电抗有名值为X ,则换算到统一基准下的标幺电抗为:222B BN N N BB U S S U X U S X X ⨯==** (1-6) 而对用于限制短路电流的电抗器,若已知它的额定标幺电抗为*R X ,电抗有名值为R X ,则换算到统一基准值下的标幺电抗为:223BB N N R B B R U S I U X U S X X ⨯==** (1-7)第二章 电力系统三相短路电流的计算无限大电源供电的系统三相短路电流的变化情形,认为短路后电源电压和频率均保持不变,忽略了电源内部的暂态变化过程,但是当短路点距电源较近时,必须计及电源内部的暂态变化过程,这个衰减变化过程主要分为三个阶段即:次暂态阶段、暂态阶段和稳态阶段,每一阶段发电机都呈现不同的电抗和不同的衰减时间常数,此过程的分析较复杂。

而对于包含有许多台发电机的实际电力系统,在进行短路电流的工程实用计算时,没有必要作复杂的分析。

实际上,电力系统短路电流的工程计算在大多数情况下,只要求计算短路电流基频交流分量的初始值,也称为次暂态电流I ''。

工程上还用一种运算曲线,是按不同类型发电机,给出暂态过程中不同时刻短路电流交流分量有效值对发电机与短路点间电抗的关系曲线,它可用来近似计算短路后任意时刻的交流电流。

相关文档
最新文档