公司理财 第4章

合集下载

罗斯公司理财第九版第四章课后答案

罗斯公司理财第九版第四章课后答案

23题:This question is asking for the present value of an annuity, but the interest rate changes during the life of the annuity. We need to find the present value of the cash flows for the last eight years first. The PV of these cash flows is:PVA2 = $1,500 [{1 – 1 / [1 + (.09/12)]⌒96} / (.09/12)] = $102,387.66Note that this is the PV of this annuity exactly seven years from today. Now, we can discount this lump sum to today. The value of this cash flow today is:PV = $102,387.66 / [1 + (.13/12)]⌒84 = $41,415.70Now, we need to find the PV of the annuity for the first seven years. The value of these cash flows today is:PVA1 = $1,500 [{1 – 1 / [1 + (.13/12)]⌒84} / (.13/12)] = $82,453.99The value of the cash flows today is the sum of these two cash flows, so:PV = $82,453.99 + 41,415.70 = $123,869.9924题The monthly interest rate is the annual interest rate divided by 12, or:Monthly interest rate = .104 / 12 Monthly interest rate = .00867Now we can set the present value of the lease payments equal to the cost of the equipment, or $3,500. The lease payments are in the form of an annuity due, so:PV Adue = (1 + r) C({1 – [1/(1 + r)]⌒t } / r )$3,500 = (1 + .00867) C({1 – [1/(1 + .00867)]⌒24 } / .00867 ) C = $160.7625题Here, we need to compare to options. In order to do so, we must get the value of the two cash flow streams to the same time, so we will find the value of each today. We must also make sure to use the aftertax cash flows, since it is more relevant. For Option A, the aftertax cash flows are:Aftertax cash flows = Pretax cash flows(1 – tax rate)Aftertax cash flows = $175,000(1 – .28)Aftertax cash flows = $126,000The aftertax cash flows from Option A are in the form of an annuity due, so the present value of the cash flow today is:PV Adue = (1 + r) C({1 – [1/(1 + r)]⌒t } / r )PV Adue = (1 + .10)$126,000({1 – [1/(1 + .10)]⌒31 } / .10 )PV Adue = $1,313,791.22For Option B, the aftertax cash flows are:Aftertax cash flows = Pretax cash flows(1 – tax rate)Aftertax cash flows = $125,000(1 – .28)Aftertax cash flows = $90,000The aftertax cash flows from Option B are an ordinary annuity, plus the cash flow today, so the present value:PV = C({1 – [1/(1 + r)]⌒t } / r ) + CF0PV = $90,000{1 – [1/(1 + .10)]⌒30 } / .10 ) + $530,000PV = $1,378,422.3026题The cash flows for this problem occur monthly, and the interest rate given is the EAR. Since the cash flows occur monthly, we must get the effective monthly rate. One way to do this is to find the APR based on monthly compounding, and then divide by 12. So, the pre-retirement APR is: EAR = .11 = [1 + (APR / 12)]⌒12– 1; APR = 12[(1.11)1/12 – 1] = 10.48%And the post-retirement APR is:EAR = .08 = [1 + (APR / 12)]⌒12 – 1; APR = 12[(1.08)1/12 – 1] = 7.72%First, we will calculate how much he needs at retirement. The amount needed at retirement is the PV of the monthly spending plus the PV of the inheritance. The PV of these two cash flows is:PV A = $20,000{1 – [1 / (1 + .0772/12)⌒12*20]} / (.0772/12) = $2,441,554.61PV = $1,000,000 / (1 + .08)20 = $214,548.21So, at retirement, he needs: $2,441,554.61 + 214,548.21 = $2,656.102.81He will be saving $1,900 per month for the next 10 years until he purchases the cabin. The value of his savings after 10 years will be:FV A = $1,900[{[ 1 + (.1048/12)]⌒12*10– 1} / (.1048/12)] = $400,121.62After he purchases the cabin, the amount he will have left is: $400,121.62 – 320,000 = $80,121.62 He still has 20 years until retirement. When he is ready to retire, this amount will have grown to: FV = $80,121.62[1 + (.1048/12)]⌒12*20 = $646,965.50So, when he is ready to retire, based on his current savings, he will be short:$2,656,102.81 – 645,965.50 = $2,010,137.31This amount is the FV of the monthly savings he must make between years 10 and 30. So, finding the annuity payment using the FVA equation, we find his monthly savings will need to be: FVA = $2,010,137.31 = C[{[ 1 + (.1048/12)]⌒12*20 – 1} / (.1048/12)]C = $2,486.1227题To answer this question, we should find the PV of both options, and compare them. Since we are purchasing the car, the lowest PV is the best option. The PV of the leasing is simply the PV of the lease payments, plus the $1. The interest rate we would use for the leasing option is the same as the interest rate of the loan. The PV of leasing is:PV = $1 + $520{1 – [1 / (1 + .08/12)⌒12*3]} / (.08/12) = $16,595.14The PV of purchasing the car is the current price of the car minus the PV of the resale price. The PV of the resale price is:PV = $26,000 / [1 + (.08/12)]⌒12*3 = $20,468.62The PV of the decision to purchase is:$38,000 – 20,468.62 = $17,531.38In this case, it is cheaper to lease the car than buy it since the PV of the leasing cash flows is lower. To find the breakeven resale price, we need to find the resale price that makes the PV of the tw o options the same. In other words, the PV of the decision to buy should be:$38,000 – PV of resale price = $16,595.14PV of resale price = $21,404.86The resale price that would make the PV of the lease versus buy decision is the FV of this value, so:Breakeven resale price = $21,404.86[1 + (.08/12)]⌒12*3 = $27,189.2528题First, we will find the APR and EAR for the loan with the refundable fee. Remember, we need to use the actual cash flows of the loan to find the interest rate. With the $2,100 application fee, you will need to borrow $202,100 to have $200,000 after deducting the fee. Solving for the payment under these circumstances, we get:PV A = $202,100 = C {[1 – 1/(1.00567)⌒360]/.00567} where .00567 = .068/12 C = $1,317.54 We can now use this amount in the PV A equation with the original amount we wished to borrow, $200,000. Solving for r, we find:PV A = $200,000 = $1,317.54[{1 – [1 / (1 + r)]⌒360}/ r]Solving for r with a spreadsheet, on a financial calculator, or by trial and error, gives:r = 0.5752% per monthAPR = 12(0.5752%) = 6.90% EAR = (1 + .005752)⌒12– 1 = .0713 or 7.13%With the nonrefundable fee, the APR of the loan is simply the quoted APR since the fee is not considered part of the loan. So:APR = 6.80% EAR = [1 + (0.068/12)]⌒12– 1 = .0702 or 7.02%29题Here, we need to find the interest rate that makes us indifferent between an annuity and a perpetuity. To solve this problem, we need to find the PV of the two options and set them equal to each other. The PV of the perpetuity is:PV = $20,000 / rAnd the PV of the annuity is:PVA = $35,000[{1 – [1 / (1 + r)]⌒10 } / r ]Setting them equal and solving for r, we get:$20,000 / r = $35,000[{1 – [1 / (1 + r)]⌒10 } / r ]$20,000 / $35,000 = 1 – [1 / (1 + r)]⌒10 .057141/10 = 1 / (1 + r)r = 1 / .5714⌒1/10 – 1 r = .0576 or 5.76%30题。

公司理财英文版第四章

公司理财英文版第四章

4-4
Financial Planning Process
• Planning Horizon - divide decisions into short-run decisions (usually next 12 months) and long-run decisions (usually 2 – 5 years) • Aggregation - combine capital budgeting decisions into one large project • Assumptions and Scenarios
– Dividends are the plug variable, so equity Assets increases at 15% – Dividends = 460 (NI) – 370 (increase in equity)Total = 90 dividends paid
• Case II
4-7
Example: Historical Financial Statements
Gourmet Coffee Inc. Balance Sheet December 31, 2009
Gourmet Coffee Inc.
Income Statement For Year Ended December 31, 2009
Percentage of Sales Approach
• Some items vary directly with sales, while others do not • Income Statement
– Costs may vary directly with sales - if this is the case, then the profit margin is constant – Depreciation and interest expense may not vary directly with sales – if this is the case, then the profit margin is not constant – Dividends are a management decision and generally do not vary directly with sales – this influences additions to retained earnings

公司理财第四章筹资成本分析-精品

公司理财第四章筹资成本分析-精品

32
EBIT/ EBIT DOL= x/ x
= EBIT/ EBIT (px)/ px
式中: DOL为经营杠杆系 数; EBIT为变动前的息 税前利润; ΔEBIT为息税前利 润的变动额; px为变动前的销售 收入; Δ(px)为销售收入 的变动额; x为变动前的产销量; Δx为产销量的变动 数。
2020/5/29
西南政法大学
24
(1)固定成本
固定成本,是指其总额在一定时期和一 定业务量范围内不随业务量发生任何变 动的那部分成本。
属于固定成本的主要有按直线法计提 的折旧费、保险费、管理人员工资、办 公费等,这些费用每年支出水平基本相 同,即使产销业务量在一定范围内变动, 它们也保持固定不变。
p为销售单价; b为单位变动成本; x为产销量; m为单位边际贡献。
2020/5/29
西南政法大学
29
(三)息税前利润及其计算
息税前利润是指企业支付利息和交纳所得税 之前的利润。成本按习性分类后,息税前利润可 用下列公式计算:
EBIT=px-bx-a=(p-b)x-a=M-a
式中:EBIT为息税前利润;a为固定成本。
2020/5/29
西南政法大学
25
(2)变动成本
变动成本是指其总额随着业务量成 正比例变动的那部分成本。
直接材料、直接人工等都属于变动 成本。
但从产品的单位成本来看,则恰好 相反,产品单位成本中的直接材料、直 接人工将保持不变。
2020/5/29
西南政法大学
26
(3)混合成本
有些成本虽然也随业务量的变动而变 动,但不成同比例变动,不能简单地归 人变动成本或固定成本,这类成本称为 混合成本。
无风险利率Rf一般用同期国库券收益率表示, 这是证券市场最基础的数据。

罗斯《公司理财》重点知识整理上课讲义

罗斯《公司理财》重点知识整理上课讲义

罗斯《公司理财》重点知识整理上课讲义罗斯《公司理财》重点知识整理第一章导论1. 公司目标:为所有者创造价值公司价值在于其产生现金流能力。

2. 财务管理的目标:最大化现有股票的每股现值。

3. 公司理财可以看做对一下几个问题进行研究:1. 资本预算:公司应该投资什么样的长期资产。

2. 资本结构:公司如何筹集所需要的资金。

3. 净运营资本管理:如何管理短期经营活动产生的现金流。

4. 公司制度的优点:有限责任,易于转让所有权,永续经营。

缺点:公司税对股东的双重课税。

第二章会计报表与现金流量资产 = 负债 + 所有者权益(非现金项目有折旧、递延税款)EBIT(经营性净利润) = 净销售额 - 产品成本 - 折旧EBITDA = EBIT + 折旧及摊销现金流量总额CF(A) = 经营性现金流量 - 资本性支出- 净运营资本增加额 = CF(B) + CF(S)经营性现金流量OCF = 息税前利润 + 折旧 - 税资本性输出 = 固定资产增加额 + 折旧净运营资本 = 流动资产 - 流动负债第三章财务报表分析与财务模型1. 短期偿债能力指标(流动性指标)流动比率 = 流动资产/流动负债(一般情况大于一)速动比率 = (流动资产 - 存货)/流动负债(酸性实验比率)现金比率 = 现金/流动负债流动性比率是短期债权人关心的,越高越好;但对公司而言,高流动性比率意味着流动性好,或者现金等短期资产运用效率低下。

对于一家拥有强大借款能力的公司,看似较低的流动性比率可能并非坏的信号2. 长期偿债能力指标(财务杠杆指标)负债比率 = (总资产 - 总权益)/总资产 or (长期负债 + 流动负债)/总资产权益乘数 = 总资产/总权益 = 1 + 负债权益比利息倍数 = EBIT/利息现金对利息的保障倍数(Cash coverage radio) = EBITDA/利息3. 资产管理或资金周转指标存货周转率 = 产品销售成本/存货存货周转天数 = 365天/存货周转率应收账款周转率 = (赊)销售额/应收账款总资产周转率 = 销售额/总资产 = 1/资本密集度4. 盈利性指标销售利润率 = 净利润/销售额资产收益率ROA = 净利润/总资产权益收益率ROE = 净利润/总权益5. 市场价值度量指标市盈率 = 每股价格/每股收益EPS 其中EPS = 净利润/发行股票数市值面值比 = 每股市场价值/每股账面价值企业价值EV = 公司市值+ 有息负债市值- 现金EV乘数= EV/EBITDA6. 杜邦恒等式ROE = 销售利润率(经营效率)x总资产周转率(资产运用效率)x权益乘数(财杠)ROA = 销售利润率x总资产周转率7. 销售百分比法假设项目随销售额变动而成比例变动,目的在于提出一个生成预测财务报表的快速实用方法。

公司理财罗斯课后习题答案人大版

公司理财罗斯课后习题答案人大版
千美元经营活动净利润643折旧127递延税款61资产及负债的变动应收账款25存货11应付账款66应计费用79其他7经营活动产生的现金流量797投资活动固定资产的取得629固定资产的出售111投资活动产生的现金流量518筹资活动到期债务包括票据的本金54发行长期债券94应付票据15股利318股票回购32发行新股47筹资活动产生的现金流量248现金的变动额312
9.就像市场需求其他劳动力一样,市场也需求首席执行官,首席执行官的薪酬是 由市场决定的。这同样适用于运动员和演员。首席执行官薪酬大幅度增长的一 个主要原因是现在越来越多的公司实行股票报酬,这样的改革是为了更好的协 调股东和管理者的利益。这些报酬有时被认为仅仅对股票价格上涨的回报,而 不是对管理能力的奖励。或许在将来,高管薪酬仅用来奖励特别的能力,即,股票 价格的上涨增加了超过一般的市场。
c.CFS=股利-新发行股票=8700-6450=2250
d.CFA=CFC+CFS=21500+2250=23750
CFA=OFC-净资本性支出-净营运资本增加额
净资本性支出=固定资产增加净额+折旧=5000+7000=12000
净营运资本增加额=OFC-CFA-净资本性支出=41260-23750-12000=5510
7.它会降低对外部资金的需求。如果公司没有满负荷运转,不用增加固定资产就可 以提高销售额。
8.ROE 是对公司的业绩最好的衡量方法。ROE 表示股权投资者的回报率。由于 公司的财务管理目标是最大的股东财富,比率显示了公司的绩效是否达成目 标。
9.EBITD /资产比显示了该公司的经营业绩(利息、税收、折旧前)。该比例显示 公司的成本控制。虽然税金是成本,折旧和摊销费用也被认为是成本,但这些不 易控制。相反的,折旧和待摊费用会因为会计方法的选择而改变。该比例只用 于跟经营活动相关的成本,比 ROA 更好的度量管理绩效。

《公司理财》第4章-风险衡量

《公司理财》第4章-风险衡量

i cov(Ri ,RM )

2 M
Ri表示第i个证券的期望收益率;
RM Rf 表示市场组合的风险溢价;
i风险溢价的系数;
cov(Ri ,RM )代表第i种风险资产与市场组合收益率之间的协方差;

2 M
市场组合的方差;
说明: (1)单个证券的期望收益率由 两部分组成,即无风险利率和 风险溢价组成; (2)风险溢价的大小取决于 i 的大小; (3)i 度量单个证券的系统性 风险,非系统性风险没有风险 补偿;
2、投资组合风险的衡量
(1)什么是投资组合? 当投资者的投资目标是多个或一组金融资产时,表示投
资者在进行组合投资,此时投资者所拥有的金融资产称 为“投资组合”。 (2)投资组合的期望报酬:是投资组合中各单项资产 期望收益率的加权平均。 (3)投资组合的风险衡量 投资组合的风险并不等于组合中单个项目风险的加权平 均。它除了与单个项目的风险有关之外,还与组合中单 个项目的协方差有关。原因: 组合中各项资产之间的关 联性所导致的。
第4章 风险衡量
本章教学内容
4.1 风险的数学表达
4.2 投资组合的选择
4.3 风险与收益理论 -资本资产定价模型
4.4 风险与收益理论 -套利定价理论
2
4.1 风险的数学表达
持有资产,将来可能获得一定的收益,但是,也 许要承担资产价值的损失,即资产将来的价格变 化具有不确定性,这种不确定性被称为风险。从 数学角度看,风险表示各种结果发生的可能性。
21
4.1.3资本资产定价模型(CAPM)
β系数的含义
β 值可正可负,其绝对值越大,说明单项证券收益率的波 动程度越高。
当市场组合的β 系数等于1时,反映所有风险资产的平均 风险水平。

《公司理财》(刘曼红)(第二版)部分习题参考答案

《公司理财》(刘曼红)(第二版)部分习题参考答案

《公司理财》(刘曼红)(第⼆版)部分习题参考答案【思考与练习题】部分习题参考答案第3章6.该公司资产负债表为⽇7.公司2007年的净现⾦流为-25万元。

8.各⽐例如下:第4章4.(1)1628.89元;(2)1967.15元;(3)2653.30元5. 现在要投⼊⾦额为38.55万元。

6. 8年末银⾏存款总值为6794.89元(前4年可作为年⾦处理)。

7.(1)1259.71元;(2)1265.32元;(3)1270.24元;(4)1271.25元;(5)其他条件不变的情况下,同⼀利息期间计息频率越⾼,终值越⼤;到连续计算利息时达到最⼤值。

8.(1)每年存⼊银⾏4347.26元;(2)本年存⼊17824.65元。

9.基本原理是如果净现值⼤于零,则可以购买;如果⼩于零,则不应购买。

NPV=-8718.22,⼩于零,故不应该购买。

第5章8.(1)该证券的期望收益率=0.15×8%+0.30×7%+0.40×10%+0.15×15%=9.55%标准差=2.617%(2)虽然该证券期望收益率⾼于⼀年期国债收益率,但也存在不确定性。

因此不能确定是否值得投资。

9.(1)两种证券的期望收益、⽅差与标准差(2)根据风险与收益相匹配的原则,⽬前我们还不能确定哪种证券更值得投资。

10.各证券的期望收益率为:%4.11%)6%12(9.0%6%15%)6%12(5.1%6%1.11%)6%12(85.0%6%2.13%)6%12(2.1%6=-?+==-?+==-?+==-?+=A A B A r r r r11. (1)该组合的期望收益率为15.8% (2)组合的β值945.051==∑=ii ip w ββ(3)证券市场线,图上组合中每种股票所在位置第6章5.(1)当市场利率分别为:8%;6%;10%时,该债券的价格分别为:39.8759.376488.4983769.010004622.1240)2/1(1000)2/1(40%1010004.456612.5434564.010005903.1340)2/1(1000)2/1(408%8.11487.5531.5955537.010008775.1440)2/1(1000)2/1(406%2040)(2020102020102020100=+=?+?=+++=≈+=?+?=+++==+=?+?=+++=+=∑∑∑===r r B r r B r r B PV PV B t tt tt t时,则当市场利率为时,则当市场利率为时,则当市场利率为次。

公司理财(罗斯)第4章

公司理财(罗斯)第4章
感谢您的观看
投资风险和回报的权衡
风险与回报的关系
高风险往往伴随着高回报,投资者需要在风 险和回报之间进行权衡。
风险分散
通过多元化投资,分散单一项目的风险,降 低整体投资组合的风险水平。
风险控制
采取措施降低投资风险,如对冲策略、限制 杠杆等。
风险偏好
根据投资者对风险的容忍程度,选择适合的 投资项目和策略。
04 资本结构和融资决策
公司理财(罗斯)第4章
目录
• 公司理财的目标和原则 • 财务报表和财务分析 • 资本预算和投资决策 • 资本结构和融资决策 • 营运资本管理
01 公司理财的目标和原则
公司理财的定义和目标
公司理财定义
公司理财是对公司财务的管理,包括 对公司财务活动进行计划、组织、指 挥、协调、控制和监督等一系列的管 理活动。
05 营运资本管理
营运资本的定义和构成
营运资本的定义
指公司用于日常经营活动的流动资金,包括短期资产和短期负债。
营运资本的构成
由流动资产和流动负债组成,其中流动资产包括现金、存货、应收账款等,流动负债包括应付账款、 短期借款等。
营运资本管理的目标和原则
营运资本管理的目标
确保公司有足够的营运资本来支持日常 经营,同时保持较低的资本成本和风险 。
偿债能力指标
包括流动比率、速动比率、资产负债率 等,用于评估公司的偿债能力。
盈利能力指标
包括销售利润率、资产收益率、权益 净利率等,用于评估公司的盈利能力。
营运能力指标
包括存货周转率、应收账款周转率、 总资产周转率等,用于评估公司的资 产管理和运用效率。
成长性指标
包括营业收入增长率、净利润增长率、 总资产增长率等,用于评估公司的成 长潜力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved.
$10,000 $9,523.81= 1.05
Present Value
In the one-period case, the formula for PV can be written as:
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved.
Future Value and Compounding
Notice that the dividend in year five, $5.92, is considerably higher than the sum of the original dividend plus five increases of 40percent on the original $1.10 dividend: $5.92 > $1.10 + 5×[$1.10×.40] = $3.30 This is due to compounding.
C PV = 1 1+r
Where C1 is cash flow at date 1, and r is the appropriate interest rate.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved.
5
$1.10
0
McGraw-Hill/Irwin
$1.54 $2.16 $3.02
1 2 3
$4.23
4
$5.92
5
Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved.
Present Value and Discounting
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved.
4.2 The Multiperiod Case
The general formula for the future value of an investment over many periods can be written as: FV = C0×(1 + r)T
Future Value
Suppose a stock currently pays a dividend of $1.10, which is expected to grow at 40% per year for the next five years. What will the dividend be in five years? FV = C0×(1 + r)T $5.92 = $1.10×(1.40)5
The amount that a borrower would need to set aside today to be able to meet the promised payment of $10,000 in one year is called the Present Value (PV). Note that $10,000 = $9,523.81×(1.05).
Present Value
If you were to be promised $10,000 due in one year when interest rates are 5-percent, your investment would be worth $9,523.81 in today’s dollars.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved.
Net Present Value
In the one-period case, the formula for NPV can be written as: NPV = –Cost + PV If we had not undertaken the positive NPV project considered on the last slide, and instead invested our $9,500 elsewhere at 5 percent, our FV would be less than the $10,000 the investment promised, and we would be worse off in FV terms : $9,500×(1.05) = $9,975 < $10,000
Where C0 is cash flow today (time zero), and r is the appropriate interest rate.
McGraw-Hill/Irwin
Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved.
Net Present Value
The Net Present Value (NPV) of an investment is the present value of the expected cash flows, less the cost of the investment. Suppose an investment that promises to pay $10,000 in one year is offered for sale for $9,500. Your interest rate is 5%. Should you buy?
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved.
Future Value and Compounding
$1.10×(1.40) $1.10×(1.40)4
$1.10×(1.40)3 $1.10×(1.40)2 $1.10×(1.40)
Where C0 is cash flow at date 0, r is the appropriate interest rate, and T is the number of periods over which the cash is invested.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved.
McGraw-Hill/Irwin
Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved.
4.1 The One-Period Case
If you were to invest $10,000 at 5-percent interest for one year, your investment would grow to $10,500. $500 would be interest ($10,000 × .05) $10,000 is the principal repayment ($10,000 × 1) $10,500 is the total due. It can be calculated as: $10,500 = $10,000×(1.05) The total amount due at the end of the investment is call the Future Value (FV).
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved.
Chapter Outline
4.1 Valuation: The One-Period Case 4.2 The Multiperiod Case 4.3 Compounding Periods 4.4 Simplifications 4.5 What Is a Firm Worth?
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved.
Net Present Value
$10,000 NPV = −$9,500+ 1.05 NPV = −$9,500+$9,523.81 NPV = $23.81
Chapter 4
Discounted Cash Flow Valuation
McGraw-Hill/Irwin
Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved.
Key Concepts and Skills
FV = C0 ×(1+r)
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved.
相关文档
最新文档